
SYSTEM AND SOFTWARE DESIGN DESCRIPTION (SSDD): Incorporating
Architectural Views and Detailed Design Criteria

FOR

Phunctional UML Editor
(pUML)

Version 1.0
May 10, 2012

Prepared for:
Dr. Clint Je�ery

Prepared by:
Josh Armstrong
Zach Curtis
Brian Bowles
Logan Evans
Jeremy Klas

Nathan Krussel
Maxine Major
Morgan Weir
David Wells

University of Idaho
Moscow, ID 83844-1010

SSDD Page 1

CS383 SSDD
RECORD OF CHANGES (Change History)

Change
Number

Date
Location of change
(e.g., page or �gure

#)

A
M
D

Brief description
of change Initials

1 01/17/2012 SSDD A
Added updated SSRS/SSDD pdf
and TeX �les MM

2 02/01/2012 SSDD A Updated SSRS and SSDD MM

3 02/13/2012 Section 4.1 M
Class diagram re�ects node fac-
tory addition MM

4 05/08/2012 SSDD M
Document overhaul including
sections, references, and class
diagrams

MM

5 05/10/2012 SSDD M
Interaction diagrams section
overhaul MM

A - ADDED M - MODIFIED D � DELETED

SSDD Page 2

Phunctional UML Editor
TABLE OF CONTENTS

Section Page

1 INTRODUCTION 1
1.1 IDENTIFICATION . 1
1.2 DOCUMENT PURPOSE, SCOPE, AND INTENDED AUDIENCE 1

1.2.1 Document Purpose . 1
1.2.2 Document Scope and/or Context . 1
1.2.3 Intended Audience for Document . 1

1.3 SYSTEM AND SOFTWARE PURPOSE, SCOPE, AND INTENDED USERS 1
1.3.1 System and Software Purpose . 1
1.3.2 System and Software Scope/or Context . 1
1.3.3 Intended Users for the System and Software . 1

1.4 DEFINITIONS, ACRONYMS, AND ABBREVIATIONS . 2
1.5 DOCUMENT REFERENCES . 2
1.6 DOCUMENT OVERVIEW . 4
1.7 DOCUMENT RESTRICTIONS . 4

2 CONSTRAINTS AND STAKEHOLDER CONCERNS 5
2.1 CONSTRAINTS . 5

2.1.1 Environmental Constraints. 5
2.1.2 System Requirement Constraints. 5
2.1.3 User Characteristic Constraints. 5

2.2 STAKEHOLDER CONCERNS . 5

3 SYSTEM AND SOFTWARE ARCHITECTURE 1
3.1 DEVELOPER'S ARCHITECTURAL VIEW . 1

3.1.1 Developer's View Identi�cation . 1
3.1.2 Developer's View Representation and Description . 1
3.1.3 Developer's Architectural Rationale . 1

3.2 USER'S ARCHITECTURAL VIEW . 2
3.2.1 User's View Identi�cation . 2
3.2.2 User's View Representation and Description . 2

3.3 CONSISTENCY OF ARCHITECTURAL VIEWS . 2

4 SOFTWARE DETAILED DESIGN 3
4.1 DEVELOPER'S VIEWPOINT DETAILED SOFTWARE DESIGN 3

4.1.1 Class Overview . 3
4.1.2 Main Window Class . 4
4.1.3 Document and Canvas Classes . 5
4.1.4 Base Node Class . 6
4.1.5 ConnectionNode Class . 7
4.1.6 Object Node Class . 8

4.2 COMPONENT/ENTITY DICTIONARY . 9
4.3 FEATURE DETAILED DESIGN . 10

4.3.1 Detailed Design for Feature: Create New Diagram . 10

SSDD Page 3

4.3.2 Detailed Design for Feature: Open an Existing Diagram 12
4.3.3 Detailed Design for Feature: Exit pUML . 14
4.3.4 Detailed Design for Feature: Save . 15
4.3.5 Detailed Design for Feature: Save As . 16
4.3.6 Detailed Design for Feature: Close Diagram Tab . 17
4.3.7 Detailed Design for Feature: Place New Object . 18
4.3.8 Detailed Design for Feature: Move Object . 19
4.3.9 Detailed Design for Feature: Edit Object Description 21
4.3.10 Detailed Design for Feature: Delete an Object . 23
4.3.11 Detailed Design for Feature: Place a New Connector 25
4.3.12 Detailed Design for Feature: Edit Connector Description 27
4.3.13 Detailed Design for Feature: Delete Connector . 29

5 REQUIREMENTS TRACEABILITY 30

SSDD Page 4

1 INTRODUCTION

1.1 IDENTIFICATION

This document is a stand-alone document and has no identi�cation numbers other than the revision number.

1.2 DOCUMENT PURPOSE, SCOPE, AND INTENDED AUDIENCE

1.2.1 Document Purpose

Phunctional UML Editor software is being developed according to a set of requirements outlined in the
pUML System and Software Requirements Speci�cation (Rev. 1.0). This document will provide detailed
information regarding the design implementation of these requirements.

1.2.2 Document Scope and/or Context

This document includes information regarding the design and components of the pUML software. The class
structure and interactions to implement features, along with rationale for these design decisions is provided.

1.2.3 Intended Audience for Document

This document may be referenced for educational purposes by Computer Science students and faculty at the
University of Idaho.

1.3 SYSTEMAND SOFTWARE PURPOSE, SCOPE, AND INTENDEDUSERS

1.3.1 System and Software Purpose

The pUML software is intended to be a tool utilized by software designers to create UML diagrams.

1.3.2 System and Software Scope/or Context

The pUML software will be designed to provide functionality to create UML diagram projects. Users will be
able to create several di�erent types of UML diagrams, create, modify, link, save, and delete objects within
individual UML diagrams, and save collections of diagrams stored as part of a project.

1.3.3 Intended Users for the System and Software

The completed product would be available to the general public for purchase, however this speci�c release
will be intended strictly for use by the University of Idaho Computer Science Department students and
faculty, for educational purposes only.

1.4 DEFINITIONS, ACRONYMS, AND ABBREVIATIONS

Term or Acronym
De�nition

AD
Architectural Description: �A collection of products to document an architecture�
ISO/IEC 42010:2007 (�3.4).

Alpha test Limited release(s) to selected, outside testers

Architectural Descrip-
tion

(AD) �A collection of products to document an architecture� ISO/IEC 42010:2007
(�3.4).

Architectural View
�A representation of a whole system from the perspective of a related set of concerns�
ISO/IEC 42010:2007 (�3.9).

Architecture
�The fundamental organization of a system embodied in its components, their re-
lationships to each other, and to the environment, and the principles guiding its
design and evolution� ISO/IEC 42010:2007 (�3.5).

Beta test
Limited release(s) to cooperating customers wanting early access to developing sys-
tems

Design Entity
�An element (component) of a design that is structurally and functionally distinct
from other elements and that is separately named and referenced� IEEE STD 1016-
1998 (�3.1).

Design View
�A subset of design entity attribute information that is speci�cally suited to the
needs of a software project activity� IEEE STD 1016-1998 (�3.2).

Final test aka, Acceptance test, release of full functionality to customer for approval

DFD Data Flow Diagram

SSDD System and Software Design Document

SSRS System and Software Requirements Speci�cation

System
�A collection of components organized to accomplish a speci�c function or set of
functions� ISO/IEC 42010:2007 (�3.7).

System and Software
Architecture and De-
sign Description

An architectural and detailed design description that includes a software system
within the context of its enclosing system and describes the enclosing system, the
enclosed software, and their relationship and interfaces.

1.5 DOCUMENT REFERENCES

1) CSDS, System and Software Requirements Speci�cation Template, Version 1.0, July 31, 2008, Center
for Secure and Dependable Systems, University of Idaho, Moscow, ID, 83844.

2) ISO/IEC/IEEE, IEEE Std 1471-2000 Systems and software engineering � Recommended practice for

architectural description of software intensive systems, First edition 2007-07-15, International Orga-
nization for Standardization and International Electrotechnical Commission, (ISO/IEC), Case postale
56, CH-1211 Genève 20, Switzerland, and The Institute of Electrical and Electronics Engineers, Inc.,
(IEEE), 445 Hoes Lane, Piscataway, NJ 08854, USA.

3) IEEE, IEEE Std 1016-1998 Recommended Practice for Software Design Descriptions, 1998-09-23, The
Institute of Electrical and Electronics Engineers, Inc., (IEEE) 445 Hoes Lane, Piscataway, NJ 08854,
USA.

4) 3) ISO/IEC/IEEE, IEEE Std. 15288-2008 Systems and Software Engineering � System life cycle

processes, Second edition 2008-02-01, International Organization for Standardization and International

Electrotechnical Commission, (ISO/IEC), Case postale 56, CH-1211 Genève 20, Switzerland, and The
Institute of Electrical and Electronics Engineers, Inc., (IEEE), 445 Hoes Lane, Piscataway, NJ 08854,
USA.

5) ISO/IEC/IEEE, IEEE Std. 12207-2008, Systems and software engineering � Software life cycle pro-

cesses, Second edition 2008-02-01, International Organization for Standardization and International
Electrotechnical Commission, (ISO/IEC), Case postale 56, CH-1211 Genève 20, Switzerland, and The
Institute of Electrical and Electronics Engineers, Inc., (IEEE), 445 Hoes Lane, Piscataway, NJ 08854,
USA.

1.6 DOCUMENT OVERVIEW

Section 2 of this document describes the system and software constraints imposed by the operational envi-
ronment, system requirements and user characteristics, and then identi�es the system stakeholders and lists
describes their concerns and mitigations to those concerns.

Section 3 of this document describes the system and software architecture from several viewpoints, in-
cluding, but not limited to, the developer's view and the user's view.

Section 4 provides detailed design descriptions for every component de�ned in the architectural view(s).
Sections 5 provides traceability information connecting the original speci�cations (referenced above) to the
architectural components and design entities identi�ed in this document.

Section 6 and beyond are appendices including original information and communications used to create
this document.

1.7 DOCUMENT RESTRICTIONS

This document is for LIMITED RELEASE ONLY to UI CS personnel working on the project.

2 CONSTRAINTS AND STAKEHOLDER CONCERNS

2.1 CONSTRAINTS

2.1.1 Environmental Constraints.

The pUML software poses no environmental constraints at this time .

2.1.2 System Requirement Constraints.

The pUML software will be designed to function on, Windows 7, and Linux. Cross platform functionality will
minimize portability errors and allow for projects to be migrated between platforms with minimal di�culty.
However, the pUML software is not intended to be migrated to any other platforms with any guaranteeable
level of functionality.
The pUML software is also not intended to be utilized by multiple users.
This release will not include several features which may be industry standard for UML diagram editors.
These features would be incorporated into a later software release.

2.1.3 User Characteristic Constraints.

University of Idaho Computer Science students and faculty should be able to reasonably understand and
operate the pUML software.

2.2 STAKEHOLDER CONCERNS

There are no stakeholders for our software at this time.

3 SYSTEM AND SOFTWARE ARCHITECTURE

3.1 DEVELOPER'S ARCHITECTURAL VIEW

3.1.1 Developer's View Identi�cation

This is the architecture of the program from the viewpoint of the developer. The purpose is to give an
overview of the details of the major components of the architecture.

In order to have the program be able to draw diagrams, a custom QWidget is de�ned called the Canvas.
The Canvas holds all the instantiations of nodes and draws each one. It also creates the nodes by handling
the mouse click events. The toolbar and menu system lets the Canvas know which type of object will be
created next. The Canvas is a member of the MainWindow class, which inherits from QMainWindow.

3.1.2 Developer's View Representation and Description

The Canvas contains a vector container of ObjectNodes. Each ObjectNode has a draw function which takes
a QPainter reference as an argument and draws the appropriate �gure with the QPainter. The program then
de�nes it's own ObjectNodes, e.g. CircleNode and DiamondNode, and pushes them into the vector. In this
way the Canvas can draw each of the nodes in the diagram. To create a new object, it handles a mouse click
event and creates a new object of the type speci�ed by a previous call to it's function to set a new object
type. The new object is pushed into the vector and then the draw function is called on every node in that
vector. When selecting a node to edit or delete, the Canvas takes the X and Y coordinates of the click and
translates that into the index of the object selected. Then the Canvas can popup a menu to edit the node
or delete the node.

3.1.3 Developer's Architectural Rationale

We decided to create a new QWidget for the Canvas so that it can handle click events and have a paint
function. We then decided to have the nodes represented by a vector so that it can be easily iterated
over and quickly accessed by index. We decided to have the nodes be represented by speci�c de�nitions of
ObjectNodes so that they can all be pushed into the a vector ObjectNodes. This way each of the nodes can
de�ne their own draw function, as well private data such as radius for circles. This allows new objects to be
easily created.

3.2 USER'S ARCHITECTURAL VIEW

3.2.1 User's View Identi�cation

This is the viewpoint of the program from the viewpoint of the user. From this viewpoint, there are three
major components of the program: the Canvas, the Toolbar and the Menu.

3.2.2 User's View Representation and Description

The menu and the toolbar have redundant functionality. The toolbar provides quick access to certain menu
items, such as available objects and connectors. The canvas provides a space for the user to place objects
and connectors during creation of a UML diagram. The pUML software also provides options for the user
to save and load pUML UML diagrams.

3.3 CONSISTENCY OF ARCHITECTURAL VIEWS

Due to the limited scope of this project, there are no known inconsistencies between views.

4 SOFTWARE DETAILED DESIGN

4.1 DEVELOPER'S VIEWPOINT DETAILED SOFTWARE DESIGN

Diagrams depicting classes and relationships between classes for the pUML software are provided in this
section.

4.1.1 Class Overview

This is a simpli�ed version of the full class diagram for the pUML software. This diagram shows the names
of the main classes and the data �ow between them.
The nodes dependent on BaseNode are examples of node types, in this case taken from the UML Class
Diagram type. Each diagram type consists of objects and connectors, each of which are designed according
to this template.

4.1.2 Main Window Class

The MainWindow class is the controller class, joining the Document and Canvas together. This class brings
together all the components of pUML at the largest scale. This class is also responsible for guiding the
process by which the various nodes appear on the canvas.

4.1.3 Document and Canvas Classes

In the Model-View system, the Document performs as the model, controlling all information about the
individual nodes in a diagram, and is critical in the process of saving and loading.
The Canvas class is responsible for the view, and handles all mouse events and actions related to the mouse
events, including the properties dialog and node deletion.

4.1.4 Base Node Class

The BaseNode is the most abstract node class, containing all the standard information for all nodes. This
class also incorporates the cloning function, which is critical in developing several copies of any type of node.
The NodeFactory contains a registry of objects, and may produce copies of these objects. Together with
BaseNode, each node placed on the canvas in a UML diagram is guaranteed to be purely unique, even as an
exact replica of another node.

4.1.5 ConnnectionNode Class

The ConnectionNode class incorporates both speci�c types of connection and the dialogs unique to each
connection type. This allows for several types of connections, unique with their own dialog properties.
The example shown is from a Class diagram. Connections from other diagram types would have a nearly
identical format, with minor diagram-speci�c di�erences.

4.1.6 Object Node Class

The ObjectNode class incorporates speci�c object types and dialogs unique to each object type. This allows
for several types of objects, unique with their own dialog properties.
The example shown is from a Class diagram. Objects from other diagram types would have a nearly identical
format, with minor diagram-speci�c di�erences.

4
.2

C
O
M
P
O
N
E
N
T
/
E
N
T
IT
Y
D
IC
T
IO
N
A
R
Y

T
h
is
ta
b
le
sh
ow

s
th
e
in
d
iv
id
u
a
l
co
m
p
o
n
en
ts
,
im

p
le
m
en
te
d
a
s
cl
a
ss
es
,
u
ti
li
ze
d
in

th
e
d
ev
el
o
p
m
en
t
o
f
th
is
so
ft
w
a
re
,
a
n
d
h
ow

ea
ch

cl
a
ss

is
re
la
te
d
to

th
e
o
th
er

cl
a
ss
es
.

C
o
m
p
o
n
e
n
t/
E
n
ti
ty

D
ic
ti
o
n
a
ry

N
a
m
e
o
f
C
la
ss

T
y
p
e
/
R
a
n
g
e

P
u
rp
o
se
/
F
u
n
c
ti
o
n

D
e
p
e
n
d
e
n
c
ie
s

S
u
b
o
rd
in
a
te
s

Q
M
a
in
W
in
d
ow

Q
W
id
g
et

Q
M
a
in
W
in
d
ow

C
o
n
n
ec
ts

th
e
ca
n
va
s
a
n
d
d
o
cu
m
en
t
to
g
et
h
er

Q
M
a
in
W
in
d
ow

C
o
n
�
g
D
ia
lo
g

N
o
d
eA

ct
io
n

C
o
n
�
g
D
ia
lo
g

Q
D
ia
lo
g

M
a
in

d
ia
lo
g
w
h
ic
h
al
lo
w
s
th
e
u
se
r
to

se
le
ct

a
n
ew

d
ia
g
ra
m

ty
p
e
o
r
o
p
en

a
n
ex
is
ti
n
g
d
ia
g
ra
m
.

M
a
in
W
in
d
ow

N
/
A

N
o
d
eA

ct
io
n

Q
A
ct
io
n

S
et
s
th
e
d
ra
w
in
g
m
o
d
e

M
a
in

W
in
d
ow

N
/
A

C
a
n
va
s

Q
W
id
g
et

D
ra
w
s
o
b
je
ct
s
a
n
d
co
n
n
ec
to
rs

M
a
in

W
in
d
ow

N
/
A

D
o
cu
m
en
t

Q
W
id
g
et

C
o
n
ta
in
s
al
l
d
ia
g
ra
m

in
fo
rm

a
ti
o
n

M
a
in
W
in
d
ow

N
/
A

B
a
se
N
o
d
e

Q
O
b
je
ct

D
ra
w
s
th
e
o
b
je
ct

D
o
cu
m
en
t

O
b
je
ct
N
o
d
e

C
o
n
n
ec
ti
o
n
N
o
d
e

N
o
d
eF
a
ct
o
ry

N
/
A

R
eg
is
tr
y
o
f
o
b
je
ct
s,
w
h
ic
h
m
ay

b
e
co
p
ie
d
b
y
ID

B
a
se
N
o
d
e

N
/
A

O
b
je
ct
N
o
d
e

B
a
se
N
o
d
e

C
o
n
ta
in
s
ob

je
ct

B
a
se
N
o
d
e

O
b
je
ct
N
o
d
e

C
o
n
n
ec
ti
o
n
N
o
d
e

*
O
b
je
ct
T
y
p
e

B
a
se
N
o
d
e

C
o
n
ta
in
s
ob

je
ct

fe
a
tu
re
s

O
b
je
ct
N
o
d
e

*
O
b
je
ct
T
y
p
eD

ia
lo
g

*
O
b
je
ct
T
y
p
eD

ia
lo
g

Q
D
ia
lo
g

C
o
n
ta
in
s
ob

je
ct

d
ia
lo
g

*
O
b
je
ct
T
y
p
e

N
/
A

C
o
n
n
ec
ti
o
n
N
o
d
e

B
a
se
N
o
d
e

C
o
n
ta
in
s
co
n
n
ec
ti
o
n

B
a
se
N
o
d
e

*
C
o
n
n
ec
ti
o
n
T
y
p
e

*
C
o
n
n
ec
ti
o
n
T
y
p
e

B
a
se
N
o
d
e

C
o
n
ta
in
s
co
n
n
ec
ti
o
n
ty
p
e

C
o
n
n
ec
ti
o
n
N
o
d
e

*
C
o
n
n
ec
ti
o
n
T
y
p
eD

ia
lo
g

*
C
o
n
n
ec
ti
o
n
T
y
p
eD

ia
lo
g

Q
D
ia
lo
g

C
o
n
ta
in
s
co
n
n
ec
ti
o
n
fe
a
tu
re
s

*
C
o
n
n
ec
ti
o
n
T
y
p
e

N
/
A

*
O
b
je
ct

a
n
d
C
o
n
n
ec
ti
o
n
ty
p
es

a
re

va
ri
ed
,
b
u
t
fo
ll
ow

th
is
p
a
tt
er
n
.

T
h
e
n
a
m
es

o
f
th
e
re
sp
ec
ti
ve

cl
a
ss
es

va
ry

p
er

d
ia
g
ra
m

ty
p
e
a
n
d
o
b
je
ct
/
co
n
n
ec
to
r
ty
p
e,
b
u
t
fo
ll
ow

th
e
sa
m
e
te
m
p
la
te
.
*
*
A
ll
Q
T
cl
a
ss
es

a
re

n
o
t
d
et
a
il
ed

in
th
is
d
o
cu
m
en
t.

4.3 FEATURE DETAILED DESIGN

Each of the diagrams in this section represent an important functionality of the pUML software. The
interaction diagrams detail the object classes that will be utilized in the execution of each of these major
features of the software, as well as show how these classes interact.

4.3.1 Detailed Design for Feature: Create New Diagram

4.3.1.1 Introduction/Purpose of this Feature Each of the UML diagrams will need its own space
for development within the pUML software. The �New� feature allows the user to select a diagram and start
developing that diagram on a blank, diagram-speci�c canvas.

4.3.1.2 Input for this Feature The user selects �New� from the main menu options, and selects a
diagram type from the Con�guration Dialog box.

4.3.1.3 Output for this Feature pUML will then load a blank canvas in a new tab, with a toolbar
containing only that diagram's type of objects and connectors.

4.3.1.4 Feature Process to Convert Input to Output User selects �New� from main menu. Main-
Window class creates a Con�gDialog box, which contains all possible diagram types. User selects diagram
type. Con�gDialog returns the diagram type back to the MainWindow class, which in turn uses that in-
formation to create both the Canvas and Document classes. MainWindow then connects the Canvas and
Document classes, and sends the user-selected diagram type to the Document class. The main window then
creates a new tab with a blank canvas and all diagram-speci�c properties.

4.3.1.5 Design Constraints and Performance Requirements of this Feature New diagrams may
not be of a generic diagram type. The user must specify what type of a new diagram they will be developing
prior to pUML creating the space in which to develop a UML diagram.

Figure 1: Create New Diagram

4.3.2 Detailed Design for Feature: Open an Existing Diagram

4.3.2.1 Introduction/Purpose of this Feature The pUML software provides the Open feature so
that users may store diagrams and view or edit them later. Open will load the .puml diagram type into
pUML, which will allow the user to continue modi�cation.

4.3.2.2 Input for this Feature User selects �Open� from the main menu. The user is then prompted
to locate the �le on their computer.

4.3.2.3 Output for this Feature If the user-selected �le is of .puml type, pUML will load the diagram
into a new tab of that particular diagram type, and the diagram will be modi�able.

4.3.2.4 Feature Process to Convert Input to Output User selects �Open� from the MainWindow
class, which creates the OpenFileDialog. The User then selects which �le they choose to open, and Open-
FileDialog returns that value to MainWindow. MainWindow creates both the Canvas and Document classes
and then connects these two classes. MainWindow creates the tab for the diagram to load into, and sends
diagram speci�c information to the Document class. The Document class then returns the diagram type to
MainWindow.

4.3.2.5 Design Constraints and Performance Requirements of this Feature The pUML software
will only open �les of .puml type.

Figure 2: Open Diagram

4.3.3 Detailed Design for Feature: Exit pUML

4.3.3.1 Introduction/Purpose of this Feature When the user is �nished modifying UML diagrams,
the pUML software may be closed.

4.3.3.2 Input for this Feature The user clicks the �X� in the upper corner of the pUML main window,
or selects �Exit� from the main menu.

4.3.3.3 Output for this Feature pUML checks to see if the �le(s) being closed are saved, and once all
�les have been either saved or discarded, the pUML software closes.

4.3.3.4 Feature Process to Convert Input to Output User selects �Exit� from the main menu.
MainWindow iterates through each of the tabs and sends a request called getModi�ed() from the Document
class. As long as none of the tabs is �agged as having a modi�cation since the previous save, then all tabs
are assumed to be saved, and MainWindow closes the pUML software.
If tabs need to be saved, reference the Save feature in this document. Tabs will be saved, and this process
will resume as normal from that point.

4.3.3.5 Design Constraints and Performance Requirements of this Feature pUML will also
close if diagrams are not saved, and the user wishes to discard all changes.

Figure 3: Exit pUML

4.3.4 Detailed Design for Feature: Save

4.3.4.1 Introduction/Purpose of this Feature The user wishes to save a UML diagram.

4.3.4.2 Input for this Feature The user opens the File Menu and selects Save.

4.3.4.3 Output for this Feature pUML checks to see if the �le name that the user selects is valid, and
when this is ver�ed, the diagram currently loaded is stored at that �le location.
If the �le name has not previously been stored, refer to the Save As feature in this document.

4.3.4.4 Feature Process to Convert Input to Output The user clicks �Save� on the main menu,
and MainWindow sends the current diagram name through hasFileName() to Document to verify whether
or not the name has been previously stored. Document veri�es that hasFileName() returns true, stores the
current diagram content over the contents of the existing �le, and sets modifyChanged() to hide the asterisk
(indicating an unsaved diagram) at that tab.

4.3.4.5 Design Constraints and Performance Requirements of this Feature If hasFileName
returns false, refer to the Save As feature in this document.

Figure 4: Save Diagram

4.3.5 Detailed Design for Feature: Save As

4.3.5.1 Introduction/Purpose of this Feature The user wishes to save a UML diagram under a
new �le name.

4.3.5.2 Input for this Feature The user selects Save As from the main menu.

4.3.5.3 Output for this Feature pUML produces a dialog box through which the user may type a new
�le name, and then pUML saves the �le under that new name.

4.3.5.4 Feature Process to Convert Input to Output The User clicks on �Save As� in the main
menu.
Or the User attempts to save a previously unsaved �le, and MainWindow sends hasFileName() to Document
to verify if the current diagram name exists, which returns false.
MainWindow creates a new QFileDialog into which the User enters their desired �le name. The QFileDialog
sends this information to MainWindow, which in turn calls setFileName() to Document, and then save().

4.3.5.5 Design Constraints and Performance Requirements of this Feature N/A

Figure 5: Save / Save As

4.3.6 Detailed Design for Feature: Close Diagram Tab

4.3.6.1 Introduction/Purpose of this Feature The pUML software provides ability for multiple
diagrams to be edited by utilizing a tabbed structure. As design complexity increases, or if the User may
desire to reduce screen clutter, the ability to close tabs is very useful.

4.3.6.2 Input for this Feature The user clicks the �x� on the tab.

4.3.6.3 Output for this Feature pUML checks to see if the current diagram has been saved, and when
there are no outstanding modi�cations, the tab is closed.

4.3.6.4 Feature Process to Convert Input to Output Uesr clicks the �x� on the tabWidget, which
uses MainWindow to send a getModi�ed request to Document. If getModi�ed returns false (diagram has
been previously saved), then Document returns this information to MainWindow, which sends permission to
the tabWidget to close itself.

4.3.6.5 Design Constraints and Performance Requirements of this Feature After all tabs in
pUML have been closed, the pUML software remains open, with main menu options available. If the user is
desiring to close the pUML software, then they must choose to �Exit� the program.

Figure 6: Close Diagram Tab

4.3.7 Detailed Design for Feature: Place New Object

4.3.7.1 Introduction/Purpose of this Feature The user will be able to select objects from the
toolbar and place them on the Canvas.

4.3.7.2 Input for this Feature The user will click on a shape on the toolbar. The �rst subsequent
click of the mouse over the Canvas area will place the selected shape at that location.

4.3.7.3 Output for this Feature The object will be placed on the Canvas, at a location of the user's
choosing.

4.3.7.4 Feature Process to Convert Input to Output The mouse click on a shape on the toolbar
noti�es MainWindow of an objectAction(). The MainWindow sets the draw mode to object through the Can-
vas. The user then clicks on the canvas, which Canvas then tells Document to create the object. Document
creates a new BaseNode, sends it the properties dialog, and then Document initiates showDialog().

4.3.7.5 Design Constraints and Performance Requirements of this Feature N/A

Figure 7: Place New Object

4.3.8 Detailed Design for Feature: Move Object

4.3.8.1 Introduction/Purpose of this Feature This gives the user the capability to rearrange objects
in a UML diagram after their initial placement.

4.3.8.2 Input for this Feature The user clicks on an object, and then drags it to another location on
the canvas.

4.3.8.3 Output for this Feature The canvas displays the object at its new location.

4.3.8.4 Feature Process to Convert Input to Output The user leftclicks down on the object, on the
canvas. The Canvas class tells the Document class to setSelectedObject() to true. The user moves the mouse
(mouseMove event), and Canvas redraws the object at each location. Document sets the position at each
move. The user releases the mouse and the Document class retains all current object location properties.

4.3.8.5 Design Constraints and Performance Requirements of this Feature Objects are per-
mitted to overlap in pUML, which may require more diligence on the user's part.

Figure 8: Move Object

4.3.9 Detailed Design for Feature: Edit Object Description

4.3.9.1 Introduction/Purpose of this Feature The user may edit an object's description.

4.3.9.2 Input for this Feature The user right clicks on the object they wish to modify and selects
�Properties� from the context menu.

4.3.9.3 Output for this Feature pUML displays a dialog box with object description, and after the
user has submitted changes to the description, the new description is displayed on the canvas.

4.3.9.4 Feature Process to Convert Input to Output User right clicks on an object on the Canvas.
The Canvas tells Document to perform a hittest to determine whether an object resides at those coordinates.
If valid, the Canvas tells Document to initiate the properties Dialog for the selected object.
The user modi�es the object properties per the Dialog. The Dialog sends the updated object information to
Document.

4.3.9.5 Design Constraints and Performance Requirements of this Feature The user may only
edit properties of valid objects and connectors. No other properties in pUML may be modi�ed.

Figure 9: Edit Object Description

4.3.10 Detailed Design for Feature: Delete an Object

4.3.10.1 Introduction/Purpose of this Feature The user deletes an object from the Canvas.

4.3.10.2 Input for this Feature The user right-clicks on an object to be deleted, and selects the delete
option from the context menu.

4.3.10.3 Output for this Feature The object is removed from the canvas along with any connectors
(connected objects).

4.3.10.4 Feature Process to Convert Input to Output User right clicks on an object on the Can-
vas. The Canvas veri�es that an object exists at the coordinates of the click, and sets the object through
Document. The Canvas displays the context menu. The user selects the delete option from the menu, which
tells Document to delete the object and any connected objects.

4.3.10.5 Design Constraints and Performance Requirements of this Feature All connectors
attached to an object will be deleted along with that object.

Figure 10: Delete Object

4.3.11 Detailed Design for Feature: Place a New Connector

4.3.11.1 Introduction/Purpose of this Feature This feature allows the user to place a connecting
line between two objects.

4.3.11.2 Input for this Feature The user selects a connector shape from the toolbar, and then selects
two objects between which to place the connector.

4.3.11.3 Output for this Feature A connector line is drawn between the two objects the user selected.

4.3.11.4 Feature Process to Convert Input to Output User clicks on a connector shape in the
Toolbar, which sends a connectorAction to the Main Window. MainWindow tells the Canvas to set the draw
mode to connector.
The user clicks and holds down the mouse, presumably over an object. The Canvas tells Document to create
the �rst Connection Point at that location. Document performs a hittest to ensure that a valid object node
resides at that location.
The user releases the mousebutton, which Canvas sends to Document as the second connection point. After
performing a hittest, Document creates a BaseNode, tells it to addConnectedNode at each connection point.
Document addsConnectedNode after this and the connection line is drawn.

4.3.11.5 Design Constraints and Performance Requirements of this Feature As of this release,
it is possible to create several identical connection lines between two objects, and so users must proceed with
caution.

Figure 11: Place New Connector

4.3.12 Detailed Design for Feature: Edit Connector Description

4.3.12.1 Introduction/Purpose of this Feature User may edit a connector's description.

4.3.12.2 Input for this Feature The user right clicks on a connector and selects �Properties� from the
context menu.

4.3.12.3 Output for this Feature A dialog is displayed from which the user may make changes to the
connector's description. After making a change, the new description will replace the existing description.

4.3.12.4 Feature Process to Convert Input to Output User right-clicks on the canvas. Canvas class
setsSelectedConnector() to Document, which performs a hittest to verify the connector at the coordinates
of the click. Then Document setSelectedConnector to itself.
Canvas displays the context menu. The User clicks �Properties� and Canvas sends a showPropertiesDialog
signal to Document, which in turn creates a properties Dialog.
The User then modi�es the properties, and Dialog sends the new properties information to Document.

4.3.12.5 Design Constraints and Performance Requirements of this Feature The user may not
be able to edit all properties of all connectors due to the di�erences in connector utilization in di�ering UML
diagrams.
The user may only edit properties of valid objects and connectors. No other properties in pUML may be
modi�ed.

Figure 12: Edit Connector Description

4.3.13 Detailed Design for Feature: Delete Connector

4.3.13.1 Introduction/Purpose of this Feature The user deletes a connector from between two
objects.

4.3.13.2 Input for this Feature The user right-clicks on an connector, and selects �Delete� from the
context menu.

4.3.13.3 Output for this Feature The connector no longer appears on the canvas.

4.3.13.4 Feature Process to Convert Input to Output User right clicks on an connector on the
Canvas. The Canvas veri�es through Document that a connector exists at the coordinates of the click, and
sets the connector. The Canvas displays a context menu. The user selects the �Delete� option from the
context menu. Canvas tells Document to deleteSelectedConnector, and Document deletes the connector.

4.3.13.5 Design Constraints and Performance Requirements of this Feature N/A

Figure 13: Delete Connector

5
R
E
Q
U
IR
E
M
E
N
T
S
T
R
A
C
E
A
B
IL
IT
Y

F
e
a
tu
re

N
a
m
e

R
e
q

N
o
.

R
e
q
u
ir
e
m
e
n
t
D
e
sc
ri
p
ti
o
n

P
ri
o
ri
ty
S
S
D
D

T
e
st
C
a
se
(s
)

A
lp
h
a
R
e
le
a
se

B
e
ta

R
e
le
a
se

F
in
a
l
T
e
st

In
st
a
ll

2
.2
.1

p
U
M
L

so
ft
w
a
re

in
st
a
ll
s
su
cc
es
s-

fu
ll
y

M
N
/
A

te
st
in
st
a
ll

P
A
S
S

P
A
S
S

P
A
S
S

L
a
u
n
ch

2
.2
.1

p
U
M
L
so
ft
w
a
re

la
u
n
ch
es

su
cc
es
s-

fu
ll
y

M
N
/
A

te
st
la
u
n
ch

P
A
S
S

P
A
S
S

P
A
S
S

E
x
it

2
.2
.1

p
U
M
L
E
x
it
o
p
ti
o
n
s

M
4
.3
.3

te
st
sa
v
e
*

te
st
sa
v
ea
s
*

F
A
IL

F
A
IL

P
A
S
S

P
A
S
S

P
A
S
S
P
A
S
S

M
a
in

W
in
d
ow

2
.2
.2

A
ll
m
a
in

w
in
d
ow

fe
a
tu
re
s

M
*
N
/
A

te
st
m
a
in
w
in
d
ow

P
A
S
S

P
A
S
S

O
b
je
ct
s

2
.2
.3

O
b
je
ct
p
ro
p
er
ti
es
a
n
d
fu
n
ct
io
n
a
l-

it
y

M

4
.3
.7

4
.3
.8

4
.3
.9

4
.3
.1
0

te
st
o
b
je
ct
s

P
A
S
S

P
A
S
S

C
o
n
n
ec
to
rs

2
.2
.4

C
o
n
n
ec
to
r
p
ro
p
er
ti
es

a
n
d

fu
n
c-

ti
o
n
a
li
ty

M
4
.3
.1
1

4
.3
.1
2

4
.3
.1
3

te
st
co
n
n
ec
to
rs

te
st
se
lf
co
n
n
ec
to
r
F
A
IL

P
A
S
S

P
A
S
S

P
A
S
S

P
A
S
S

O
p
en

2
.2
.5

L
o
a
d
a
p
U
M
L
�
le
in
to

p
U
M
L

M
4
.3
.2

te
st
sa
v
e
*

te
st
sa
v
ea
s
*

F
A
IL

F
A
IL

P
A
S
S

P
A
S
S

S
av
e/
S
av
e
A
s

2
.2
.6

S
av
e
a
d
ia
g
ra
m

M
4
.3
.4

4
.3
.5

te
st
sa
v
e

te
st
sa
v
ea
s

F
A
IL

P
A
S
S

P
A
S
S

P
A
S
S

D
ia
g
ra
m
s

2
.2
.7

D
ia
g
ra
m

ty
p
e
in
te
g
ri
ty

M
4
.3
.1

te
st
sa
v
e
*

te
st
sa
v
ea
s
*

F
A
IL

F
A
IL

P
A
S
S

P
A
S
S

T
a
b
s

2
.2
.8

T
a
b
fu
n
ct
io
n
a
li
ty

M
4
.3
.6

te
st
sa
v
e
*

te
st
sa
v
ea
s
*

F
A
IL

F
A
IL

P
A
S
S

P
A
S
S

P
ri
o
ri
ti
es

a
re
:
M
a
n
d
a
to
ry
,
L
ow

,
H
ig
h

S
S
D
D
li
n
k
is
ve
rs
io
n
a
n
d
p
a
g
e
n
u
m
b
er

o
r
fu
n
ct
io
n
n
a
m
e.

T
es
t
ca
se
s
a
n
d
re
su
lt
s
a
re

�
le
n
a
m
es

a
n
d
P
a
ss
/
F
a
il
o
r
%

p
a
ss
in
g
.

*
a
st
er
is
k
in
d
ic
a
te
s
in
d
ir
ec
tl
y
te
st
ed

th
ro
u
g
h
a
n
o
th
er

fe
a
tu
re

te
st

ca
se
.

	INTRODUCTION
	IDENTIFICATION
	DOCUMENT PURPOSE, SCOPE, AND INTENDED AUDIENCE
	Document Purpose
	Document Scope and/or Context
	Intended Audience for Document

	SYSTEM AND SOFTWARE PURPOSE, SCOPE, AND INTENDED USERS
	System and Software Purpose
	System and Software Scope/or Context
	Intended Users for the System and Software

	DEFINITIONS, ACRONYMS, AND ABBREVIATIONS
	DOCUMENT REFERENCES
	DOCUMENT OVERVIEW
	DOCUMENT RESTRICTIONS

	CONSTRAINTS AND STAKEHOLDER CONCERNS
	CONSTRAINTS
	Environmental Constraints.
	System Requirement Constraints.
	User Characteristic Constraints.

	STAKEHOLDER CONCERNS

	SYSTEM AND SOFTWARE ARCHITECTURE
	DEVELOPER’S ARCHITECTURAL VIEW
	Developer’s View Identification
	Developer’s View Representation and Description
	Developer’s Architectural Rationale

	USER’S ARCHITECTURAL VIEW
	User’s View Identification
	User’s View Representation and Description

	CONSISTENCY OF ARCHITECTURAL VIEWS

	SOFTWARE DETAILED DESIGN
	 DEVELOPER’S VIEWPOINT DETAILED SOFTWARE DESIGN
	 Class Overview
	 Main Window Class
	 Document and Canvas Classes
	 Base Node Class
	 ConnectionNode Class
	 Object Node Class

	COMPONENT/ENTITY DICTIONARY
	FEATURE DETAILED DESIGN
	Detailed Design for Feature: Create New Diagram
	Detailed Design for Feature: Open an Existing Diagram
	Detailed Design for Feature: Exit pUML
	Detailed Design for Feature: Save
	Detailed Design for Feature: Save As
	Detailed Design for Feature: Close Diagram Tab
	Detailed Design for Feature: Place New Object
	Detailed Design for Feature: Move Object
	Detailed Design for Feature: Edit Object Description
	Detailed Design for Feature: Delete an Object
	Detailed Design for Feature: Place a New Connector
	Detailed Design for Feature: Edit Connector Description
	Detailed Design for Feature: Delete Connector

	REQUIREMENTS TRACEABILITY

