
SYSTEM AND SOFTWARE DESIGN DESCRIPTION (SSDD): Incorporating
Architectural Views and Detailed Design Criteria

FOR

Project: UML

Version 1.1
[12/16/2011]

Prepared for:
Professor Bruce Bolden, Dr. Clinton Je�ery

Prepared by:
Coleman Beasley, Alex Dean, Austin En�eld, Jason Fletcher, Theora Rice, Cable Johnson,

Adrian Norris, David Summers

Emeritus Contributors:
Noel Klein, Max McKinnon

University of Idaho
Moscow, ID 83844-1010

SSDD Page 1



CS383 SSDD
RECORD OF CHANGES (Change History) (N/A)

Change
Number

Date
com-
pleted

Location of change
(e.g., page or �gure

#)

A
M
D

Brief description
of change

Approved
by

(initials)

Date
approved

01 2012.02.02 line 1107 A
Added class diagram based on
current code.

DS

A - ADDED M - MODIFIED D � DELETED

SSDD Page 2



PUML
TABLE OF CONTENTS

Section Page

SSDD Page 3



1 INTRODUCTION (Alex)

1.1 IDENTIFICATION

This document describes the �rst version of pUML. pUML is a UML diagram drawing tool that will operate
under any system able to compile it with QT Creator 4.7.

1.2 DOCUMENT PURPOSE, SCOPE, AND INTENDED AUDIENCE

1.2.1 Document Purpose

This Software Design Document provides the design details of Project Uni�ed Modeling Language (pUML).

1.2.2 Document Scope and/or Context

This document contains a complete description of the design of pUML. The project is written with C++
and the Qt framework. The project leader designated is Coleman Beasley. He will have full access to make
changes as he deems necessary.

1.2.3 Intended Audience for Document

The intended audience is Bruce Bolden, the pUML developers, and the people who maintain pUML.

1.3 SYSTEMAND SOFTWARE PURPOSE, SCOPE, AND INTENDEDUSERS

1.3.1 System and Software Purpose

This software provides the user with a quick and e�cient means to construct high quality UML diagrams.

1.3.2 System and Software Scope/or Context

The scope of this application is provide the user with a means to construct high quality UML diagrams.
This includes implementing the following features at a minimum: spacing

- All shapes needed for standard UML diagrams (including an actor shape)

- Line objects for creating connections

- Text areas to write comments for the diagrams

- Ability to save and load projects

- Exportability to PDF format

1.3.3 Intended Users for the System and Software

The intended users for this application are students and professionals seeking an advanced tool to construct
a UML diagram.

1.4 DEFINITIONS, ACRONYMS, AND ABBREVIATIONS



Term or Acronym De�nition

Acquirer
The person, team, or organization that pursues a system or software product or
service from a supplier. The acquirer may be a buyer, customer, owner, purchaser,
or user. ISO/IEC 42010:2007 (�3.1).

AD
Architectural Description: �A collection of products to document an architecture�
ISO/IEC 42010:2007 (�3.4).

Alpha test Limited release(s) to selected, outside testers

Architect
�The person, team, or organization responsible for systems architecture� ISO/IEC
42010:2007 (�3.2).

Architectural Descrip-
tion

(AD) �A collection of products to document an architecture� ISO/IEC 42010:2007
(�3.4).

Architectural View
�A representation of a whole system from the perspective of a related set of concerns�
ISO/IEC 42010:2007 (�3.9).

Architecture
�The fundamental organization of a system embodied in its components, their re-
lationships to each other, and to the environment, and the principles guiding its
design and evolution� ISO/IEC 42010:2007 (�3.5).

Beta test
Limited release(s) to cooperating customers wanting early access to developing sys-
tems

Design Entity
�An element (component) of a design that is structurally and functionally distinct
from other elements and that is separately named and referenced� IEEE STD 1016-
1998 (�3.1).

Design View
�A subset of design entity attribute information that is speci�cally suited to the
needs of a software project activity� IEEE STD 1016-1998 (�3.2).

Final test aka, Acceptance test, release of full functionality to customer for approval

DFD Data Flow Diagram

SDD Software Design Document, aka SDS, Software Design Speci�cation

Software Design De-
scription

�A representation of a software system created to facilitate analysis, planning, im-
plementation, and decision making, A blueprint or model of a software system. The
SDD is used as the primary medium for communicating software design information�
IEEE STD 1016-1998 (�3.4).

SRS Software Requirements Speci�cation

SSDD System and Software Design Document

SSRS System and Software Requirements Speci�cation

System
�A collection of components organized to accomplish a speci�c function or set of
functions� ISO/IEC 42010:2007 (�3.7).

System and Software
Architecture and De-
sign Description

An architectural and detailed design description that includes a software system
within the context of its enclosing system and describes the enclosing system, the
enclosed software, and their relationship and interfaces.



Term or Acronym De�nition

System Stakeholder
�An individual, team, or organization (or classes thereof) with interests in, or con-
cerns, relative to, a system� ISO/IEC 42010:2007 (�3.8).

1.5 DOCUMENT REFERENCES

1) CSDS, System and Software Requirements Speci�cation Template, Version 1.0, July 31, 2008, Center
for Secure and Dependable Systems, University of Idaho, Moscow, ID, 83844.

2) ISO/IEC/IEEE, IEEE Std 1471-2000 Systems and software engineering � Recommended practice for
architectural description of software intensive systems, First edition 2007-07-15, International Orga-
nization for Standardization and International Electrotechnical Commission, (ISO/IEC), Case postale
56, CH-1211 Genève 20, Switzerland, and The Institute of Electrical and Electronics Engineers, Inc.,
(IEEE), 445 Hoes Lane, Piscataway, NJ 08854, USA.

3) IEEE, IEEE Std 1016-1998 Recommended Practice for Software Design Descriptions, 1998-09-23, The
Institute of Electrical and Electronics Engineers, Inc., (IEEE) 445 Hoes Lane, Piscataway, NJ 08854,
USA.

4) 3) ISO/IEC/IEEE, IEEE Std. 15288-2008 Systems and Software Engineering � System life cycle
processes, Second edition 2008-02-01, International Organization for Standardization and International
Electrotechnical Commission, (ISO/IEC), Case postale 56, CH-1211 Genève 20, Switzerland, and The
Institute of Electrical and Electronics Engineers, Inc., (IEEE), 445 Hoes Lane, Piscataway, NJ 08854,
USA.

5) ISO/IEC/IEEE, IEEE Std. 12207-2008, Systems and software engineering � Software life cycle pro-
cesses, Second edition 2008-02-01, International Organization for Standardization and International
Electrotechnical Commission, (ISO/IEC), Case postale 56, CH-1211 Genève 20, Switzerland, and The
Institute of Electrical and Electronics Engineers, Inc., (IEEE), 445 Hoes Lane, Piscataway, NJ 08854,
USA.

6) Qt Development Frameworks Documentation. [Online] Available: http://doc.qt.nokia.com/ 6) Qt Devel-
opment Frameworks Documentation. [Online] Available: http://doc.qt.nokia.com/

1.6 DOCUMENT OVERVIEW

Section 2 of this document describes the system and software constraints imposed by the operational envi-
ronment, system requirements and user characteristics, and then identi�es the system stakeholders and lists
describes their concerns and mitigations to those concerns.

Section 3 of this document describes the system and software architecture from several viewpoints, in-
cluding, but not limited to, the developer's view and the user's view.

Section 4 provides detailed design descriptions for every component de�ned in the architectural view(s).
Sections 5 provides traceability information connecting the original speci�cations (referenced above) to the
architectural components and design entities identi�ed in this document.

Section 6 and beyond are appendices including original information and communications used to create
this document.



1.7 DOCUMENT RESTRICTIONS

This document is for LIMITED RELEASE ONLY to UI CS personnel working on the project, Bruce Bolden,
and his associates.

2 CONSTRAINTS (Noel)

This section identi�es and describes in detail the architectural and usability constraints that are imposed by
the physical environment and system requirements and the user characteristics.

2.1 Environmental constraints.

The tool can be used in every environment that satis�es the system requirements de�ned in the next sub-
section. Since it is a software design tool, it will most likely be in a software design environment.

2.2 System requirement constraints.

The tool requires normal x86 hardware and runs on Windows, Mac OSX, and Linux.

2.3 User characteristic constraints.

It is a tool that supports the creation of UML diagrams and therefore requires the knowledge of how UML
diagrams work.



3 SYSTEM AND SOFTWARE ARCHITECTURE (Theora)

3.1 DEVELOPER'S ARCHITECTURAL VIEW

From the developer's point of view, the architecture is modular, based around separate tool bars and
windows gathered around a single menu. It has been written in C++. The Drawing Area module is where
the events of the program are centred and displayed. It uses di�erent methods for mouse-movement and
dragging events. It also contains a paint method to illustrate the �nal output shape. The objects it displays
come from the objects class, which holds the various subclasses that contain each shape. Each of these
subclasses contains only their own creation method.

The Toolbar is the next most important module, as it controls the drawing of objects and their properties
afterwards. It triggers inserting an object with the insertShape() and insertLine() methods, as well as
contains the method that calls the OptionsDialog.

The Options Dialog updates each shape object with the new user-chosen colours, text, and line weight. It
is a user interface where they will be presented with a selection of options to choose from to modify their
diagram.

Objects will be represented within one common class, that will contain links to each shape's individual
subclass. These subclasses will contain the shape's properties such as position, colour, size, etc., as well as
their own creation method.

The File Method contains any information about the �le itself, and will default save the �le to a database
as an XML �le. It also has open(), savePDF(), and BMP() for opening �les and saving them to di�erent
formats. This will also contain the list of recent user actions for the undo and redo functionality. These
actions will be kept in a linked list for reference.

3.2 USER'S ARCHITECTURAL VIEW

From the user's viewpoint, there are three separate modules: The Main Window, the Drawing Area, and
the Toolbar. The Main Window will act as background, which the other components will use to orient
themselves. This window will contain the �le management buttons, such as save, open, undo, redo, and
help.

The Drawing Area will be where users get to manipulate the individual objects and the overall diagram
they create. The background will be a plain white drawing space, across which the users will be able to
drag their objects. By left clicking each object, users will be able to access the Options Dialogue box, where
they will be able to change the line width, �ll colour (for non-lines,) font (for text boxes,) and line colour.
Thus, the Drawing Area controls where one can put the shapes, the Options dialogue changes the shape's
properties and the shapes keep track of their own values.

The Toolbar allows the user to create shapes on the Drawing Area, and access the Options Dialogue box
to change the default value of a shape before it is created. It will also be used to toggle the Grid on and o�
the Drawing Area.



3.3 User's View Identi�cation

From the User's point of view, things are mostly GUI based for easy utilization. Within the top level of
the architecture, the Main Window, there are �le operation processes. The save button will summon a drop
down menu that contains buttons to (default) save the �le as an XML document, export to PDF, export to
BMP, and exit without saving. The open button will automatically bring up a directory dialogue so that
the user can choose �les. Undo will reverse the previous user action, and redo will reinstate it. The help
button will contain a drop down menu with buttons that summon the �About�dialogue window and the User
Manual Dialogue. The About dialogue will display general information about the program and who created
it. The User Manual Dialogue will contain the usual Help window, in which users can manipulate di�erent
tabs to get the information they need in order to use the program.

The Drawing Area will contain the processes that allow for manipulation of the shapes and diagram.
By left clicking on a shape and holding down on the mouse button, the user can drag shapes across the
background and change their coordinates. By dragging down on the bottom right hand corner of these
objects, users will be able to resize them. Multiple shapes can be selected by clicking on each in turn while
holding the ctrl key. All above processes can be performed upon these group selected shapes as well.

The Toolbar contains the processes that will be used to signal the creation of a shape, line, and text box.
It also contains the ability to open the Options Dialogue, and the button to toggle the grid on and o�.

3.3.1 User's View Representation and Description

The Toolbar will reside to the left of the screen, the �le manipulation will be on top, and the drawing
area will be the bulk of the screen.

3.4 Developer's View Identi�cation

From the point of view of the Developer, the architecture makes it easier to separate processes into separate
categories.

File operation resides in the main window, and takes care of converting �le formats to XML, PDF, and
BMP. The Open function accesses the home directory so that users may use previously stored �les. Undo
and Redo take from two stacks to retrieve their commands. The Help button summons a widget to explain
the program.



The Drawing Area keeps track of the shapes. It contains a list of each shape object and it's properties
(size, shape, color, etc). The QGraphicScene() it is composed of allows the user to drag QGraphicsItems
around the background. It will also allow users to right click on objects to summon the options widget. The
linked list of objects will be referred if multiple objects need to be selected. Therefore, Drawing Area is
higher in the hierarchy than the objects subclass.

Toolbar can a�ect the Drawing Area, in that it summons new instances of shapes to appear and displays
the grid. It can also trigger the Options widget which allows the user to change shape properties.

By using this architecture, programming can be easily broken up into di�erent sections and responsibilities.
That way, multiple people can work on di�erent areas without having to constantly rely on each other for
input.

3.4.1 Developer's View Representation and Description

Developer's View Representation andDescription

3.4.2 Developer's Architectural Rationale

There are many reasons behind the selection of this structure. One is that it has been implemented in
similar forms in other popular graphics tools. It is graphically similar to the layout of Paint, and other
popular UML diagramming programs. It is also more modular to code, as di�erent areas contain di�erent
responsibilities, and thus can be coded by individuals in their own time.

3.5 CONSISTENCY OF ARCHITECTURAL VIEWS

For compliance with ISO/IEC 42010:2007 (�5.5) an Architectural Description (AD) shall include a list
of all known inconsistencies between the architectural views and an analysis of consistency across all the
architectural views.

3.5.1 Detail of Inconsistencies between Architectural Views

There is consistency between the Architectural views, though the two focus on separate qualities. One
inconsistency, however, is that the Developer's architecture stresses the modularity of the code, without
focusing much on the connections between the modules. The user's code, however, focuses on how each
section can be used in order to create a �nal product.



3.5.2 Consistency Analysis and Inconsistency Mitigations

A possible solution to the inconsistency listed above is to use group meetings to focus on creating a smooth
connection between parts. If each member of the team works as e�ciently as possible on their individual
tasks, then the hours spent together can be to work out bugs between modules as they are linked up to form
the �nal program.



4 SOFTWARE DETAILED DESIGN

4.1 DEVELOPER'S VIEWPOINT DETAILED SOFTWARE DESIGN

A modular approach was preferred, separating the application into di�erent distinct components that could
operate independently. This allowed di�erent developers to work on their own aspects of the program
independently, with an emphasis on the Drawing Area, Toolbar/Options, and the Main Window, allowing
the team to maximize work versus time.

Figure 1: Topmost Class Diagram



4.2 COMPONENT/ENTITY DICTIONARY

.

Component/Entity Dictionary

Name Type/Range Purpose/Function Dependencies Subordinates

MainWindow widget Manage overall layout none none

Drawing Area widget Create graphical view none
none

Toolbar widget
Manage buttons and

change options
Options Dialog

none

4.3 COMPONENT/ENTITY DETAILED DESIGN

4.3.1 Detailed Design for Component/Entity: MainWindow

4.3.1.1 Introduction/Purpose of this Component/Entity Manage the other components' positions
and sizes in relation to each other. Will also terminate the other components when closed.

4.3.1.2 Input for this Component/Entity User-generated resize/move/exit requests.

4.3.1.3 Output for this Component/Entity Positions and sizes for the other components.

4.3.1.4 Component/Entity Process to Convert Input to Output Calculate the appropriate sizes
and positions based on a �xed ratio/layout.

4.3.1.5 Design constraints and performance requirements of this Component/Entity None.

4.3.2 Detailed Design for Component/Entity: Drawing Area

4.3.2.1 Introduction/Purpose of this Component/Entity Create and show the appropriate rep-
resentation of all the objects for the current �le in a graphical view.

4.3.2.2 Input for this Component/Entity Position and size of new objects from the user, various
aesthetic features, such as font and color, from the toolbar options.

4.3.2.3 Output for this Component/Entity Graphical representation of all currently existing shapes.

4.3.2.4 Component/Entity Process to Convert Input to Output Call object creation functions
from shapes with the appropriate parameters, which will then handle object creation and return an appropriate
reference, to be used in drawing the object.

4.3.2.5 Design constraints and performance requirements of this Component/Entity None.

4.3.3 Detailed Design for Component/Entity: Toolbar

4.3.3.1 Introduction/Purpose of this Component/Entity Manage buttons for creating the various
shapes, making sure that the speci�ed shape is appropriate for the current diagram type. It will also manage
the grid state, as well as default options, such as font, weight, or color.



4.3.3.2 Input for this Component/Entity User pushing a speci�c button, selecting new option values,
or toggling the grid.

4.3.3.3 Output for this Component/Entity Button presses will signal the appropriate function, such
as create new shape, save, or load. Changing the default options will result in all new shapes being created
with those parameters. Toggling the grid will result in the grid becoming visible or invisible.

4.3.3.4 Component/Entity Process to Convert Input to Output For creating new shapes, the
Toolbar will send a request to make a new object of the speci�ed type. For options, the Toolbar will open an
Option Dialog and allow the user to specify new changes, saving those changes when con�rmation is received.
For other buttons, appropriate functions will be called, signalling MainWindow or DrawArea if needed.

4.3.3.5 Design constraints and performance requirements of this Component/Entity None.

4.4 DATA DICTIONARY

Data Dictionary

Name Type/Range De�ned by. . . Referenced by. . . Modi�ed by. . .

ObStruct
Data Struc-

ture
shapes.h drawArea.cpp none

Arrows
Data Struc-

ture
shapes.h drawArea.cpp none

OptionsDialog QDialog optionsDialog.h toolbar.cpp Toolbar

5 REQUIREMENTS TRACEABILITY

This section shall contain traceability information from each system requirement in this speci�cation to the
system (or subsystem, if applicable) requirements it addresses. A tabular form is preferred, but not manda-
tory. A detailed mapping between requirements and constraints in the SSRS and architectural components
and detailed entities in this SSDD is required. For compliance with ISO/IEC 15288:2008 (�6.4.3.3.c) an
Architectural Description (AD) shall provide roundtrip traceability between the system and software require-
ments and the architectural design entities. All requirements and constraints within the SSRS shall map
to a set of architectural entities. All entities in all the architectural views shall be associated with either a
requirement or constraint in the SSRS or an architectural constraint within this SSDD.

Req No. SDD Alpha Test Results

UC1 F

UC2 F

UC3 F

UC4 F

UC5 F

UC6 50% - grid displays, but button does not toggle

UC7 30% - several shapes can be placed



Req No. SDD Alpha Test Results

UC8 F

UC9 F

UC10 F

Select shapes UC11 The user selects the shapes for further commands.

Move shapes UC12
The user moves the shapes to a di�erent location on the drawing
area.

Copy shapes UC13 The user copies the selected shapes to the clipboard.

Cut shapes UC14
The user cuts the selected shapes to the clipboard. The shapes are
removed from the drawing area.

Paste shapes UC15 The user pastes the shapes from the clipboard into the drawing area.

Edit shape properties UC16 The user edits a shape on the drawing area.

Edit default properties UC17 The user edits the default properties of the UML tool.

Priorities are: Mandatory, Low, High
SDD link is version and page number or function name.
Test cases and results are �le names and Pass/Fail or % passing.


