
SYSTEM AND SOFTWARE
DESIGN DESCRIPTION (SSDD) TEMPLATE

(Incorporating Architectural Views and Detailed Design Criteria)
Version A.2, November 2010

FOREWORD
This template was created to provide system and software development projects with a model System and

Software Design Description (SSDD) that incorporates both architectural views and detailed design criteria.
The template is based on work compiled by Dr. Paul Oman from a large collection of software engineering
design document standards discussed in Section 1.5. It has been edited and updated by Dr. Clint Je�ery
for use in UI CS 383.

The SSDD template begins on the next page. Just throw away this page and enter your project
speci�cations into the following template. Don't forget to change the headers and footers as necessary. The
following conventions are used to guide you in developing your SSDD:

[Text] Replace this text with your project design text.
text in italics Notes/instructions to the author. Delete in your �nished document.

SSDD Page 1

SYSTEM AND SOFTWARE DESIGN DESCRIPTION (SSDD): Incorporating
Architectural Views and Detailed Design Criteria

FOR

Phunctional UML Editor
(pUML)

Version 0.0
January 17, 2012

Prepared for:
Bruce Bolden

Prepared by:
Josh Armstrong
Brian Bowles
Zach Curtis
Logan Evans
Jeremy Klas

Nathan Krussel
Maxine Major
Morgan Weir
David Wells

University of Idaho
Moscow, ID 83844-1010

SSDD Page 2

CS383 SSDD
RECORD OF CHANGES (Change History)

Change
Number

Date
com-
pleted Location of change

(e.g., page or �gure
#)

A
M
D

Brief description
of change

Approved
by

(initials)

Date
approved

df84c744c60f 11/02/11 hg/code/QT Project A
Added code stubs for node

implementation (nodes.cpp, dia-
grams.cpp, etc)

LE
11/02/11

eae63bed20d2 11/2/11 /.hgignore A added .hgignore LE
11/2/11

b119831d6fea 11/6/11 N/A M
organized submitted material

into folders
LE

11/6/11

82fe1ebeeade 11/6/11 /.hgignore M .hgignore to ignore �le locks. LE
11/6/11

6bf8d2e6f033 11/6/11 /hg/documentation/
html

A
Added the html doxygen output

to the repository
Auto

11/6/11

db54296b4deb 11/11/11 hg/documentation/
UMLsymbols

A
Updated folder with UML Sym-

bols documentation
MM

11/11/11

1cca683da3f3 11/13/11 /hg/code/mainwindow/ A Added make�le LE
11/13/11

4d98e0c6a896 11/13/11 hg/code/mainwindow/ A
submitted UML menu (main-

window.cpp, GUI.h, etc)
XS

11/13/11

efce0b2f8a24 11/13/11 hg/code/ A added pUML.cpp LE
11/13/11

2f45b5a240af 11/17/11 hg/code/Doagram Ob-
jects/

A
QT drawing funcitons of circle

and actor(circle.cpp...etc)
ZC

11/17/11

8f708577a183 12/2/11 hg/documentation/ A
added UML diagrams and

screen shots (use case, interac-
tion, etc)

MM
12/2/2011

ec72fce5eb27 12/4/11 hg/code/mainwindow/ A Dialog for �le->New DW
12/4/11

442733ec36c2 12/4/11 hg/code/mainwindow/ M
Modi�ed Shen's mainwindow

code to gray out tool bars.
DW

12/4/11

8712d7dd4c91 12/4/11 hg/code/mainwindow/
make�le

D
�xed case collision with Make�le
and make�le

JA
12/4/11

cc9ebc151eb9 12/5/11 hg/code/mainwindow/ A
Created canvas to allow for

drawing area within the main
window

JA
12/5/11

SSDD Page 3

6d8c31be300e 12/6/11 /hg/Presentation A
Submitted User Manual/power

point presentation
MM

12/6/11

93098598b83f 12/8/11 hg/documentation/dox A
created script to run doxygen on
all folders inside puml/code

LE
12/8/11

A - ADDED M - MODIFIED D � DELETED

SSDD Page 4

Phunctional UML Editor
TABLE OF CONTENTS

Section Page

SSDD Page 5

1 INTRODUCTION

1.1 IDENTIFICATION

This document has no identi�cation numbers or applicable revisions at this time. All references in this
document, excepting items detailed in the change log, may be referenced as revision 0 at this time.

1.2 DOCUMENT PURPOSE, SCOPE, AND INTENDED AUDIENCE

1.2.1 Document Purpose

Phunctional UML Editor software was designed as a graded project for Software Engineering, under the
oversight and guidance of Professor Bruce Bolden, at the Unversity of Idaho. This document is required as
part of the graded assignment, and provides minimal insight to the design of this incomplete project.

1.2.2 Document Scope and/or Context

This document includes information regarding the design and components of the pUML software.

1.2.3 Intended Audience for Document

This document may be referenced for educational purposes by Computer Science students and faculty at the
University of Idaho.

1.3 SYSTEMAND SOFTWARE PURPOSE, SCOPE, AND INTENDEDUSERS

1.3.1 System and Software Purpose

The pUML software is intended to be a tool utilized by software designers to create UML diagrams.

1.3.2 System and Software Scope/or Context

The pUML software will be designed to provide functionality to create UML diagram projects. Users will be
able to create several di�erent types of UML diagrams, create, modify, link, save, and delete objects within
individual UML diagrams, and save collections of diagrams stored as part of a project.

1.3.3 Intended Users for the System and Software

The completed product would be available to the general public for purchase.

1.4 DEFINITIONS, ACRONYMS, AND ABBREVIATIONS

This section shall list and de�ne all special terms, acronyms and abbreviations used throughout this document.

A tabular form is preferable, but not mandatory.

Term or Acronym De�nition

Acquirer
The person, team, or organization that pursues a system or software product or
service from a supplier. The acquirer may be a buyer, customer, owner, purchaser,
or user. ISO/IEC 42010:2007 (�3.1).

Term or Acronym De�nition

AD
Architectural Description: �A collection of products to document an architecture�
ISO/IEC 42010:2007 (�3.4).

Alpha test Limited release(s) to selected, outside testers

Architect
�The person, team, or organization responsible for systems architecture� ISO/IEC
42010:2007 (�3.2).

Architectural Descrip-
tion

(AD) �A collection of products to document an architecture� ISO/IEC 42010:2007
(�3.4).

Architectural View
�A representation of a whole system from the perspective of a related set of concerns�
ISO/IEC 42010:2007 (�3.9).

Architecture
�The fundamental organization of a system embodied in its components, their re-
lationships to each other, and to the environment, and the principles guiding its
design and evolution� ISO/IEC 42010:2007 (�3.5).

Beta test
Limited release(s) to cooperating customers wanting early access to developing sys-
tems

Design Entity
�An element (component) of a design that is structurally and functionally distinct
from other elements and that is separately named and referenced� IEEE STD 1016-
1998 (�3.1).

Design View
�A subset of design entity attribute information that is speci�cally suited to the
needs of a software project activity� IEEE STD 1016-1998 (�3.2).

Final test aka, Acceptance test, release of full functionality to customer for approval

DFD Data Flow Diagram

SDD Software Design Document, aka SDS, Software Design Speci�cation

Software Design De-
scription

�A representation of a software system created to facilitate analysis, planning, im-
plementation, and decision making, A blueprint or model of a software system. The
SDD is used as the primary medium for communicating software design information�
IEEE STD 1016-1998 (�3.4).

SRS Software Requirements Speci�cation

SSDD System and Software Design Document

SSRS System and Software Requirements Speci�cation

System
�A collection of components organized to accomplish a speci�c function or set of
functions� ISO/IEC 42010:2007 (�3.7).

System and Software
Architecture and De-
sign Description

An architectural and detailed design description that includes a software system
within the context of its enclosing system and describes the enclosing system, the
enclosed software, and their relationship and interfaces.

System Stakeholder
�An individual, team, or organization (or classes thereof) with interests in, or con-
cerns, relative to, a system� ISO/IEC 42010:2007 (�3.8).

Term or Acronym De�nition

1.5 DOCUMENT REFERENCES

1) CSDS, System and Software Requirements Speci�cation Template, Version 1.0, July 31, 2008, Center
for Secure and Dependable Systems, University of Idaho, Moscow, ID, 83844.

2) ISO/IEC/IEEE, IEEE Std 1471-2000 Systems and software engineering � Recommended practice for

architectural description of software intensive systems, First edition 2007-07-15, International Orga-
nization for Standardization and International Electrotechnical Commission, (ISO/IEC), Case postale
56, CH-1211 Genève 20, Switzerland, and The Institute of Electrical and Electronics Engineers, Inc.,
(IEEE), 445 Hoes Lane, Piscataway, NJ 08854, USA.

3) IEEE, IEEE Std 1016-1998 Recommended Practice for Software Design Descriptions, 1998-09-23, The
Institute of Electrical and Electronics Engineers, Inc., (IEEE) 445 Hoes Lane, Piscataway, NJ 08854,
USA.

4) 3) ISO/IEC/IEEE, IEEE Std. 15288-2008 Systems and Software Engineering � System life cycle

processes, Second edition 2008-02-01, International Organization for Standardization and International
Electrotechnical Commission, (ISO/IEC), Case postale 56, CH-1211 Genève 20, Switzerland, and The
Institute of Electrical and Electronics Engineers, Inc., (IEEE), 445 Hoes Lane, Piscataway, NJ 08854,
USA.

5) ISO/IEC/IEEE, IEEE Std. 12207-2008, Systems and software engineering � Software life cycle pro-

cesses, Second edition 2008-02-01, International Organization for Standardization and International
Electrotechnical Commission, (ISO/IEC), Case postale 56, CH-1211 Genève 20, Switzerland, and The
Institute of Electrical and Electronics Engineers, Inc., (IEEE), 445 Hoes Lane, Piscataway, NJ 08854,
USA.

1.6 DOCUMENT OVERVIEW

Section 2 of this document describes the system and software constraints imposed by the operational envi-
ronment, system requirements and user characteristics, and then identi�es the system stakeholders and lists
describes their concerns and mitigations to those concerns.

Section 3 of this document describes the system and software architecture from several viewpoints, in-
cluding, but not limited to, the developer's view and the user's view.

Section 4 provides detailed design descriptions for every component de�ned in the architectural view(s).
Sections 5 provides traceability information connecting the original speci�cations (referenced above) to the
architectural components and design entities identi�ed in this document.

Section 6 and beyond are appendices including original information and communications used to create
this document.

1.7 DOCUMENT RESTRICTIONS

This document is for LIMITED RELEASE ONLY to UI CS personnel working on the project.

2 CONSTRAINTS and stakeholder concerns

2.1 CONSTRAINTS

2.1.1 Environmental constraints.

The pUML software poses no Environmental constraints at this time .

2.1.2 System requirement constraints.

The pUML software will be designed to function on, at a minimum, Windows 7, Mac OSX, and Linux.
Cross platform functionality will minimize portability errors and allow for projects to be migrated between
platforms with minimal di�culty.

2.1.3 User characteristic constraints.

University of Idaho Computer Science students and faculty should be able to reasonably understand and
operate the pUML software.

2.2 STAKEHOLDER CONCERNS

There are no stakeholders for our software at this time.

3 SYSTEM AND SOFTWARE ARCHITECTURE

3.1 DEVELOPER'S ARCHITECTURAL VIEW

3.1.1 Developer's View Identi�cation

This is the architecture of the program from the viewpoint of the developer. The purpose is to give an
overview of the details of the major components of the architecture.

In order to have the program be able to draw diagrams, a custom QWidget is de�ned called the Canvas.
The Canvas holds all the instatiations of nodes and draws them all. It also creates the nodes by handling
the mouse click events. The toolbar and menu system lets the Canvas know which type of object will be
created next. The Canvas is a member of the MainWindow class, which inherits from QMainWindow.

3.1.2 Developer's View Representation and Description

The Canvas contains a vector container of ObjectNodes. Each ObjectNode has a draw function which takes
a QPainter reference as an argument and draws the appropriate �gure with the QPainter. The program then
de�nes it's own ObjectNodes, e.g. CircleNode and DiamondNode, and pushes them into the vector. In this
way the Canvas can draw each of the nodes in the diagram. To create a new object, it handles a mouse click
event and creates a new object of the type speci�ed by a previous call to it's function to set a new object
type. The new object is pushed into the vector and then the draw function is called on every node in that
vector. When selecting a node to edit or delete, the Canvas takes the X and Y coordinates of the click and
translates that into the index of the object selected. Then the Canvas can popup a menu to edit the node
or delete the node.

3.1.3 Developer's Architectural Rationale

We decided to create a new QWidget for the canvas so that it can handle click events and have a paint
function. We then decided to have the nodes represented by a vector so that it can be easily iterated
over and quickly accessed by index. We decided to have the nodes be represented by speci�c de�nitions of
ObjectNodes so that they can all be pushed into the a vector ObjectNodes. This way each of the nodes can
de�ne their own draw function, as well private data such as radius for circles. This allows new objects to be
easily created.

3.2 USER'S ARCHITECTURAL VIEW

3.2.1 User's View Identi�cation

This is the viewpoint of the program from the viewpoint of the user. From this viewpoint, there are three
major components of the program: the Canvas, the Toolbar and the Menu.

3.2.2 User's View Representation and Description

The menu and the toolbar have redundant functionality. The toolbar has quick access to certain menu items.
Either way, the user selects what object he wants to draw and then clicks on the canvas to draw them. Then
the user can select objects by clicking on them on the canvas, and right clicking on them to popup a menu.
From the popup menu he can delete or edit the object.

3.3 CONSISTENCY OF ARCHITECTURAL VIEWS

There are no known inconsistencies between views.

3.3.1 Detail of Inconsistencies between Architectural Views

NA

3.3.2 Consistency Analysis and Inconsistency Mitigations

NA

4 SOFTWARE DETAILED DESIGN

4.1 DEVELOPER'S VIEWPOINT DETAILED SOFTWARE DESIGN

The Canvas widget is the main viewpoint of our software design.

4.2 COMPONENT/ENTITY DICTIONARY

Component/Entity Dictionary

Name Type/Range Purpose/Function Dependencies Subordinates

Main Window QMainWindow
To have GUI and house

Canvas
N/A Canvas

Canvas QWidget To draw UML diagrams The Main Window N/A

Main Menu

QMenu

Toolbar

4.3 COMPONENT/ENTITY DETAILED DESIGN

4.3.1 Detailed Design for Component/Entity: Main Window

4.3.1.1 Introduction/Purpose of this Component/Entity To have a GUI that supports canvas
widget.

4.3.1.2 Input for this Component/Entity It should open an XML �le.

4.3.1.3 Output for this Component/Entity Should output an XML �le to save canvas state.

4.3.1.4 Component/Entity Process to Convert Input to Output Inserting objects into XML tree
structure.

4.3.1.5 Design constraints and performance requirements of this Component/Entity Have a
functional UI that isn't clunky or hard to use.

4.3.2 Detailed Design for Component/Entity: Canvas

4.3.2.1 Introduction/Purpose of this Component/Entity To draw UML shapes and connectors
based on UML diagram type

4.3.2.2 Input for this Component/Entity Mouse click events

4.3.2.3 Output for this Component/Entity Drawing shapes and connectors to screen

4.3.2.4 Component/Entity Process to Convert Input to Output QT drawing/update functions

4.3.2.5 Design constraints and performance requirements of this Component/Entity It should
run fast enough that it shouldn't bog down system or run jerky due to too much cpu/gpu usage.

4.3.3 Detailed Design for Component/Entity:

4.3.3.1 Introduction/Purpose of this Component/Entity

4.3.3.2 Input for this Component/Entity

4.3.3.3 Output for this Component/Entity

4.3.3.4 Component/Entity Process to Convert Input to Output

4.3.3.5 Design constraints and performance requirements of this Component/Entity

4.4 DATA DICTIONARY

Data Dictionary

Name Type/Range De�ned by. . . Referenced by. . . Modi�ed by. . .

Main Window
QMainWin-

dow
QWidget N/A User

Canvas QWidget QWidget Main Window User

5 REQUIREMENTS TRACEABILITY

Feature
Name

Req
No.

Requirement Description Priority SDD Alpha Release Beta Release Final Test

Test
Case(s)

Test
Res.

Test
Case(s)

Test
Res.

Test
Case(s)

Test Res.

Select Dia-
gram Type

1.1
Selects the appropriate diagram
type

Manda-
tory

N/A N/A N/A N/A N/A N/A N/A

Save function 2.1 Saves the Diagram to �le
Manda-
tory

N/A N/A N/A N/A N/A N/A
N/A

Draw function 2.1 Draws current objects
Manda-
tory

N/A N/A N/A N/A N/A N/A
N/A

Open File 2.1 Opens previously saved �le
Manda-
tory

N/A N/A N/A N/A N/A N/A
N/A

New File 2.1 Creates New File
Manda-
tory

N/A N/A N/A N/A N/A N/A
N/A

SSRS and
SSDD

2.1 Too much work.
Manda-
tory

N/A N/A N/A N/A N/A
N/A

Priorities are: Mandatory, Low, High
SDD link is version and page number or function name.
Test cases and results are �le names and Pass/Fail or % passing.

