SYSTEM AND SOFTWARE DESIGN DESCRIPTION (SSDD): Incorporating

Architectural Views and Detailed Design Criteria
FOR

Phunctional UML Editor
(pUML)

Version 1.0
May 10, 2012

Prepared for:
Dr. Clint Jeffery

Prepared by:
Josh Armstrong
Zach Curtis
Brian Bowles
Logan Evans
Jeremy Klas
Nathan Krussel
Maxine Major
Morgan Weir
David Wells
University of Idaho
Moscow, ID 83844-1010

SSDD Page 1

CS383 SSDD
RECORD OF CHANGES (Change History)

Change Date](:;(;)Cfitlo: Zfo(;'hgnlgl:e 1‘\A/I Brief description .
Number 8 P i&) g D of change Initials
Added updated SSRS/SSDD pdf
1 01/17/2012 SSDD A and TeX files MM
2 02/01/2012 SSDD A | Updated SSRS and SSDD MM
3 02/13/2012 Section 4.1 M Class dlzfmg'ram reflects node fac- MM
tory addition
Document overhaul including
4 05/08/2012 SSDD M |sections, references, and class| MM
diagrams
Interaction diagrams section
5 05/10/2012 SSDD M overhaul MM

A - ADDED M - MODIFIED D - DELETED

SSDD Page 2

Phunctional UML Editor
TABLE OF CONTENTS
Section Page

INTRODUCTION 1
1.1 IDENTIFICATION e e e e e 1
1.2 DOCUMENT PURPOSE, SCOPE, AND INTENDED AUDIENCE 1
1.2.1 Document Purpose o e e e e e e e 1
1.2.2 Document Scope and/or Context 1
1.2.3 Intended Audience for Document 1
1.3 SYSTEM AND SOFTWARE PURPOSE, SCOPE, AND INTENDED USERS 1
1.3.1 System and Software Purpose L 1
1.3.2 System and Software Scope/or Context 1
1.3.3 Intended Users for the System and Software 1
1.4 DEFINITIONS, ACRONYMS, AND ABBREVIATIONS 2
1.5 DOCUMENT REFERENCES e e e e e 2
1.6 DOCUMENT OVERVIEW e e e e 4
1.7 DOCUMENT RESTRICTIONS i e 4
CONSTRAINTS AND STAKEHOLDER CONCERNS 5
2.1 CONSTRAINTS . . . o e e e s e e e 5
2.1.1 Environmental Constraints. e 5
2.1.2 System Requirement Constraints. 0o 5
2.1.3 User Characteristic Constraints. 5
2.2 STAKEHOLDER CONCERNS e 5
SYSTEM AND SOFTWARE ARCHITECTURE 1
3.1 DEVELOPER’S ARCHITECTURAL VIEW 1
3.1.1 Developer’s View Identification oo oo oo 1
3.1.2 Developer’s View Representation and Description 1
3.1.3 Developer’s Architectural Rationale 1
3.2 USER’S ARCHITECTURAL VIEW e e e e e e e 2
3.2.1 User’s View Identification e 2
3.2.2 User’s View Representation and Description 2
3.3 CONSISTENCY OF ARCHITECTURAL VIEWS 2
SOFTWARE DETAILED DESIGN 3
4.1 DEVELOPER’S VIEWPOINT DETAILED SOFTWARE DESIGN 3
4.1.1 Class OVerview o v it e e e e e e e e e e e 3
4.1.2 Main Window Class L 4
4.1.3 Document and Canvas Classes 5
4.1.4 Base Node Class o 0 i i i i e e e e e e 6
4.1.5 ConnectionNode Class i e e e 7
4.1.6 Object Node Class L i e e 8
4.2 COMPONENT/ENTITY DICTIONARY i 9
4.3 FEATURE DETAILED DESIGN e e e e 10
4.3.1 Detailed Design for Feature: Create New Diagram 10

SSDD Page 3

4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10
4.3.11
4.3.12
4.3.13

Detailed Design for Feature:
Detailed Design for Feature:
Detailed Design for Feature:
Detailed Design for Feature:
Detailed Design for Feature:
Detailed Design for Feature:
Detailed Design for Feature:
Detailed Design for Feature:
Detailed Design for Feature:
Detailed Design for Feature:
Detailed Design for Feature:
Detailed Design for Feature:

5 REQUIREMENTS TRACEABILITY

Open an Existing Diagram 12
Exit pUML 14
Save ... 15
Save As 16
Close Diagram Tab 17
Place New Object 18
Move Object 19
Edit Object Description 21
Delete an Object 23
Place a New Connector 25
Edit Connector Description. 27
Delete Connector 29

30

SSDD Page 4

1 INTRODUCTION
1.1 IDENTIFICATION

This document is a stand-alone document and has no identification numbers other than the revision number.

1.2 DOCUMENT PURPOSE, SCOPE, AND INTENDED AUDIENCE

1.2.1 Document Purpose

Phunctional UML Editor software is being developed according to a set of requirements outlined in the
pUML System and Software Requirements Specification (Rev. 1.0). This document will provide detailed
information regarding the design implementation of these requirements.

1.2.2 Document Scope and/or Context

This document includes information regarding the design and components of the pUML software. The class
structure and interactions to implement features, along with rationale for these design decisions is provided.

1.2.3 Intended Audience for Document

This document may be referenced for educational purposes by Computer Science students and faculty at the
University of Idaho.

1.3 SYSTEM AND SOFTWARE PURPOSE, SCOPE, AND INTENDED USERS

1.3.1 System and Software Purpose
The pUML software is intended to be a tool utilized by software designers to create UML diagrams.

1.3.2 System and Software Scope/or Context

The pUML software will be designed to provide functionality to create UML diagram projects. Users will be
able to create several different types of UML diagrams, create, modify, link, save, and delete objects within
individual UML diagrams, and save collections of diagrams stored as part of a project.

1.3.3 Intended Users for the System and Software

The completed product would be available to the general public for purchase, however this specific release
will be intended strictly for use by the University of Idaho Computer Science Department students and
faculty, for educational purposes only.

1.4 DEFINITIONS, ACRONYMS, AND ABBREVIATIONS

Term or Acronym

Definition

AD

Architectural Description: “A collection of products to document an architecture”
ISO/IEC 42010:2007 (§3.4).

Alpha test

Limited release(s) to selected, outside testers

Architectural Descrip-
tion

(AD) “A collection of products to document an architecture” ISO/IEC 42010:2007
(§3.4).

Architectural View

“A representation of a whole system from the perspective of a related set of concerns”
ISO/IEC 42010:2007 (§3.9).

“The fundamental organization of a system embodied in its components, their re-

Architecture lationships to each other, and to the environment, and the principles guiding its
design and evolution” ISO/TEC 42010:2007 (§3.5).
Beta test Limited release(s) to cooperating customers wanting early access to developing sys-

tems

Design Entity

“An element (component) of a design that is structurally and functionally distinct
from other elements and that is separately named and referenced” IEEE STD 1016-
1998 (§3.1).

Design View

“A subset of design entity attribute information that is specifically suited to the
needs of a software project activity” IEEE STD 1016-1998 (§3.2).

Final test aka, Acceptance test, release of full functionality to customer for approval

DFD Data Flow Diagram

SSDD System and Software Design Document

SSRS System and Software Requirements Specification

System “A collection of components organized to accomplish a specific function or set of

functions” ISO/TEC 42010:2007 (§3.7).

System and Software
Architecture and De-
sign Description

An architectural and detailed design description that includes a software system
within the context of its enclosing system and describes the enclosing system, the
enclosed software, and their relationship and interfaces.

1.5 DOCUMENT REFERENCES

1) CSDS, System and Software Requirements Specification Template, Version 1.0, July 31, 2008, Center
for Secure and Dependable Systems, University of Idaho, Moscow, ID, 83844.

2)

ISO/IEC/IEEE, IEEE Std 1471-2000 Systems and software engineering — Recommended practice for
architectural description of software intensive systems, First edition 2007-07-15, International Orga-
nization for Standardization and International Electrotechnical Commission, (ISO/IEC), Case postale
56, CH-1211 Genéve 20, Switzerland, and The Institute of Electrical and Electronics Engineers, Inc.,
(IEEE), 445 Hoes Lane, Piscataway, NJ 08854, USA.

IEEE, IEEFE Std 1016-1998 Recommended Practice for Software Design Descriptions, 1998-09-23, The
Institute of Electrical and Electronics Engineers, Inc., (IEEE) 445 Hoes Lane, Piscataway, NJ 08854,
USA.

3) ISO/IEC/IEEE, IEEE Std. 15288-2008 Systems and Software Engineering — System life cycle
processes, Second edition 2008-02-01, International Organization for Standardization and International

Electrotechnical Commission, (ISO/IEC), Case postale 56, CH-1211 Geneéve 20, Switzerland, and The
Institute of Electrical and Electronics Engineers, Inc., (IEEE), 445 Hoes Lane, Piscataway, NJ 08854,
USA.

ISO/IEC/IEEE, IEEE Std. 12207-2008, Systems and software engineering — Software life cycle pro-
cesses, Second edition 2008-02-01, International Organization for Standardization and International
Electrotechnical Commission, (ISO/IEC), Case postale 56, CH-1211 Genéve 20, Switzerland, and The
Institute of Electrical and Electronics Engineers, Inc., (IEEE), 445 Hoes Lane, Piscataway, NJ 08854,
USA.

1.6 DOCUMENT OVERVIEW

Section 2 of this document describes the system and software constraints imposed by the operational envi-
ronment, system requirements and user characteristics, and then identifies the system stakeholders and lists
describes their concerns and mitigations to those concerns.

Section 3 of this document describes the system and software architecture from several viewpoints, in-
cluding, but not limited to, the developer’s view and the user’s view.

Section 4 provides detailed design descriptions for every component defined in the architectural view(s).
Sections 5 provides traceability information connecting the original specifications (referenced above) to the
architectural components and design entities identified in this document.

Section 6 and beyond are appendices including original information and communications used to create
this document.

1.7 DOCUMENT RESTRICTIONS
This document is for LIMITED RELEASE ONLY to UI CS personnel working on the project.

2 CONSTRAINTS AND STAKEHOLDER CONCERNS
2.1 CONSTRAINTS

2.1.1 Environmental Constraints.

The pUML software poses no environmental constraints at this time .

2.1.2 System Requirement Constraints.

The pUML software will be designed to function on, Windows 7, and Linux. Cross platform functionality will
minimize portability errors and allow for projects to be migrated between platforms with minimal difficulty.
However, the pUML software is not intended to be migrated to any other platforms with any guaranteeable
level of functionality.

The pUML software is also not intended to be utilized by multiple users.

This release will not include several features which may be industry standard for UML diagram editors.
These features would be incorporated into a later software release.

2.1.3 TUser Characteristic Constraints.

University of Idaho Computer Science students and faculty should be able to reasonably understand and
operate the pUML software.

2.2 STAKEHOLDER CONCERNS

There are no stakeholders for our software at this time.

3 SYSTEM AND SOFTWARE ARCHITECTURE

3.1 DEVELOPER’S ARCHITECTURAL VIEW
3.1.1 Developer’s View Identification

This is the architecture of the program from the viewpoint of the developer. The purpose is to give an
overview of the details of the major components of the architecture.

In order to have the program be able to draw diagrams, a custom QWidget is defined called the Canvas.
The Canvas holds all the instantiations of nodes and draws each one. It also creates the nodes by handling
the mouse click events. The toolbar and menu system lets the Canvas know which type of object will be
created next. The Canvas is a member of the MainWindow class, which inherits from QMainWindow.

3.1.2 Developer’s View Representation and Description

The Canvas contains a vector container of ObjectNodes. Each ObjectNode has a draw function which takes
a QPainter reference as an argument and draws the appropriate figure with the QPainter. The program then
defines it’s own ObjectNodes, e.g. CircleNode and DiamondNode, and pushes them into the vector. In this
way the Canvas can draw each of the nodes in the diagram. To create a new object, it handles a mouse click
event and creates a new object of the type specified by a previous call to it’s function to set a new object
type. The new object is pushed into the vector and then the draw function is called on every node in that
vector. When selecting a node to edit or delete, the Canvas takes the X and Y coordinates of the click and
translates that into the index of the object selected. Then the Canvas can popup a menu to edit the node
or delete the node.

3.1.3 Developer’s Architectural Rationale

We decided to create a new QWidget for the Canvas so that it can handle click events and have a paint
function. We then decided to have the nodes represented by a vector so that it can be easily iterated
over and quickly accessed by index. We decided to have the nodes be represented by specific definitions of
ObjectNodes so that they can all be pushed into the a vector ObjectNodes. This way each of the nodes can
define their own draw function, as well private data such as radius for circles. This allows new objects to be
easily created.

3.2 USER’S ARCHITECTURAL VIEW

3.2.1 TUser’s View Identification

This is the viewpoint of the program from the viewpoint of the user. From this viewpoint, there are three
major components of the program: the Canvas, the Toolbar and the Menu.

3.2.2 User’s View Representation and Description

The menu and the toolbar have redundant functionality. The toolbar provides quick access to certain menu
items, such as available objects and connectors. The canvas provides a space for the user to place objects
and connectors during creation of a UML diagram. The pUML software also provides options for the user
to save and load pUML UML diagrams.

3.3 CONSISTENCY OF ARCHITECTURAL VIEWS

Due to the limited scope of this project, there are no known inconsistencies between views.

4 SOFTWARE DETAILED DESIGN

4.1 DEVELOPER’S VIEWPOINT DETAILED SOFTWARE DESIGN

Diagrams depicting classes and relationships between classes for the pUML software are provided in this
section.

4.1.1 Class Overview

This is a simplified version of the full class diagram for the pUML software. This diagram shows the names

of the main classes and the data flow between them.
The nodes dependent on BaseNode are examples of node types, in this case taken from the UML Class
Diagram type. Each diagram type consists of objects and connectors, each of which are designed according

to this template.

|CIassBox0bjectDialog |InheritanceConnectionDialog| InheritanceConnectionDialog| |AssociationConnectionDiang|
Dizalog used to modify Dialog used to modity Object to modify Object to modify
1 1 1 1
Object to modify Object to modify lDlalog used to modify lDlalug used to modify
1 1
ClassBoxObject AggegationConnection| |InheritanceConnection| |AssociationConnection

gy

BaseNode == < NodeFactory

==Qt==
QObject
=t
e iw g QMainWindow
Document
View i
8..* NodeAction el
et QAction

QWidget Signals gnd Slots

Model 8..*

8..* ConfigDialog [Q;ioatlbt:g

Canvas

4.1.2 Main Window Class

The MainWindow class is the controller class, joining the Document and Canvas together. This class brings
together all the components of pUML at the largest scale. This class is also responsible for guiding the
process by which the various nodes appear on the canvas.

e —_—
Pl N e)
. ededemon
T8 v e irgieds| BF Suirat Thisk ia & dunlom Qe pin Tha i bt
0 g | ¥ e P
oy W el iy E_prPETpaln) g ATty Saly, BrElioie L e
P disgres Ve, 11 e sens Wik
|.:'|.uu 'uuhml.ul. = o VPR TR G e e T TR
1 i ni | 1 e s g BT B YPRE R 1T it ‘riggered. Tein L we e ot
- ! acharamranr i F_"_“H:If;'-l'-'r-] burtm o asned by dLspes tas,
ALl O U A 8 wrd the cavess b hoe DY C Rt The
amirTualbar: Tosars e e sttt 1) 404 i) Tise of pes e scaien represens.

mradliar: Qe
vistunlins: Ehtriveliar

mtiooes, sctmnipes, sir: Blchier
B CICE 1-v'

Iﬂmhimw

=~ | P s b e cebieliler clams . 19 ocavamss
Il'lHi.-I'ﬂIl-I'l R Lol v 41 o Cavemion ond Dovemerdy. o boslin Thes

- orwatnkriioni i vl Gigtha i 11 Baldh D Wik g Fod

- orwatemmran () vead Dl el e B TR D el
- crwatwendgrtul b vaed bt =] b st s & Tealbar bt 08 Licked 1%

sl which SRpCT ki GRS 19 §rested S,

“..u.wmu....p.-..m F——— Bt wlse e save sad load wigraly 1e the

et Lol L | l:v-iupul.nﬁ-:- ﬂu Bt and arages The Cawaaes Ly The

A I a1] { rvss Do | AT, diffeswat sadgein.
i TR T |

i i Pigege v | 1 1 wmid CRLad

i § e Driggered] 10 mad (Rl
-q_-.::u-m:l teaggeredil: wead CHleal
Irabmindas

aprwa Fligra Lot letu b wesd

Eh: woed (91ak)

-m_ mmidc vead [Rledd

ary_lecdaiic 4 300 _ bra g red | B s rende: D wergbcda,
pankl: vead Dokl

vl (#lath

-.-mmm--np- DisraTypel: voud [¥lst}
el el e it sy A1 wiid 1511
i

ConfigDialog
B T B e
e e R
iy g1

ST R T
e

paae LR
Filarmsat L 1ralidine

- 1] e tr
B .qm.-iqn:.-r T e LT

= P g | ¥ P Tl) T s st [, B TR et T | e (Ll
sirganaiartiLall| veed (RMGH
emcaprll) vl (9lag)
=regectil el (Rlath
vt ng o Tyeges (i sy r T ype st agr saPypad = woad (Higrall] BT EPRETE & P QT

Thas W The Juates dialeg that i o Pt
b prosgres Lasches ol Leth Che s sgn
Bt alue uned whee

smpardusgran iLelf oomt Sitring &0 vesd (fagasll the wEr a1 CrREtE B e ELEgTEs. It
-orewinlooralb: wead

alice the dusgres type to be selected from
8 Lant whee row Sdagrams are Crasted

4.1.3 Document and Canvas Classes

In the Model-View system, the Document performs as the model, controlling all information about the
individual nodes in a diagram, and is critical in the process of saving and loading.

The Canvas class is responsible for the view, and handles all mouse events and actions related to the mouse
events, including the properties dialog and node deletion.

The model, this stores

the rodes in & dusgres, =
will a changed their
properties through the
drfired slots, It com slee
draw the nedes 1f ila-u call
dramd 141 with & valid
QPairter. Docummt hai the
capabilify to restors nodes
frem & fale ar save rodes
ta & fele.

T

QWidget

Document

Pl | RO D M e "
ST LR T T BT
-raowltjectID: 1nt
-petikaenielia; DPounk
sfurselamectaonlades: Lnt
-secondlonnec tioninden: L1
-erdering: QL uskcants=

-

+-Dacument | |

st Imdeoilt Cpaie oons oant &1: ant
-wirtHeds find| mody f Lad -baall = waad

- Fandbiodelly 50 1d; Qluad) - Ry efindes
+ackibinde Tol 18 T | rascbiode | Basehiode=] @ woud
+satheeb et EDipratonypeiD:int]: veld
CE T LR THE

g tlaspranTypel]: DiagraaTyps

savebeiument (11 woud
wegeanibos umee (51 ring copentiane] 1 wad
abariFalenamed) ; boal
+seiFalensmed 35 tra
gt L ! by
sl lihanged(]: waid (Sagnall
smcadiy FradChagrad| i ; vead (Bagnall)
a8 tlpainter sPaanter &l woad (Slatd
et halectedil et [poant tcordt GPaunt &) ward (9lanl

il erame i vadd

smcreebel ac tedObjec t(peant :oomt (Poank &): wazd ($lot)
scraakedbyect (posationicomt QPgant &) vead (Slat)

L e nel annes TLenduLn L peast s oonst gPaEnt B ward (5letd
s raatedannes ElanPainel (peast soanit QPasnt &1: wasd [Sletd
sphoulropertaeilaalegil] : waad (§lat]

sremowedbyecti]l: woud ($leth

-
QMai nWWindow

i

MainWindow

-@Et1ar i et Eor=Rodess tion®=
-docummnts ;. wes tor<Dooument o>
CEVESRS] W TR Care
-oufrentiotument: 1At

-maznToalar: QreelBars

-menular; DFenuliare

AtatsBar fSratusBar

- BTSN, BELIEAODES, BRC: QACTiGAT
-mnufile, menuidit, efc; DMenus

e tDLbpranType (1ype CusgraaTypel : voad ($1et)

Virs
[

Conrmrted with Jugrals snad Slots

Hodal
LI
Canvas
Of e ingMEde: whum = (DEjecl, Confeclioe, NELHLAg)
e mingitde; Ilr\-ulrvbd:

. i e
s Lontel et DAL THO

oL e | P L QW gl T e |

enagedintl]: come Qhire

+peticdel); Drauvingsods

-+ P (ke 1 O i mgHoDe | | weld

meri 0P P AEven Tl seen . QRous el vent =] wed

ey eMcrenl et et QMou slwent = b woad

#ncen ofie LeaseE vent levent - M sEvent=1: vold

g A TE T A PR LARE vente | | waid

ot et Fenul wart | swant - QHouEel var £ *) 2 waad

L

chjectialectionthargelpoant comt Poent &1 voud (52
+amrwaSal e tadoh e tiprant iommat GPaant &l wead (Sagnall
+ireatedb)ect (palatconst Paant &b: wead [Signall

-t raatelonnec EronPaantll b waad [Sugnal)
+~reatelonnec tionFaant2i) wead (Sugnal)

+ redirmd paiener ibaanter &l woid (Sigral]
shoubropsrtieiiialegll: vaad [Signall
+removeltjecti b: wead [Sagnall
+on_sotionbelets_tragoered] wed (9%at)
von_actiontut_Triggeredi): vaad (§lot)
won_sctaonCopy_triggeredil: wead (Slat)
on_sctiorPete triggered|] woad [Bletd

P ity nakord [parent ; (eiadge =)
- 1l P
LAETE STOLET R ST s |
-createbctiom|i: weid
-createmenusi b weid
sermateiidgens| i word
-eonnsctiigralitletal: wead
-rwuhwr;rﬂwrﬂﬂm:hm-l: voud
« agenriF 1 L abesbin o Lo [type - Conf uglaslogTypel 1 woad
- genne tEafraat Wi tRDa cumen] canvis Enden LAt
documnt Inden: ant] : wazd

son_sctaonkied traggersd(]): woud (51st)
on_srvionOpen_triggered|) woud [Shotl
wer_senionate]_triggeredil : wasd [9lsth
son_tabadget_cor retrdhenged inewdndex:antl: wead (5lot]
+or_tabiiidget_tabslossReguestlindeniinth wead (8lotd
i _Meha e T EA_IFLge Pl | Srast ngiiade: Brawangieds

protatypelD: antl : woad [Slo)
updutelasg renTyps [type DasgraaType]; waad (Glok)
rreatehmsd Ligrani typeDlsgranTye] 1 woud 151l
epanibaagh il apethiane scomit trang &) wead (Slet)
ade ummn i F1edChanged (medi Fred:beol) wod (51at)

Thas as the waes cless. IE

all msise Eveers. It
wmth sagnals [ehat are hoshmed
onftg by & Document] to wignal
changes that nesd to Feppen te
nodes, such o delote and ke
prepartas daleg. Rotably it
awsums the redrss sigral, whach
carries & QPainter thay the rodes
can paast b

4.1.4 Base Node Class

The BaseNode is the most abstract node class, containing all the standard information for all nodes. This
class also incorporates the cloning function, which is critical in developing several copies of any type of node.
The NodeFactory contains a registry of objects, and may produce copies of these objects. Together with
BaseNode, each node placed on the canvas in a UML diagram is guaranteed to be purely unique, even as an
exact replica of another node.

Thas s the sbarran bane closs of a1l the sades, Basehode
1t cortams common inforsstios Tod all node. SOLEgrEATyps: ®ousm 8 (L0, INDRrECTIon, Lascews, ..., Wothing)
i

T T L L o R D e (s st < oty o st
amplemmbed o wrbecrbed tlasnen, vwladueg dras b Lt 1 3t :.;":ﬂ“;m :n:m“mvn:':-:}::i: IF:E:““:;L
sl huttent. 23 sl has fenctiom toowees el = S e Ul D L RN :::rm’:: raedes Bawed o the I8 i
the delioed G_MOPERTIIS o= DU slesenn e e sd: Quasid af handng & el pofirmen i
remtare thase propecties from an slesest. dlio pasE: dr | PRGMATY) e S e et
reqable w Ghe pure virbssl clors funstiss, whach T R] Licae +
i el By Whe M SLATY U (FRETE P DR - pomracd ionPoink s seckooelPainks T
of the naden Ean el | b

sl Ul it il cat e Bl] vand ff

ik D L i L L Y. P B0 i

sgmtPonataonl | Poand MosdeF actary

‘l‘d"" had 2 - TR LaniE WREel Ty (SRETI0]

. g.." _:"_'."_';f':_-."’ ""“I""" & i | NN -pratetypes: wectorBeskofets (static]

g s g s “heelatfary |

-ﬁ..:-'."m. mf.. -odefactoryl |

o qutTamt)): (hering Wb F T el R (T &

I . A R T TR T | -apratery=lbcdefactary coral Gl Redefactoeyd

ol emenrtori}: buel & rig L B DR o8 O el e A0 e dRsvaloge e 1 ame [ntstac]

e qu-th Lol ypel |- 8 Lagrand e el 4 | b (R18101

+ I Db LA BLAT DRl T OPART K11 vl PSRNl 11 (RS Rty [N TMTAE)

sl o oiinde Crarall o< :Rarvalinde® |1 vend [pradoralvont | maians (nam: itring b Basskiodss

sreacvel onree tediads (ob] et Reveiode~] @ voad

g UL 8 1 o] el LALI L8R DAL BB SPsant

nge L orrar tediioden (= Lant=Bmafinde=s

wge tLoPwe 1 LonPaLat] andeaant] © Qleant

R0 P e N7 A 1 GBI VLTI B AT

entra gt Inbrumg-corat (Ftrang B: ant

wha Tdes : halaronent k,da roar cShonl Temest L0 Sloal et

e frps_ wml | lomest el Demenl &0 wdad

4.1.5 ConnnectionNode Class

The ConnectionNode class incorporates both specific types of connection and the dialogs unique to each
connection type. This allows for several types of connections, unique with their own dialog properties.

The example shown is from a Class diagram. Connections from other diagram types would have a nearly
identical format, with minor diagram-specific differences.

InhertanceConnectionDalog

InheritanceConnectionDialog

-startlLabel: QLabel=s
-ramelabel : OLabel=

ol abel: OLabel=
-WtareLbrEdit i OLineidane
-rimelineEdit; QLineEdate
sendl ineEdat: QLineEdits
=okButtan: PushButton®

-ptartLabal: QLabal®
-ramilabel: QLabal>
-endlsbal: QLabal®
=startLureEdit: QLineEdits
sramtlineEdit: QLineEdite
-onadl sneEdrt: QLuneEdiie
-gkibatten: Pushbutton®

AssociationConnectionDialog

~startLabsl: OLabasl=
-raseLabel : dLabel=
-endLabel: Quabel=
sstartiineEdit: QLaneEdit®
«mamelineEdit: OLareEdii®
-endL thebdin: QLimeEdite
-cButton: PuilButtcan®

oLl aisCernactionDlalogiparent: Qudget=)
siptiuartinaStary (gStrangl : voad
ss4tNams (newbass Q5tringl i woud
+satEnd(rewEnd 0String) : woid
sohButtenClicked|]: void (slot)h
sitargdetineStart (gierang) : vead ['.’il.w'l.l
srumetat inabipms; 05tringl ¢ voud [Signall
sondtet (rewEnd: 05trang) : woid (Signall

-+ laasComnectlonilaloglparent: Qe dget =)
+setStart(newStart (QStrangl: voud
ﬂlthl.r[nnilall:ﬂﬂ:rmg]: word

shp e [rnalind | St rangl s waad
sokButtontlacked]: voud (Sloth
+startSet{newStart QStrangl: voud [Signall
s S T (nawam: 05tring) 1 woid [Signall
wandSat (ranEnd : QSTrang) @ vedd (5ignal)

+ClassComect vonDaalogiparent :(widget =]
+sntStartinesstartgstringl: voud

+ & CHamS (niwhase JStrangh: veid

eui b nd neeaiesd Ot rangl : woid
+oloButtontLicked() woad (51let]
+startSetinesStart:05tringl: void {(Signall
+nama 5ot [niMasa: QStringh: vaid {(Signall
wondSet (newfird : QSeringl: wvoid (Signal)

Daalog wied 1o msdify
1

MBject v sedify
1

AggegationConnection

-Lanedngle: double

start: Qgtring [Q_PROFERTY)

sname: STreng (Q_PROPERTY)

-gred: Qhuring (O PROPERTY]

sclonel): BaseNodes

wgetDialogll: QDialog®

et TeonPathl) : QString

sgptTexti): QString

adrg i paantes OFaLAter &) waad
dgetDisgranType(] : DiagrasType
+wgetStartl): 05tring

woatiame ()2 Q5tring

wpatEndl) Rtring
diatStartinewStast (5 trangl : woad (Slatl
+5athame inewlane: Jstring] : voad [Sloth
+satEnd{mewEnd 1 Q5tring) @ void (Slat)

moject to modfy
1
=

Dialog wed to modify
1

InheritanceConnection

-lineingle: double

-start: Q5tring (0 _PROFERTY]

sname: OStrang (0_PROPERTY)

~ared: GString (G PRODPERTY)

stlonel) : Dadelode®

spetbaalogll: QOaaleg®

+patTconPathi}: QString

+wpatText () Q5tring

sdranpasnter QPaLAter &1 woaid
spetDaag raaType (] DiagraaTyis
+addirrowlpainter (Palnter &): woid
+~gatStartl): Q5tring

wgetNams () 05tring

«getind(): CSTrEng

spetSuartinewStart igstrang) : wead [Slet)
sgetName (neublame string) 1 word [(Slath
+5atEnd(rewEnd : QString) @ woid (Slat)

ject to modity
1

cialeg wied to sodify
1

AssoclationConnection

~linedngle: double

sstart: QString (Q_PROPERTY)

~rams: QSTring (0 PROPERTY)

-gnd: QString [PROPERTY)

sclonel}: Basvedodes

+qutDualogl): ODaalog®

+qutIconPathi): QStramg

et Text[]: Jherang
adrawlpaanter : GPaanter &) wead
#gutlaagranTypel): DoagraaType
+qutStart{]: g5tring

wgmihama (] JString

sptind(): QSuring

siatStartinewStart :oStrangl : voad [Slotd
+sothame Inewhase:Ostringl : wead (S5lotl
+satEnd [newEnd : (5t ramgl @ woid (Sloth

i
Conmes tlon Node
Aptl: QParat
Ppkd: CPaant

Flineangle: doubile
+hieTest {paint: const QPoint &)@ Baosol
visCormectart) s bosl

-

BageNode

4.1.6 Object Node Class

The ObjectNode class incorporates specific object types and dialogs unique to each object type. This allows
for several types of objects, unique with their own dialog properties.

The example shown is from a Class diagram. Objects from other diagram types would have a nearly identical
format, with minor diagram-specific differences.

ClassBoxObjectDialog

-thasshamel abel QLabal®

-atiributel abel : QLabel=

-mathodilabel: (Label=

-ehassNamel neEdat OLaneEdit®
atEributeslineEdit: QTextEdat=

-mthodiLinsEdit: QTexvEdite

-ckButton: PuihButton®
+CLassEomdblectlialog (parent :(Wedget =)

ot L alinse | newt Ladidlane: 0517 sngl = wedd

e bALE ributes [newlt trabutes 05tringh : voad
+setMathods (newte thods 1QString) @ voud
-chButtantlicked|): void (5151)
+classMameSet | new LassMame: 05trangl: woad [Sagnall
+at tributesSet {newAt tributes :0Strengl @ voad (Sugrall
smpthodifat [niwke thods String) - voad ﬁ:i"i“
baaleg wed to medify
1

Ohject to modyfy
1

ClaszsBaxObject

-clasiMerght: ant

sattributeHeight: int

-Edthodieight: nt

-8 closshane: Q5trang [Q_PROPERTY)
-m_attributes: QString [Q_PROPERTY)

-8 Sathods: QString (0 PROPERTY)

+clonel] : BaseHode®

+gatDialogl): Qoialoge

getlconPathl] Q5tring

+getTent(]: QString

+gatDisgranType (] DiagraaTyps

sdrawipainter: QPainter &) : vead

+getMethods (] : 0S5tring

sgatAttributes () QSTring

sgettlassMamel) G5tring

+50 tHethods [newMe thods :Q5trangh = woid {5lot)

s AT Lbutes (it T ributes :05trimgh: wead (Slat)
58t Los iMame [newd Lasslame: 08t rangl: voad (Slat]

v

Obyectode

0B #C MO |
shitTest{point: const (Point £): bool
sdrawi{palnter: QRalnter &) void
sasConmsectori] : boal

W
BaseNode

JUSWINIOP STY) UL PI[IRIDP J0U dIe
S9SSB[D IO IV x4 -0¥e[duroy oures o) mofoy inq ‘od£) 10909ut00/999(qo pue odAy mrerderp 1od Ares sosse[d oA1109dsa1 o1]) JO SoUIRU oY,
‘wre)yed STyl MO[[OJ IMq ‘parreA axe sodA) uordeuuo)) pue 190(qQ) 4

V/N odA 1uornosuuo)), SaINYRJ UOTIIUUOD SUTRIUO)) Sorerdd) SoreradA 1 uoroouuo)),
Borer@adA T, uo1neuuo0)), 9PONUOI109UU0)) od£) uo1109UU0d SUreIuO)) opoNPseyg adA T uoroeuuo)),
od £ T, uo1100uu0)) opoNoeseq UOI109UUOD SUTRIUO)) opoNeseqg 9PONUOI}0UUO))
V/N odAT1,199[q Forerp 120lqo surejuo)) Sorerqd) Sorer@odAT,109(q O
dorerodA1,100(q 04 apoN199[qO saInjea] 199(qo surejuo)) opoNoseqg odAT1,190(q4
PPONTORIOUUOD) opoNeseq 199[qo surejuo)) opoNeseq apoN199[qQ
9pON129[q(Q) . i i
V/N opoNeseq | (I £q perdos oq Aewr yoIYM ‘s7909(qo Jo A1)S130Y V/N £10900 JOPON
9PONUOII0UUO))
SpoN199Ld0) MUOWNIO(] 100[qo o) smel(] 199[qO0) opoNeseq
V/N MOPUIAUTRIA UOI)RULIOJUT UIRISRIP [[€ SUrejuo)) 193pIMD JUOTNIO(]
V/N MOPUIA\ UTRIN $10309UU0D PUE §120[qO sme(] 198PIMD seAtre))
V/N MOPUIA\ UTRIN opow JurmeIp ay) S30§ uonoy) UOTIOYOPON
‘wreiderp Sursixe ue uado 10 odL) wreiderp
V/N MOPTMITEIN | o v 109[9S 0} I9STL 97} SMO[[e Y2Iym SO[eIp UTRJ 80re1a0 S)
UOTIDYOPON MOPUIAUTRIAID)
Sore1Buuo) MOPUIMUTRIAID) I97}930] JUOWINIOP PUR SBAURD 9]} S}IOUUO)) 1SPIMD MOPUTMUTRIAID)
sejeurpIoqng serouspuada(y uorpounyg /esodin g aSuey /odAg, SSe[) JO awIeN]

Areuoryor Ayjug /yusuoduo)

"S9SSe[D 19710 93} 0} poaje[ol
ST SSR[O 9RO MOY PUR ‘9Iem)jos Sy} Jo juourdo[oAdp o) Ul POzI[IIn ‘sosse[d se pojuomwdul ‘sjuouoduwod [eNPIAIPUL oY) SMOYS d9[qe) SIYT,

AMVNOLLOIA ALLLNA/INANOJINOD ¥

4.3 FEATURE DETAILED DESIGN

Each of the diagrams in this section represent an important functionality of the pUML software. The
interaction diagrams detail the object classes that will be utilized in the execution of each of these major
features of the software, as well as show how these classes interact.

4.3.1 Detailed Design for Feature: Create New Diagram

4.3.1.1 Introduction/Purpose of this Feature Each of the UML diagrams will need its own space
for development within the pUML software. The “New” feature allows the user to select a diagram and start
developing that diagram on a blank, diagram-specific canvas.

4.3.1.2 Input for this Feature The user selects “New” from the main menu options, and selects a
diagram type from the Configuration Dialog box.

4.3.1.3 Output for this Feature pUML will then load a blank canvas in a new tab, with a toolbar
containing only that diagram’s type of objects and connectors.

4.3.1.4 Feature Process to Convert Input to Output User selects “New” from main menu. Main-
Window class creates a ConfigDialog box, which contains all possible diagram types. User selects diagram
type. ConfigDialog returns the diagram type back to the MainWindow class, which in turn uses that in-
formation to create both the Canvas and Document classes. MainWindow then connects the Canvas and
Document classes, and sends the user-selected diagram type to the Document class. The main window then
creates a new tab with a blank canvas and all diagram-specific properties.

4.3.1.5 Design Constraints and Performance Requirements of this Feature New diagrams may
not be of a generic diagram type. The user must specify what type of a new diagram they will be developing
prior to pUML creating the space in which to develop a UML diagram.

MainWindow

select "Mew”

:

1
.._l_
zCreates
ConfigDialog

T

I

I

I
—L

select diagram type

-

returnDiagramTypeg

zCreates
Canvas

T
«u:re.'late»

, p Document

connectCanyasWithDocument

updateDiagramType

zCreates

Figure 1: Create New Diagram

4.3.2 Detailed Design for Feature: Open an Existing Diagram

4.3.2.1 Introduction/Purpose of this Feature The pUML software provides the Open feature so
that users may store diagrams and view or edit them later. Open will load the .puml diagram type into
pUML, which will allow the user to continue modification.

4.3.2.2 Input for this Feature User selects “Open” from the main menu. The user is then prompted
to locate the file on their computer.

4.3.2.3 Output for this Feature If the user-selected file is of .puml type, pUML will load the diagram
into a new tab of that particular diagram type, and the diagram will be modifiable.

4.3.2.4 Feature Process to Convert Input to Output User selects “Open” from the MainWindow
class, which creates the OpenFileDialog. The User then selects which file they choose to open, and Open-
FileDialog returns that value to MainWindow. MainWindow creates both the Canvas and Document classes
and then connects these two classes. MainWindow creates the tab for the diagram to load into, and sends
diagram specific information to the Document class. The Document class then returns the diagram type to
MainWindow.

4.3.2.5 Design Constraints and Performance Requirements of this Feature The pUML software
will only open files of .puml type.

MainWindow

T

I

|

I
—L

select "Open”
zCreates OpenFile
Dialog
:
T 1
selectfile to open :
: return file
zCreates
Canvas
zCreates
Document
connectCanvasWithDocument :
1
|
1
zCredtes I
; -
1
1
openifilendme) :

updateDiagry

mype()

Figure 2: Open Diagram

4.3.3 Detailed Design for Feature: Exit pUML

4.3.3.1 Introduction/Purpose of this Feature When the user is finished modifying UML diagrams,
the pUML software may be closed.

4.3.3.2 Input for this Feature The user clicks the “X” in the upper corner of the pUML main window,
or selects “Exit” from the main menu.

4.3.3.3 Output for this Feature pUML checks to see if the file(s) being closed are saved, and once all
files have been either saved or discarded, the pUML software closes.

4.3.3.4 Feature Process to Convert Input to Output User selects “Exit” from the main menu.
MainWindow iterates through each of the tabs and sends a request called getModified() from the Document
class. As long as none of the tabs is flagged as having a modification since the previous save, then all tabs
are assumed to be saved, and MainWindow closes the pUML software.

If tabs need to be saved, reference the Save feature in this document. Tabs will be saved, and this process
will resume as normal from that point.

4.3.3.5 Design Constraints and Performance Requirements of this Feature pUML will also
close if diagrams are not saved, and the user wishes to discard all changes.

ser MainWindow Document

click X assume getModified is false

50 no saving needs to ocour here.
Saving is illustrated in a separate
interaction diagram.

.._I_

iterate tabs

-

getModifigdi

T

|

|

|

|

|

|

|

|

| ==
"
|

1

close()

Figure 3: Exit pUML

4.3.4 Detailed Design for Feature: Save

4.3.4.1 Introduction/Purpose of this Feature The user wishes to save a UML diagram.
4.3.4.2 Input for this Feature The user opens the File Menu and selects Save.

4.3.4.3 Output for this Feature pUML checks to see if the file name that the user selects is valid, and
when this is verfied, the diagram currently loaded is stored at that file location.
If the file name has not previously been stored, refer to the Save As feature in this document.

4.3.4.4 Feature Process to Convert Input to Output The user clicks “Save” on the main menu,
and MainWindow sends the current diagram name through hasFileName() to Document to verify whether
or not the name has been previously stored. Document verifies that hasFileName() returns true, stores the
current diagram content over the contents of the existing file, and sets modifyChanged() to hide the asterisk
(indicating an unsaved diagram) at that tab.

4.3.4.5 Design Constraints and Performance Requirements of this Feature If hasFileName
returns false, refer to the Save As feature in this document.

Lser MainWWindow Document hasFileMame() returns true
for save to oceur.

click "Save”

-

i :
| |
| | ;
o e
hasFileMamef) |

save()

maodifyChanged()

madify asterisk on tab j

Figure 4: Save Diagram

4.3.5 Detailed Design for Feature: Save As

4.3.5.1 Introduction/Purpose of this Feature The user wishes to save a UML diagram under a
new file name.

4.3.5.2 Input for this Feature The user selects Save As from the main menu.

4.3.5.3 Output for this Feature pUML produces a dialog box through which the user may type a new
file name, and then pUML saves the file under that new name.

4.3.5.4 Feature Process to Convert Input to OQutput The User clicks on “Save As” in the main
menu.

Or the User attempts to save a previously unsaved file, and MainWindow sends hasFileName() to Document
to verify if the current diagram name exists, which returns false.

MainWindow creates a new QFileDialog into which the User enters their desired file name. The QFileDialog
sends this information to MainWindow, which in turn calls setFileName() to Document, and then save().

4.3.5.5 Design Constraints and Performance Requirements of this Feature N/A

: for save as to occur.

User MainWindow Document
hasFileMame() returns falze j
1

L
b

click "Save”

hasFileMgifie()

{i’ ________________________

zCreates

QFileDialog

input file'name

setFileMamel

savel)

Figure 5: Save / Save As

4.3.6 Detailed Design for Feature: Close Diagram Tab

4.3.6.1 Introduction/Purpose of this Feature The pUML software provides ability for multiple
diagrams to be edited by utilizing a tabbed structure. As design complexity increases, or if the User may
desire to reduce screen clutter, the ability to close tabs is very useful.

4.3.6.2 Input for this Feature The user clicks the “x” on the tab.

4.3.6.3 Output for this Feature pUML checks to see if the current diagram has been saved, and when
there are no outstanding modifications, the tab is closed.

4.3.6.4 Feature Process to Convert Input to Output Uesr clicks the “x” on the tabWidget, which
uses MainWindow to send a getModified request to Document. If getModified returns false (diagram has
been previously saved), then Document returns this information to MainWindow, which sends permission to
the tabWidget to close itself.

4.3.6.5 Design Constraints and Performance Requirements of this Feature After all tabs in
pUML have been closed, the pUML software remains open, with main menu options available. If the user is
desiring to close the pUML software, then they must choose to “Exit” the program.

Assume getModified returns false.
User tabWidget MainWindow Document If getModified returns true,
initiate save sequence.
1

close()

getilodifieder”

. 1

.EE ____________
close()

Figure 6: Close Diagram Tab

4.3.7 Detailed Design for Feature: Place New Object

4.3.7.1 Introduction/Purpose of this Feature The user will be able to select objects from the
toolbar and place them on the Canvas.

4.3.7.2 Input for this Feature The user will click on a shape on the toolbar. The first subsequent
click of the mouse over the Canvas area will place the selected shape at that location.

4.3.7.3 Output for this Feature The object will be placed on the Canvas, at a location of the user’s
choosing.

4.3.7.4 Feature Process to Convert Input to Output The mouse click on a shape on the toolbar
notifies MainWindow of an objectAction(). The MainWindow sets the draw mode to object through the Can-
vas. The user then clicks on the canvas, which Canvas then tells Document to create the object. Document
creates a new BaseNode, sends it the properties dialog, and then Document initiates showDialog().

4.3.7.5 Design Constraints and Performance Requirements of this Feature N/A

User Toolbar Main Window Canvas Document

click()

objectAction() s

'

set draw mode to obj

createCbject()

zCreates

BaseMode

getF'rupertiesDiaIuE :

showDialog()

Figure 7: Place New Object

4.3.8 Detailed Design for Feature: Move Object

4.3.8.1 Introduction/Purpose of this Feature This gives the user the capability to rearrange objects
in a UML diagram after their initial placement.

4.3.8.2 Input for this Feature The user clicks on an object, and then drags it to another location on
the canvas.

4.3.8.3 Output for this Feature The canvas displays the object at its new location.

4.3.8.4 Feature Process to Convert Input to Output The user leftclicks down on the object, on the
canvas. The Canvas class tells the Document class to setSelectedObject() to true. The user moves the mouse
(mouseMove event), and Canvas redraws the object at each location. Document sets the position at each
move. The user releases the mouse and the Document class retains all current object location properties.

4.3.8.5 Design Constraints and Performance Requirements of this Feature Objects are per-
mitted to overlap in pUML, which may require more diligence on the user’s part.

mauseButtonDown()

Zanvas

mouseiMave()

Document

setSelectedObject()

mausellp()

mavesSelectedObject

Figure 8: Move Object

setPasition()

4.3.9 Detailed Design for Feature: Edit Object Description

4.3.9.1 Introduction/Purpose of this Feature The user may edit an object’s description.

4.3.9.2 Input for this Feature The user right clicks on the object they wish to modify and selects
“Properties” from the context menu.

4.3.9.3 Output for this Feature pUML displays a dialog box with object description, and after the
user has submitted changes to the description, the new description is displayed on the canvas.

4.3.9.4 Feature Process to Convert Input to Output User right clicks on an object on the Canvas.
The Canvas tells Document to perform a hittest to determine whether an object resides at those coordinates.
If valid, the Canvas tells Document to initiate the properties Dialog for the selected object.

The user modifies the object properties per the Dialog. The Dialog sends the updated object information to
Document.

4.3.9.5 Design Constraints and Performance Requirements of this Feature The user may only
edit properties of valid objects and connectors. No other properties in pUML may be modified.

EDIT OBJECT
This interaction diagram follows
the interactions of a user

Canvas Document

clicking an object and
editing its properies

rightClick() May 10, 2012

T

I

I

I
—L

setSelectedObject

hitTest

setSelectedObject

showContextMenu

-

click Properies

showPropertiesDialog

zCreates

Sets Properties

returnProperties

Figure 9: Edit Object Description

4.3.10 Detailed Design for Feature: Delete an Object

4.3.10.1 Introduction/Purpose of this Feature The user deletes an object from the Canvas.

4.3.10.2 Input for this Feature The user right-clicks on an object to be deleted, and selects the delete
option from the context menu.

4.3.10.3 Output for this Feature The object is removed from the canvas along with any connectors
(connected objects).

4.3.10.4 Feature Process to Convert Input to Output User right clicks on an object on the Can-
vas. The Canvas verifies that an object exists at the coordinates of the click, and sets the object through
Document. The Canvas displays the context menu. The user selects the delete option from the menu, which
tells Document to delete the object and any connected objects.

4.3.10.5 Design Constraints and Performance Requirements of this Feature All connectors
attached to an object will be deleted along with that object.

Canvas
;
|
fightClick() 1
click Delete :

setselectedObject

Document

deleteSelectedObject

showContexthMenu

Figure 10: Delete Object

deleteConnectedObjects

4.3.11 Detailed Design for Feature: Place a New Connector

4.3.11.1 Introduction/Purpose of this Feature This feature allows the user to place a connecting
line between two objects.

4.3.11.2 Input for this Feature The user selects a connector shape from the toolbar, and then selects
two objects between which to place the connector.

4.3.11.3 Output for this Feature A connector line is drawn between the two objects the user selected.

4.3.11.4 Feature Process to Convert Input to Output User clicks on a connector shape in the
Toolbar, which sends a connectorAction to the Main Window. MainWindow tells the Canvas to set the draw
mode to connector.

The user clicks and holds down the mouse, presumably over an object. The Canvas tells Document to create
the first Connection Point at that location. Document performs a hittest to ensure that a valid object node
resides at that location.

The user releases the mousebutton, which Canvas sends to Document as the second connection point. After
performing a hittest, Document creates a BaseNode, tells it to addConnectedNode at each connection point.
Document addsConnectedNode after this and the connection line is drawn.

4.3.11.5 Design Constraints and Performance Requirements of this Feature As of this release,
it is possible to create several identical connection lines between two objects, and so users must proceed with
caution.

Toolbar Wain Window|

click()

conneclur.AUliun(L

1
1
mousedown])

set draw mode to conn

Canvas Document

mouseup()

createConnecﬁonF‘oinHQ

Figure 11:

createConnectionPoint2

hittest

hittest

=createx

addConnectediode() :

BaseMode

r

addConnectedMode()

r

Place New Connector

addConnectedNode()

addConnectedMode()

4.3.12 Detailed Design for Feature: Edit Connector Description

4.3.12.1 Introduction/Purpose of this Feature User may edit a connector’s description.

4.3.12.2 Input for this Feature The user right clicks on a connector and selects “Properties” from the
context menu.

4.3.12.3 Output for this Feature A dialog is displayed from which the user may make changes to the
connector’s description. After making a change, the new description will replace the existing description.

4.3.12.4 Feature Process to Convert Input to Output User right-clicks on the canvas. Canvas class
setsSelectedConnector() to Document, which performs a hittest to verify the connector at the coordinates
of the click. Then Document setSelectedConnector to itself.

Canvas displays the context menu. The User clicks “Properties” and Canvas sends a showPropertiesDialog
signal to Document, which in turn creates a properties Dialog.

The User then modifies the properties, and Dialog sends the new properties information to Document.

4.3.12.5 Design Constraints and Performance Requirements of this Feature The user may not
be able to edit all properties of all connectors due to the differences in connector utilization in differing UML
diagrams.
The user may only edit properties of valid objects and connectors. No other properties in pUML may be
modified.

=
[
fo:]
=

Canvas

EDIT CONMNECTORS
Document This interaction diagram follows the interactions
of a user selecting a connector and editing it.

rightClick()

click Properties

This interaction is exactly the same as editing an object.
May 10, 2012

setsSelectedConnector

L

hitTest

setSelectedConnector

showContextMenu

a)

showProperiesDialog o

zCreates

Dialog

Sets Properties

returnProperties
all

Figure 12: Edit Connector Description

4.3.13 Detailed Design for Feature: Delete Connector
4.3.13.1 Introduction/Purpose of this Feature The user deletes a connector from between two

objects.

4.3.13.2 Input for this Feature The user right-clicks on an connector, and selects “Delete” from the
context menu.

4.3.13.3 Output for this Feature The connector no longer appears on the canvas.

4.3.13.4 Feature Process to Convert Input to Output User right clicks on an connector on the
Canvas. The Canvas verifies through Document that a connector exists at the coordinates of the click, and
sets the connector. The Canvas displays a context menu. The user selects the “Delete” option from the
context menu. Canvas tells Document to deleteSelectedConnector, and Document deletes the connector.

4.3.13.5 Design Constraints and Performance Requirements of this Feature N/A

DELETE CONNECTORS
User Canvas Document This interaction diagram follows the interactions
of a user selecting a connector and deleting it
: This interaction is the exact same as deleting an object.
] May 10, 2012

rightClick()

1
1
:
setSelectedConnector |

T

showContextMenu

click Delete

; :

deleteSeIec‘[edConnedorh

deleteConnectedConnector

Figure 13: Delete Connector

"98eD 1$0) INYedJ IOYJoUR YSNOIY) Pagse) A[J00IIPUT SoIRIIPUL YSLI0)Se
‘Burssed 0/ 10 [Te/SSRJ PUR SOUIRU Ol I8 SI[NSAI PUL SIFLD IS9T,
"QUIRU UOIYOUNJ I0 Jdqunu dded pue UOISIOA ST U] (T(ISS

UYSTH ‘MOr ‘AI0YRpPURTA] :9I€ SOIILIOLI

SSvd TIvd % SBOALBS)SO) N O _ o
SSVd TIVA Loresysoy | V€T I JIeUONOUNY qRY, | 8'T'C qer,
S5vd v w SRS ¢ £y1a8oqut odLy) ureader ‘7 sureiger
SSVd TIVA 4 OALS)S) rev N JLLsojUL 1 Id| L'T¢ Iq
oovd Ssvd seoRmY) ey ureiSeIp e oAe ‘T Sy oAeg /AR
SSvd SINK 9ARS)S9) ey A P S| 9¢¢ YV oaeg/oaeg
SSvd TIvA % SLIARSISO) o domto Lo o _ nwa
SSVd TIVA 4 PARS)SI] cev| N TINAQC oL 91 TN D © PeOT| G'C'C 0
EIeEy
SSvd SSVd | 10300UU00}[959599 e Ayqeuory |
s Ssvd TIVA| SI0309UU00)89) MMW W | Huny pue sonzedord 1oyetmoy | 7EC $10309UUOT)
oTev
SSVd SSvd| swelqossay| OEVI gy M eg $190(q0)
) ¢V -Teuorjouny pue soryredord 109[q () :
LEY
SSVd SSVd | mopumsurenn)so} | V/Nx| N SOINJe9) MOPUIM UIRW [y | '¢'¢ | MOPUIA UIRIN
SSvd TIvAa « SLOARS]ISO) . —
SSVdSSvd suor)do JIx d 11X
SSvd TIVA 4« OARS)S) eer| N ! XH TINNY | T'C¢C IXH
Ay |
S5vd S5vd Ssvd PUTETS V/IN| W -§89001s saypune] aremjpyos TNNd 1ee U
Ay | .
SSvd SSvd SSvd reasunsey | V/N| I | oo0ong sressut oxemyos uad| 80 [reasuy
‘ON aureN
1S9, [eUl | asea[oy] elog |osesoy eydry | (s)ese)d 1sa1, | A@SSAyIonr | uorydiioso(] jyuawaainbayy boyy omyeag

ALITIAVIDOVHL SINANIYINOAY ¢

	INTRODUCTION
	IDENTIFICATION
	DOCUMENT PURPOSE, SCOPE, AND INTENDED AUDIENCE
	Document Purpose
	Document Scope and/or Context
	Intended Audience for Document

	SYSTEM AND SOFTWARE PURPOSE, SCOPE, AND INTENDED USERS
	System and Software Purpose
	System and Software Scope/or Context
	Intended Users for the System and Software

	DEFINITIONS, ACRONYMS, AND ABBREVIATIONS
	DOCUMENT REFERENCES
	DOCUMENT OVERVIEW
	DOCUMENT RESTRICTIONS

	CONSTRAINTS AND STAKEHOLDER CONCERNS
	CONSTRAINTS
	Environmental Constraints.
	System Requirement Constraints.
	User Characteristic Constraints.

	STAKEHOLDER CONCERNS

	SYSTEM AND SOFTWARE ARCHITECTURE
	DEVELOPER’S ARCHITECTURAL VIEW
	Developer’s View Identification
	Developer’s View Representation and Description
	Developer’s Architectural Rationale

	USER’S ARCHITECTURAL VIEW
	User’s View Identification
	User’s View Representation and Description

	CONSISTENCY OF ARCHITECTURAL VIEWS

	SOFTWARE DETAILED DESIGN
	 DEVELOPER’S VIEWPOINT DETAILED SOFTWARE DESIGN
	 Class Overview
	 Main Window Class
	 Document and Canvas Classes
	 Base Node Class
	 ConnectionNode Class
	 Object Node Class

	COMPONENT/ENTITY DICTIONARY
	FEATURE DETAILED DESIGN
	Detailed Design for Feature: Create New Diagram
	Detailed Design for Feature: Open an Existing Diagram
	Detailed Design for Feature: Exit pUML
	Detailed Design for Feature: Save
	Detailed Design for Feature: Save As
	Detailed Design for Feature: Close Diagram Tab
	Detailed Design for Feature: Place New Object
	Detailed Design for Feature: Move Object
	Detailed Design for Feature: Edit Object Description
	Detailed Design for Feature: Delete an Object
	Detailed Design for Feature: Place a New Connector
	Detailed Design for Feature: Edit Connector Description
	Detailed Design for Feature: Delete Connector

	REQUIREMENTS TRACEABILITY

