
A Lightweight Architecture forProgram Execution Monitoring�Clinton Je�ery, Wenyi Zhou, Kevin Templer and Michael Brazell
(jefferyjwzhoujktemplerjmbrazell)@cs.utsa.eduDivision of Computer Science, University of Texas at San Antonio

AbstractThe Alamo monitor architecture reduces the di�cultyof developing dynamic analysis tools, such as special-purpose pro�lers, bug-detectors, and program visualiz-ers.1 IntroductionDynamic analysis tools are used in several phases ofsoftware development, including coding, testing, andmaintenance [1]. Although conventional debuggers andpro�lers are well-suited for �nding certain kinds of bugsand performance bottlenecks, they may be ine�ectivewhen problems arise for which they were not intended.Improvements in execution monitors have been slowto appear, primarily due to the high cost of developingsuch tools. This motivates the focus of our research: re-ducing the cost of writing monitors. A monitor frame-work for the Icon programming language presented oneapproach that reduces development costs for a broadclass of execution monitors [2]. That framework pro-vided monitor writers with solutions for several prob-lems inherent in the execution monitoring realm, suchas access to and control of another program's execu-tion, and e�cient techniques for dealing with the largeamount of information to be processed. Because theframework was developed for an interpreted virtual-machine language implementation, the applicability ofthese results was limited to similar interpretive languageimplementations.The Alamo monitor architecture extends and gener-alizes the work done for monitoring in the Icon inter-preter by adapting the execution model and developingimplementation techniques suitable for monitoring com-piled programs. Alamo stands for A Lightweight Archi-�This work was supported in part by the National Science Foun-dation under Grant CCR-9409082.A revised version of this paper will appear in the 1998ACM SIGPLAN Workshop on Program Analysis forSoftware Tools and Engineering Montreal, Canada, 14June 1998.

tecture for MOnitoring. The Alamo architecture con-sists of (1) an automatic instrumentation mechanism,(2) an execution model, (3) abstractions for event se-lection, multiplexing and composition, and (4) an ac-cess library that allows monitors to directly manipulatetarget program state. These four components are ap-plicable to many compiled and interpreted languages.Figure 1 gives an overview of the Alamo architecture.
1

Stack Heap

TP

Code

Runtime System

Globals

2

Access Library

3

4

5 6

target program (TP) under observation

1

2

3

4

5

6

automatic instrumentation

event-driven execution control

event forwarding

execution monitors (EMs)

direct access via symbol info

direct access via type info

Monitor Coordinator

Figure 1: The Alamo architecture.The techniques used to implement Alamo for an in-terpretive language are fairly easy compared with thoserequired for a compiled language; the earlier Icon frame-work, with some re�nements to the event selectionmechanism, is an instantiation of the Alamo architec-ture for a language interpreter. The main emphasis inAlamo has been development of techniques for monitor-ing compiled programs. In order to prove the applica-bility of the Alamo architecture to compiled languages,an Alamo framework has been developed that reducesthe cost of writing monitors for ANSI C programs.This paper presents the Alamo architecture andtechniques developed for the monitoring of compiled Ccode. The Icon framework has proven to be a usefultestbed for the C framework implementation, as well asa prototyping environment where monitors can be de-veloped and tested, prior to their subsequent C imple-

mentation. Together, the Alamo Icon framework andthe Alamo C framework also provide a design and acollection of implementation techniques that can be ap-plied to monitoring other languages.The implementation of the Alamo C monitor frame-work consists of about 14,000 lines of code, developedfor Sun Sparc workstations running Solaris and theGNU C compiler. Most of the framework employs user-level techniques that are applicable to any robust Ccompiler. However, the code loader is speci�c to theELF object format, the target program access librarydepends on stabs sections in GNU C format, and thememory protection facilities are provided by a UNIX
mprotect() system call. The system was ported to x86-based Linux in less than a week, and would be readilyported to other ELF-based variants of UNIX.2 Event-driven executionAlamo is event-driven, as illustrated in Figure 2. Con-trol switches back and forth between the execution mon-itors and the target program, transmitting event re-quests and replies in the form of event reports . Eventsare individual units of program behavior. Examplesof typical events include program control
ow, mem-ory references, heap allocations, procedure calls and re-turns, clock ticks, and I/O operations. An event in-cludes an integer code describing what is taking place,and a related target program value. The target programmust be instrumented in order to produce events; thisis a fundamental di�erence between Alamo and somekinds of monitors, such as traditional source-level de-buggers.

Event Report

Event Request

EMTP
(event code,
event value)

(event mask)

Magnification
of a single event

Program Execution Timeline

Events

Figure 2: Event-driven execution.InstrumentationInstrumenting the target program by hand is notpractical for large programs. Alamo employs automaticprogram instrumentation to produce target programevents for monitors. The goal of Alamo's automaticinstrumentation is to provide information at the seman-tic level of the source program, rather than the machinelevel. Providing monitors with higher-level informationis one way to simplify monitor development.Alamo's automatic instrumentation is application

independent and comprehensive. The kinds of eventsavailable are driven by the target language syntax andsemantics, including the semantics of its runtime li-braries, rather than by any particular target program ormonitor. This allows generic monitors to be written toobserve the behavior of arbitrary programs. Althoughhigher-level information is available for a variety of ex-ecution behaviors, monitors can obtain details whenneeded, down to the target-language basic blocks, mem-ory references, and individual operators. The instru-mentation may be categorized into two kinds: (1) basisevents, derived from the C grammar, are pre-de�nedand describe behavior that is directly observable fromthe syntax; (2) con�gured events, derived from the con-�guration �le, represent combinations or special casesof basis events that are instrumented to report higher-level behavior.Automatic instrumentation can be accomplished byinstrumenting the runtime system including librarycalls, or by inserting code directly into the source pro-gram. Instrumenting the runtime system is the simplestmeans of supplying monitors with events. It was suit-able for the Icon framework; Icon programs spend themajority of their time executing runtime system codeand the events produced from the runtime system havehigh-level semantic content due to that language's built-in control and data structures, algorithms, and memorymanagement facilities.The extent to which the runtime system behaviorforms an adequate abstraction of overall program be-havior depends on the language level, as well as on theprogram itself. Instrumenting the C runtime librariesmight characterize some aspects of some programs' be-havior adequately, but does not provide a general so-lution. In C, the behavior of interest often resides inthe generated code. In the Alamo C framework, in-strumentation of the target program is performed priorto compilation by a framework component called CCI,a Con�gurable C Instrumentation tool [5]. CCI is apreprocessor that generates instrumented C output. Itincludes a complete ANSI C compiler front-end and per-forms selective instrumentation by parse tree transfor-mation.Con�gurationThe main problem with an automatic C instrumen-tation tool is code blow-up, and the best solution isto perform static analysis comparable to those used incompiler optimization. In the case of CCI, unoptimizedinstrumentation of all available events results in objectcode that is about 50 times the size of the uninstru-mented code. This size increase is due to in-lining ofevent �lters to avoid context switches, described below.In any case, code blow-up is the reason CCI has a fullcompiler front-end, and the reason for its con�gurationmechanism.In CCI, the granularity and semantic level of in-strumented events are bounded at the low-end by thesource-level C expressions that CCI is able to instru-2

ment based purely on syntax, and at the high-end byone or more con�guration �les . Con�guration directivestell CCI what events to instrument; this compile-timemethod of event selection is complemented by dynamicevent masking, discussed below.More importantly, con�guration directives also pro-vide semantic information about runtime libraries andthe application domain. Semantic information in turnallows for higher-level events, often composed from se-quences of lower-level events. Where it is possible, itis important for performance to analyze the programand compose higher-level events at compile time ratherthan in the monitor at run-time. Con�guration direc-tives for standard libraries may be written once andshared by all target programs and subsequent monitorsthat use a given library. Application-speci�c con�gu-ration directives are speci�ed by the end user in or-der to support application-speci�c monitors. The needto provide higher-level semantically-based informationmotivates the use of a compiler-style preprocessor forinstrumentation instead of an object-�le instrumentor.An example CCI con�guration �le illustrates thedeclarative nature of CCI's con�guration language. Inthis example, assignments to structures (E Assigns) areinstrumented, but only for structures foo and bar, andprocedure calls are instrumented, but only to calls re-lated to the heap. The built-in procedure call event
E Pcall is mapped into new event codes; malloc andcalloc are instrumented to produce E Alc events for ba-sic heap allocation, and realloc is instrumented to pro-duce E Realc events for heap reallocation. Additionaldetails are described in [5].

E Assignsfstruct foo, struct barg
E Pcallfmalloc=E Alc,calloc=E Alc,realloc=E RealcgFiltering and maskingAutomatic comprehensive instrumentation has anegative side-e�ect: even after con�guration, the num-ber of events produced may be far greater than the num-ber actually needed by a given monitor. Conventional�ltering methods in which monitors explicitly discardthe unwanted events they receive provide inadequateperformance in Alamo because each event report in-volves two lightweight context switches. These contextswitches are avoided by discarding unwanted events inthe instrumentation code executed by the target pro-gram.Each event request speci�es the kinds of events de-sired with a set of integer event codes called an eventmask . After a request, the target program's executionproceeds until an event occurs that is a member of therequested set. The event mask may be changed by agiven monitor each time it requests an event, allow-ing it to narrow or broaden its set of desired events asneeded. Event code masking is the primary event se-lection mechanism in both the C and Icon frameworks;event masks are e�ciently implemented using bit vec-tors. Performance requirements for Alamo's C frame-

work motivated additional selective power in the formof value masks , a separate set of values of interest maybe supplied for each event code. For example, proce-dure call events could be restricted to a speci�c group ofprocedures by con�guration at compile-time, but whenmore
exibility is called for the restriction may be dy-namically imposed using a value mask at runtime. Fig-ure 3 shows an event mask and a value mask associatedwith one of the event codes. Value masks are typicallyimplemented using hash tables on addresses or valuesof interest.
00010100110000111110001101100

Target Program

Events Event Mask

Value Mask

Event requests

Execution Monitor

Event reports

(context switch)

Figure 3: The event mask and value masks reduce thenumber of event reports.3 Execution modelTraditional debuggers utilize a separate process, buttwo-process models of monitoring do not o�er the in-expensive control mechanisms required to individuallyprocess \billions and billions" of units of target programbehavior, nor the direct access to a program's memoryregions that is needed to do analysis beyond what isreported by the events. It is in contrast to the classicaltwo-process debugging model that Alamo's architecturecan be considered lightweight.Alamo provides an execution model in which a tar-get program (TP) and the execution monitors (EMs)that observe it are coroutines executing within a singleaddress space. A coroutine is a synchronous thread; in acoroutine execution model scheduling is non-preemptiveand context switches are explicit [3]. Context switcheswithin a single address space are lightweight, but somemonitoring systems discussed in the Related Work sec-tion below o�er an even less expensive alternative,which is to write the monitor code as a set of callbackprocedures.Alamo executes monitors as coroutines instead ofcallback procedures in order to make monitors easier towrite. Using a separate thread gives monitors their own\main" procedure and locus of control, and synchronousexecution ensures that the program being monitoreddoes not change state out from under the monitor whileit is being examined. The goal of the model is to makemonitor writing no more di�cult than applications pro-gramming.For trivial monitors that just count events or write3

them to a log�le, callback procedures are more suit-able and may execute one to two orders of magnitudefaster than an Alamo monitor. Alamo wasn't designedfor event counters, but for monitors that perform morecomplex dynamic analysis tasks while the program isrunning, often with accompanying visualizations. Forsuch monitors, the cost of the execution model is modestand the ease of programming a�orded by the coroutinemodel enables more complex tasks to be attempted.The coroutine execution model employed in Alamowas implemented identically for the C and Icon frame-works. Alamo's user-level coroutine switch is a smallpiece of assembler code that has been ported to manyprocessors and operating systems. It was borrowed fromexisting code in Icon's implementation [4].Monitor coordinationAlamo supports the development of multiple, spe-cialized, user-level monitors that operate independentlyand may be mixed and matched as needed. The valueof this type of microkernel architecture has been estab-lished in operating systems such as Mach and WindowsNT. When multiple monitors are present in Alamo,their control and access to the target program is facil-itated by a special execution monitor called a monitorcoordinator (MC).A monitor coordinator takes event requests from allmonitors and activates the target program with theevent mask union of those requests. The coordinatorforwards each event report to those monitors that re-quested that type of event, providing them with the il-lusion that they are directly monitoring the target pro-gram themselves. Figure 4 illustrates typical monitorcoordinator scenarios: (a) no coordinator, (b) coordi-nator forwarding events to a single monitor, and (c)coordination of multiple monitors. Since monitor coor-dinators are Alamo monitors, their implementation isitself open to experimentation; at present our coordina-tors are simple and are tuned to optimize common-caseperformance.
EM TPEM

(c)(b)(a)

EM EM TP

MC

TP

MC

artificial eventevent report event requestFigure 4: Monitor coordinator scenarios.4 AMEThe Alamo Monitor Executive (AME) forms the corecomponent of the C framework. It loads relocatable

ELF objects corresponding to the target program andthe execution monitors, providing each program withthe illusion that they are running in their own executionenvironment. Figure 5 shows the relationship betweenthe AME and CCI within the Alamo C framework.
CCI

ld -rgcc,

AME

support
libraries

runtime

target program
ELF

ELF
execution monitors

 (TP)

(EMs)

a C source file, ... instrumented C file, ...

Figure 5: The Alamo C Framework.Under AME, each program is loaded into its owndata area with code and global data sections. Unlikemost dynamic loaders, AME loads ELF objects withoutlinking their symbols. In addition, employing a customELF code loader (based on code from the Linux ker-nel) allows the Alamo system to provide comprehensiveaccess to the target program.HeapsIn the C framework, loaded programs are providedwith their own heap by means of a modi�ed version ofthe GNU malloc() library. The modi�ed library uses a�xed memory region for each target program and mon-itor, determined when they are loaded. This load-timelimit on the heap size represents a limit of the C frame-work, although heap sizes may be set arbitrarily large.The limit could be removed for C programs that do notdepend on a true sbrk() for contiguous heap expansion.The C framework also supports a mode in which moni-tors and the target program share the standard C heap,without limits but also without the separation that theindependent heaps approach gives. Figure 6 shows theruntime environment provided by AME.Memory protectionMemory protection in the Icon framework is implicit;the language has no pointers and is strongly typed atruntime, so a target program can perform no operationthat violates monitor integrity. In the C framework,errant programs pose a real threat to monitors. Un-der Solaris and many
avors of UNIX, monitors can beprotected from errant target programs using the mpro-
tect() system call. Turning on and o� memory protec-tion each time the target program is entered and exitedsigni�cantly degrades performance since it requires op-erating system intervention at every event request andreport. The performance cost is proportional to the4

code
data

stack

heap

code
data

stack

heap

code
data

stack

heap

code
data

stack

heap. . .

. . .

AME

TP

EM

.

..

. . .

. . .

. . .

. . .

malloc(...)

malloc(...)

malloc(...)

Memory

TP

EMEM

MC

AME

AME heap region

code, data, stack regionGNU malloc,
modified to use

current program heap

malloc

Figure 6: The AME run-time environment.number of events reported; it will be highest for pro-�lers and other monitors that request many events butdo little with them.Because of the performance degradation entailed andthe fact that many monitors are written to work on pro-grams that do not contain memory violations, memoryprotection is optional in the C framework. When a mon-itor requests the memory violation event, E MemViol,the AME performs the necessary system calls to enableprotection when the target program commences execut-ing and then disable protection when an event reportcauses execution to switch back to the monitor. This al-lows a monitor to leave memory protection turned o� inthose portions of the target program where it is consid-ered well-behaved, and then turn on memory protectionwhen it reaches a stage in which the target program'smemory references are not reliable.5 Target program accessIn addition to the information in events themselves,a monitor may inspect target program state using alibrary of access functions. Access functions extendthe capabilities of the Alamo architecture beyond theevent-driven paradigm and give it monitoring capabili-ties closer to those provided by a programmable debug-ger. Monitor writers use access functions for purposessuch as obtaining names of target program variables,and manipulating target program values.Type information is a key component of target pro-gram access for performing operations such as pointerarithmetic and structure �eld references. In the Iconframework, manipulating the target program's valuesor traversing its structures was trivial because type in-formation is available at runtime and the language hasa �xed set of structure types for a monitor to deal with.In the C framework, the type information requiredfor target program access is available only if the tar-get program is compiled with the -g debugging sym-bol option enabled. Debugging symbol information isavailable in stabs sections. A model that bundles tar-get program values with type information into descrip-

tors simpli�es the access functions and the use of thisstabs information. [6] is a complete description of theC framework's target program access library.6 Example monitorsSome example execution monitors below illustrate howAlamo's features are used to perform typical tasks in theC framework. All Alamo monitors are written startingfrom the following template. The monitoring systemis initialized and then the monitor executes the targetprogram in increments controlled by the event reportingmechanism until execution terminates, upon which themonitor may clean up and generate summary reports.The Alamo library routines used are EvInit(), EvGet(),
EvTerm().

#include <alamo.h>
void main(int argc, char **argv)f

/* Initialize execution monitoring */
EvInit(argc, argv);
/* Sets up the initial eventmask for the EM */
mask = EvMask(n, eventcode1,... eventcoden);
while (eventcode = EvGet(mask)) f

/* Process events */g
/* Termination code */
EvTerm();gThis template is omitted from the following exam-ples. In each example, replace the comment \processevents" in the template with the switch statement inthe example.Checking array boundsA common C bug is accessing an array element whichis out of bounds. A monitor that detects this problemis given below. This example demonstrates the capabil-ities of the target program access functions that enablea monitor to inspect additional state information whenit processes an event.The events related to array access include array ref-erencing (E Array) and indexing (E Index). The eventvalue for an array reference event is the memory loca-tion of the array referenced. Variable name and typeinformation is obtained from the EvStab() access func-tion. The event value for an array index event is theinteger subscript used. This example uses a stack ofstructures that consist of a character pointer to storethe array name and a descriptor to store its memorylocation and type information. The stack is requiredbecause several array reference events may occur be-fore the corresponding index events are resolved in thecase of array references within array subscripts, such as

a[a[i]].
switch (eventcode) f

case E Array:
EvStab(eventvalue, &(array stack[level++]));5

break;
case E Index:

elem = EvElem(array stack[��level].desc,
eventvalue);

if (IsNull(elem))
fprintf(stderr, ”index out of bounds:%s[%d]nn”,

array stack[level].name, eventvalue);
break;gVisualizing Tree StructuresThe above example shows that easy forms of mon-itoring are easy in Alamo; visualizing more interest-ing dynamic behavior, such as structural changes andaccess patterns within a program's tree structures il-lustrates the kind of execution monitor Alamo was re-ally designed to support. One such monitor is CTV, aC Tree Visualizer [14]. CTV is implemented in about1200 lines of code.CTV is an Alamo monitor that extracts and visu-alizes tree behavior within C programs. It processesevents, looks for references to values whose types arerecursive, and visualizes the trees it �nds in the tar-get program. CTV converts sequences of low levelevents such as memory references into higher leveltree-manipulation events using a pushdown automatonshown in Figure 7. A sequence of events starting withan E Refp and ending with an E Assignp is convertedinto creation of a new tree node (top cycle) or insertioninto an existing node (bottom cycle).

1
E_Refp

4

E_Assignp

3

2

E_Setp

E_Refs

E_SetpE_Indexs
E_Refs

E_Refa
E_Index

E_Assignp

0

Figure 7: Constructing tree events from lower-levelevents.The higher-level the information provided by instru-mentation, the less work will be required of the monitorwriter. In the case of trees, the work of the pushdownautomaton|detecting appropriate structure types andaccesses|can be moved to compile time by a su�-ciently powerful automatic instrumentation tool, whichwill make tools like CTV easier to implement.The resulting trees detected by CTV are visualizedusing an OpenGL rendering inspired by molecular mod-els. A sample tree of depth 8 is shown in Figure 8. Moresophisticated tree layout algorithms are available that

scale better to very large trees, such as cone trees [15]or hyperbolic trees [16].

Figure 8: A tree constructed with the tree visualizer.7 PerformancePreliminary performance results for the Alamo C frame-work are given in Table 1. The primary performance is-sues are (1) the cost of the instrumentation, consistingof assignments to temporary variables for event valuesand tests of whether to report an event; (2) the cost ofthe context switches between monitors and target pro-gram when events are reported, consisting of registersaves and restores; and (3) the cost of protecting mon-itors from errant target programs, an operating systemcall. Overall performance depends on the extent of theanalysis performed by the monitors. The cost of theframework depends on how well the monitors are ableto focus the reported behavior by means of static con-�guration and dynamic masking.The target programs are laplace.c, and life.c. laplace.capproximates the solution to Laplace's equation at apoint in an annulus via a Monte Carlo method. The so-lution is approximated using 1000 random walks. life.cis Conway's Game of Life; executed for 30 generations.-O -g event coswitch mprotectlaplace.c 0.62 0.68 1.42 137.54 2130.15life.c 0.22 0.26 1.52 143.66 2160.37Table 1: Execution time (in sec) for target programsin �ve di�erent cases.6

The third column of numbers shows the cost ofAlamo's instrumentation and motivates selective (con-�gurable) automatic instrumentation techniques; thetimes given are worst-case scenarios where every eventis instrumented. In that case, the presence of tests todecide whether to report events may impose a slow-down factor of 2-6 even if no events are reported. Thefourth column shows the cost of Alamo's event report-ing mechanism based on lightweight context switches.Two orders of magnitude in execution speed are lost inthese worst-case scenarios where every possible event isreported to a monitor; this motivates event masking,which reduces the number of events that are actuallyreported. The �fth column shows the cost of invokingUNIX memory protection features to protect the execu-tion monitors from the target program. Over an orderof magnitude performance penalty is incurred by thisfeature, when it is needed.8 Related workAlamo can be compared to several existing systems.EEL and OM are object �le instrumentation toolsthat instrument behavior at the instruction level [13][17]. Object-code modi�cation allows monitoring ofprograms even when source code is unavailable, and al-lows monitoring of behavior that Alamo does not evenconsider, such as register usage or instruction schedul-ing, but it is oriented towards building monitors thatdescribe architectural behavior rather than applicationbehavior. The ATOM system, built on top of OM, isa framework provides support for building instruction-level monitors similar to the support that Alamo pro-vides for building higher-level tools [18].The key contrasts between systems such as ATOMand Alamo are: the notation available and seman-tic level of the instrumentation, the performance ofthe event delivery mechanism, and the programmingmodel provided to monitor writers. In ATOM, themonitor writer speci�es instrumentation by writing aprogram that works with abstractions such as basicblocks and machine instructions. In Alamo, the moni-tor writer speci�es instrumentation in a declarative set-based notation, works with abstractions such as theprogram's de�ned types and interfaces, and can re-useinstrumentation for standard libraries to obtain higher-level events for such functions at no cost. The perfor-mance of ATOM is close to optimal, and for comparableevents ATOM's procedure-call execution model shouldrun an order of magnitude faster than Alamo's corou-tine model. Alamo monitors tend to work with fewer,higher-level events than ATOM monitors.The contrast of real note is the programming model.Using ATOM, monitors are written as a series of call-back procedures. Any sort of state maintained be-tween events must be stored in global or static variables.Callback-based programming tends to consist of proce-dures with lots of large switch statements; switches on

the event type, switches on the values being observed,and switches on the implicit state that is maintained be-tween events. In Alamo monitor writing is still a com-plex task, but monitors have their own main() proce-dure, their own locus of control, and their state is main-tained in between events, which they obtain by per-forming an ordinary-looking function call, rather thanby being called.Several other existing monitoring systems are impor-tant and form interesting contrasts with Alamo. IBM'sPV system provides visualization tools with events forprogram behavior at multiple levels of abstraction, in-cluding operating system and hardware levels not con-sidered here [8]. PV provides automatic instrumen-tation of lower-level behavior, but higher-level eventsare hand-instrumented. The UW Illustrating CompilerUWPI is a system that infers higher-level semantic in-formation in the form of abstract data types for vari-ables in programs written in a subset of Pascal; theabstract data types are then used to produce visualiza-tions of data structures [7]. UWPI is not an architecturefor constructing monitors, but an instance of a monitorthat exploits compiler information to improve informa-tion in a manner similar to Alamo.Dalek is a
exible programmable debugging systembased on gdb; it provides an execution model as con-venient as Alamo's, but su�ers in the area of perfor-mance. Its authors point out performance limitationsfor monitoring using the conventional two-process exe-cution models employed by source-level debuggers andmany monitoring frameworks[11]. Dynascope is a sys-tem that employs interprocess communication to allowa program to direct the execution of several programs,possibly on di�erent machines [9] [10]. Because the di-recting server is a separate process it has its own locus ofcontrol, Dynascope must deal with similar performanceand communication issues as Dalek. But Dynascopeuses a hybrid model in which a monitoring function li-brary is embedded into the program being monitored.Dynascope is geared towards monitoring larger-grainedbehavior such as distributed communication for whichit is suited.BEE++ is a C++ monitoring framework in whichprograms are instrumented by hand or by subclassinginstrumented classes, and specialized monitors can bewritten by subclassing more general monitors [12]. Al-though hand-instrumentation is an unattractive prospect,instrumented versions of standard class libraries wouldallow high-level semantic information to be obtainedwithout e�ort for C++ applications that use those classlibraries.9 ConclusionsThe Alamo monitor architecture signi�cantly reducesthe development cost of writing program executionmonitors. The design has been realized by monitorframeworks for two very di�erent programming lan-7

guage implementations. The C framework that hasbeen developed required a substantial systems program-ming e�ort, which can now be avoided by programmersengaged in exploratory development of new kinds ofmonitors such as program visualization tools for C pro-grams. Monitor performance under Alamo is quite at-tractive when the available static and dynamic means ofreducing the number of reported events are employed.The Alamo architecture has inherent limitations.There is no support for real-time or shared-memorymultiprocessor-based parallel applications. Not all ex-ecution monitors can be written using an Alamo-basedframework; those that cannot tolerate intrusion of in-strumentation code require a two-process model such asthat employed by standard source-level debuggers.10 AcknowledgementsRalph Griswold contributed to the development of theIcon framework from which Alamo sprang. RobertShenk and Sandra Dykes read this manuscript andmade numerous useful suggestions.References[1] Bernhard Plattner and Jurg Nievergelt, \Monitor-ing Program Execution: A Survey," IEEE Com-puter, November 1981, pp. 76-93.[2] Clinton L. Je�ery and Ralph E. Griswold, \AFramework for Execution Monitoring in Icon,"Software|Practice and Experience, Vol. 24(11),November 1994, pp. 1025-1049.[3] C.D. Marlin, \Coroutines (Lecture Notes in Com-puter Science 95)", Springer-Verlag, Berlin, 1980.[4] Steven B. Wampler, \The Control Mechanisms forGenerators in Icon", University of Arizona Depart-ment of Computer Science TR 81-18, December1981.[5] Kevin S. Templer and Clinton L. Je�ery \The De-sign of a Con�gurable C Instrumentation Tool",University of Texas at San Antonio Division ofComputer Science TR 96-6, February 1996.[6] Wenyi Zhou and Clinton L. Je�ery, \Target Pro-gram State Access in the Alamo Monitor Frame-work", University of Texas at San Antonio Divisionof Computer Science TR 96-5, February 1996.[7] Robert R. Henry and Kenneth M. Whaley andBruce Forstall, \The University of Washington Il-lustrating Compiler", in Proceedings of the ACMSIGPLAN '90 Conference on Programming Lan-guage Design and Implementation, pp. 223-233.[8] Doug Kimelman and Bryan Rosenburg and TovaRoth, \Strata-Various: Multi-Layer Visualization

of Dynamics in Software System Behavior", in Pro-ceedings of IEEE Visualization '94.[9] R. Sosic, The Dynascope Directing Server: Designand Implementation, USENIX Association, Com-puting Systems, Vol. 8(2), 107-133, 1995.[10] R. Sosic, A Procedural Interface for Program Di-recting, Software Practice and Experience, Vol.25(7), 767-787, July 1995.[11] Ronald A. Olsson and Richard H. Crawford andW. Wilson Ho, \Dalek: A GNU, Improved Pro-grammable Debugger", in Proceedings of theUSENIX Summer '90 Conference, June 1990, pp.221-231.[12] B. Bruegge, T. Gottschalk, and B. Luo, A Frame-work for Dynamic Program Analyzers, OOPSLA'93 Proceedings, Sigplan Notices, 28(10), 65-82,Oct. 1993.[13] J. R. Larus and E. Schnarr, EEL: Machine-Independent Executable Editing, SIGPLAN Con-ference on Programming Language Design and Im-plementation, June, 1995.[14] Michael Chase Brazell and Clinton L. Je�ery, TreeStructure Detection and Visualization, TechnicalReport CS-97-7, Division of Computer Science,University of Texas at San Antonio, August, 1997.
www.cs.utsa.edu/research/alamo/tr97 7/[15] George G. Robertson, Jock D. MacKinlay, and Stu-art K. Card, Cone Trees: Animated 3D Visualiza-tions of Hierarchical Information, Proceedings ofCHI '91, New Orleans, April 1991, pp. 189-194.[16] John Lamping and Ramana Rao, Layout out andVisualizing Large Trees Using a Hyperbolic Space,Proceedings of UIST '94, Marina Del Rey, Novem-ber 1994, pp. 13-14.[17] A. Srivastava and D. W. Wall, A Practical Sys-tem for Intermodule Code Optimization at Link-Time, Journal of Programming Language, 1(1), 1-18, March 1993.[18] A. Srivastava and A. Eustace, ATOM: A Systemfor Building Customized Program Analysis Tools,Proceedings of SIGPLAN '94 Conference on Pro-gramming Language Design and Implementation,196-205, ACM, 1994.

8

