
CS120
Lab 9
Classes (summary), pointers and arrays.
Fabian Mathijssen

Classes (summary)
• A class is:

• Class definition (header file or inline)
Remember: include header files with <> or “”

• Source code file

• Classes may model anything in real life.
• Classes are blueprints!

• Usually useless by themselves
• Good for making objects -> have objects do stuff

Pointers (1/4)
• Pointers are memory addresses, so numbers.
• Written as *, pronounced “pointer” or “star”.

• Pointers have types!
è Primitive types: int*, float*, char*, etc.
è Object types: Chair*, Monitor*, Book*, etc.

•  The size of a pointer depends on the operating system
you’re using. In a nutshell, 64-bit computers have 64-bit
memory addresses, so pointers are 8 bytes large.
Tip: use sizeof(variableName) to check size of a variable!

Pointers (2/4)
• Create pointer: int *i;

The pointer i doesn’t point to anything right now, so in
other words, the memory address i points to doesn’t
contain a value.

• Dereference pointer: *i = 28;
Now the memory address i points to contains value 28.

• Get a variable’s address: int k = 26;
 i = &k;

Now the pointer i points to the address of k, which means
i points to an address that contains value 26.

• & is pronounced as “address of”.

Pointers (3/4)
You can create a pointer to a pointer!

int **k; //a reference to a memory location that holds a
//reference to a memory location that holds an
//integer value!

**k = 17;
int m = **k; //Deferences the pointer to k and dereferences

//the pointer to the dereferenced value.
//Puts the dereferenced value into m.

Pointers (4/4)
As you may see, one can certainly overuse pointers!
int **********m;
**********m = 128;

Arrays (1/4)
• An array is a sequence of elements.
• An array has a number of positions that cannot be

changed when set.

Ex.: char name[6] = {‘F’, ‘a’, ‘b’, ‘i’, ‘a’, ‘n’};

• An array is really a pointer to the first element in a
sequence of elements!
We’ll overlook this for now. J

‘F’ ‘a’ ‘b’ ‘i' ‘a’ ‘n’

Arrays (2/4)
• Get the element at position i from the array like so:

int longnumber[6] = {9, 7, 3, 4, 5, 1};
int secondDigit = longNumber[1]; // = 7

Note: an array with n positions has positions numbered 0
through n-1.

Arrays (3/4)
• Go through an array with for loops to get each individual

element:

int longnumber[6] = {9, 7, 3, 4, 5, 1};

for (int i=0; i<6; i++) {
 cout << longNumber[i];
}

• Note: store the length of the array in a variable so you
know how many iterations the for loop must have!

Arrays (4/4)
• You can have an array of arrays, a.k.a. a 2-dimensional

array.
• Note: Each position is a pointer to the first element of

another array.
• Make a 2-D array with x by y positions like this:

int twoDArray[y][x];
• Retrieve an element from this array at position 3 by 5 like

so:
int retrievedElement = twoDArray[3][5];

Last note on arrays...
•  Trick question: how do you get the size (nr of positions) of

an array?
• How do you get the size of a 2-D array?

• Hint: use sizeof()!

Retrospective
• How hard do the week 1-3 labs seem now? ;-)

