A Lightweight Architecture for
Program Execution Monitoring*

Clinton Jeffery, Wenyi Zhou, Kevin Templer and Michael Brazell
(jeffery|wzhou|ktempler|mbrazell)@cs.utsa.edu
Division of Computer Science, University of Texas at San Antonio

Abstract

The Alamo monitor architecture reduces the difficulty
of developing dynamic analysis tools, such as special-
purpose profilers, bug-detectors, and program visualiz-
ers.

1 Introduction

Dynamic analysis tools are used in several phases of
software development, including coding, testing, and
maintenance [1]. Although conventional debuggers and
profilers are well-suited for finding certain kinds of bugs
and performance bottlenecks, they may be ineffective
when problems arise for which they were not intended.

Improvements in execution monitors have been slow
to appear, primarily due to the high cost of developing
such tools. This motivates the focus of our research: re-
ducing the cost of writing monitors. A monitor frame-
work for the Icon programming language presented one
approach that reduces development costs for a broad
class of execution monitors [2]. That framework pro-
vided monitor writers with solutions for several prob-
lems inherent in the execution monitoring realm, such
as access to and control of another program’s execu-
tion, and efficient techniques for dealing with the large
amount of information to be processed. Because the
framework was developed for an interpreted virtual-
machine language implementation, the applicability of
these results was limited to similar interpretive language
implementations.

The Alamo monitor architecture extends and gener-
alizes the work done for monitoring in the Icon inter-
preter by adapting the execution model and developing
implementation techniques suitable for monitoring com-
piled programs. Alamo stands for A Lightweight Archi-

*This work was supported in part by the National Science Foun-
dation under Grant CCR-9409082.

A revised version of this paper will appear in the 1998
ACM SIGPLAN Workshop on Program Analysis for
Software Tools and Engineering Montreal, Canada, 14
June 1998.

tecture for MOnitoring. The Alamo architecture con-
sists of (1) an automatic instrumentation mechanism,
(2) an execution model, (3) abstractions for event se-
lection, multiplexing and composition, and (4) an ac-
cess library that allows monitors to directly manipulate
target program state. These four components are ap-
plicable to many compiled and interpreted languages.
Figure 1 gives an overview of the Alamo architecture.

Access Library

©
J F550 6

e

A target program (TP) under observation
@ automatic instrumentation

@ event-driven execution control

@ event forwarding
@ execution monitors (EMs)

@ direct access via symbol info

Runtime System

@ direct access viatype info
Stack Globals Heap

Figure 1: The Alamo architecture.

The techniques used to implement Alamo for an in-
terpretive language are fairly easy compared with those
required for a compiled language; the earlier Icon frame-
work, with some refinements to the event selection
mechanism, is an instantiation of the Alamo architec-
ture for a language interpreter. The main emphasis in
Alamo has been development of techniques for monitor-
ing compiled programs. In order to prove the applica-
bility of the Alamo architecture to compiled languages,
an Alamo framework has been developed that reduces
the cost of writing monitors for ANSI C programs.

This paper presents the Alamo architecture and
techniques developed for the monitoring of compiled C
code. The Icon framework has proven to be a useful
testbed for the C framework implementation, as well as
a prototyping environment where monitors can be de-
veloped and tested, prior to their subsequent C imple-

mentation. Together, the Alamo Icon framework and
the Alamo C framework also provide a design and a
collection of implementation techniques that can be ap-
plied to monitoring other languages.

The implementation of the Alamo C monitor frame-
work consists of about 14,000 lines of code, developed
for Sun Sparc workstations running Solaris and the
GNU C compiler. Most of the framework employs user-
level techniques that are applicable to any robust C
compiler. However, the code loader is specific to the
ELF object format, the target program access library
depends on stabs sections in GNU C format, and the
memory protection facilities are provided by a UNIX
mprotect() system call. The system was ported to x86-
based Linux in less than a week, and would be readily
ported to other ELF-based variants of UNIX.

2 Event-driven execution

Alamo is event-driven, as illustrated in Figure 2. Con-
trol switches back and forth between the execution mon-
itors and the target program, transmitting event re-
quests and replies in the form of event reports. Events
are individual units of program behavior. Examples
of typical events include program control flow, mem-
ory references, heap allocations, procedure calls and re-
turns, clock ticks, and I/O operations. An event in-
cludes an integer code describing what is taking place,
and a related target program value. The target program
must be instrumented in order to produce events; this
is a fundamental difference between Alamo and some
kinds of monitors, such as traditional source-level de-
buggers.

Event
H?HHHH O 0
Program Execution Timeline
Event Report
(event code, o
| event value) ' Magnification
} ' of asingle event
| ~ - __-- !
Event Request |
,,,,,,,,,,,,,,,, (ventmas) |
Figure 2: Event-driven execution.
Instrumentation

Instrumenting the target program by hand is not
practical for large programs. Alamo employs automatic
program instrumentation to produce target program
events for monitors. The goal of Alamo’s automatic
instrumentation is to provide information at the seman-
tic level of the source program, rather than the machine
level. Providing monitors with higher-level information
is one way to simplify monitor development.

Alamo’s automatic instrumentation is application

independent and comprehensive. The kinds of events
available are driven by the target language syntax and
semantics, including the semantics of its runtime li-
braries, rather than by any particular target program or
monitor. This allows generic monitors to be written to
observe the behavior of arbitrary programs. Although
higher-level information is available for a variety of ex-
ecution behaviors, monitors can obtain details when
needed, down to the target-language basic blocks, mem-
ory references, and individual operators. The instru-
mentation may be categorized into two kinds: (1) basis
events, derived from the C grammar, are pre-defined
and describe behavior that is directly observable from
the syntax; (2) configured events, derived from the con-
figuration file, represent combinations or special cases
of basis events that are instrumented to report higher-
level behavior.

Automatic instrumentation can be accomplished by
instrumenting the runtime system including library
calls, or by inserting code directly into the source pro-
gram. Instrumenting the runtime system is the simplest
means of supplying monitors with events. It was suit-
able for the Icon framework; Icon programs spend the
majority of their time executing runtime system code
and the events produced from the runtime system have
high-level semantic content due to that language’s built-
in control and data structures, algorithms, and memory
management facilities.

The extent to which the runtime system behavior
forms an adequate abstraction of overall program be-
havior depends on the language level, as well as on the
program itself. Instrumenting the C runtime libraries
might characterize some aspects of some programs’ be-
havior adequately, but does not provide a general so-
lution. In C, the behavior of interest often resides in
the generated code. In the Alamo C framework, in-
strumentation of the target program is performed prior
to compilation by a framework component called CCI,
a Configurable C Instrumentation tool [5]. CCI is a
preprocessor that generates instrumented C output. It
includes a complete ANSI C compiler front-end and per-
forms selective instrumentation by parse tree transfor-
mation.

Configuration

The main problem with an automatic C instrumen-
tation tool is code blow-up, and the best solution is
to perform static analysis comparable to those used in
compiler optimization. In the case of CCI, unoptimized
instrumentation of all available events results in object
code that is about 50 times the size of the uninstru-
mented code. This size increase is due to in-lining of
event filters to avoid context switches, described below.
In any case, code blow-up is the reason CCI has a full
compiler front-end, and the reason for its configuration
mechanism.

In CCI, the granularity and semantic level of in-
strumented events are bounded at the low-end by the
source-level C expressions that CCI is able to instru-

ment based purely on syntax, and at the high-end by
one or more configuration files. Configuration directives
tell CCI what events to instrument; this compile-time
method of event selection is complemented by dynamic
event masking, discussed below.

More importantly, configuration directives also pro-
vide semantic information about runtime libraries and
the application domain. Semantic information in turn
allows for higher-level events, often composed from se-
quences of lower-level events. Where it is possible, it
is important for performance to analyze the program
and compose higher-level events at compile time rather
than in the monitor at run-time. Configuration direc-
tives for standard libraries may be written once and
shared by all target programs and subsequent monitors
that use a given library. Application-specific configu-
ration directives are specified by the end user in or-
der to support application-specific monitors. The need
to provide higher-level semantically-based information
motivates the use of a compiler-style preprocessor for
instrumentation instead of an object-file instrumentor.

An example CCI configuration file illustrates the
declarative nature of CCI’s configuration language. In
this example, assignments to structures (E_Assigns) are
instrumented, but only for structures foo and bar, and
procedure calls are instrumented, but only to calls re-
lated to the heap. The built-in procedure call event
E_Pcall is mapped into new event codes; malloc and
calloc are instrumented to produce E_AlC events for ba-
sic heap allocation, and realloc is instrumented to pro-
duce E_Realc events for heap reallocation. Additional
details are described in [5].

E_Assigns{struct foo, struct bar}

E_Pcall{malloc=E_Alc,calloc=E_Alc,realloc=E_Realc}

Filtering and masking

Automatic comprehensive instrumentation has a
negative side-effect: even after configuration, the num-
ber of events produced may be far greater than the num-
ber actually needed by a given monitor. Conventional
filtering methods in which monitors explicitly discard
the unwanted events they receive provide inadequate
performance in Alamo because each event report in-
volves two lightweight context switches. These context
switches are avoided by discarding unwanted events in
the instrumentation code executed by the target pro-
gram.

Each event request specifies the kinds of events de-
sired with a set of integer event codes called an event
mask. After a request, the target program’s execution
proceeds until an event occurs that is a member of the
requested set. The event mask may be changed by a
given monitor each time it requests an event, allow-
ing it to narrow or broaden its set of desired events as
needed. Event code masking is the primary event se-
lection mechanism in both the C and Icon frameworks;
event masks are efficiently implemented using bit vec-
tors. Performance requirements for Alamo’s C frame-

work motivated additional selective power in the form
of value masks, a separate set of values of interest may
be supplied for each event code. For example, proce-
dure call events could be restricted to a specific group of
procedures by configuration at compile-time, but when
more flexibility is called for the restriction may be dy-
namically imposed using a value mask at runtime. Fig-
ure 3 shows an event mask and a value mask associated
with one of the event codes. Value masks are typically
implemented using hash tables on addresses or values
of interest.

(context switch)

Events Event Mask
Event reports

Target Program Execution Monitor

{00TTOTTOO0TTTTTO000TTO0TOTO00

Event requests

Figure 3: The event mask and value masks reduce the
number of event reports.

3 Execution model

Traditional debuggers utilize a separate process, but
two-process models of monitoring do not offer the in-
expensive control mechanisms required to individually
process “billions and billions” of units of target program
behavior, nor the direct access to a program’s memory
regions that is needed to do analysis beyond what is
reported by the events. It is in contrast to the classical
two-process debugging model that Alamo’s architecture
can be considered lightweight.

Alamo provides an execution model in which a tar-
get program (TP) and the execution monitors (EMs)
that observe it are coroutines executing within a single
address space. A coroutine is a synchronous thread; in a
coroutine execution model scheduling is non-preemptive
and context switches are explicit [3]. Context switches
within a single address space are lightweight, but some
monitoring systems discussed in the Related Work sec-
tion below offer an even less expensive alternative,
which is to write the monitor code as a set of callback
procedures.

Alamo executes monitors as coroutines instead of
callback procedures in order to make monitors easier to
write. Using a separate thread gives monitors their own
“main” procedure and locus of control, and synchronous
execution ensures that the program being monitored
does not change state out from under the monitor while
it is being examined. The goal of the model is to make
monitor writing no more difficult than applications pro-
gramming.

For trivial monitors that just count events or write

them to a logfile, callback procedures are more suit-
able and may execute one to two orders of magnitude
faster than an Alamo monitor. Alamo wasn’t designed
for event counters, but for monitors that perform more
complex dynamic analysis tasks while the program is
running, often with accompanying visualizations. For
such monitors, the cost of the execution model is modest
and the ease of programming afforded by the coroutine
model enables more complex tasks to be attempted.

The coroutine execution model employed in Alamo
was implemented identically for the C and Icon frame-
works. Alamo’s user-level coroutine switch is a small
piece of assembler code that has been ported to many
processors and operating systems. It was borrowed from
existing code in Icon’s implementation [4].

Monitor coordination

Alamo supports the development of multiple, spe-
cialized, user-level monitors that operate independently
and may be mixed and matched as needed. The value
of this type of microkernel architecture has been estab-
lished in operating systems such as Mach and Windows
NT. When multiple monitors are present in Alamo,
their control and access to the target program is facil-
itated by a special execution monitor called a monitor
coordinator (MC).

A monitor coordinator takes event requests from all
monitors and activates the target program with the
event mask union of those requests. The coordinator
forwards each event report to those monitors that re-
quested that type of event, providing them with the il-
lusion that they are directly monitoring the target pro-
gram themselves. Figure 4 illustrates typical monitor
coordinator scenarios: (a) no coordinator, (b) coordi-
nator forwarding events to a single monitor, and (c)
coordination of multiple monitors. Since monitor coor-
dinators are Alamo monitors, their implementation is
itself open to experimentation; at present our coordina-
tors are simple and are tuned to optimize common-case
performance.

@ (b) (©

[————— = event report —= event request - - - »= artificial event}

Figure 4: Monitor coordinator scenarios.

4 AME

The Alamo Monitor Executive (AME) forms the core
component of the C framework. It loads relocatable

ELF objects corresponding to the target program and
the execution monitors, providing each program with
the illusion that they are running in their own execution
environment. Figure 5 shows the relationship between
the AME and CCI within the Alamo C framework.

instrumented C file, ...
gee, Id -r

target program (TP)
ELF
runtime

support execution monitors
libraries ELF (EMg)

Figure 5: The Alamo C Framework.

Under AME, each program is loaded into its own
data area with code and global data sections. Unlike
most dynamic loaders, AME loads ELF objects without
linking their symbols. In addition, employing a custom
ELF code loader (based on code from the Linux ker-
nel) allows the Alamo system to provide comprehensive
access to the target program.

Heaps

In the C framework, loaded programs are provided
with their own heap by means of a modified version of
the GNU malloc() library. The modified library uses a
fixed memory region for each target program and mon-
itor, determined when they are loaded. This load-time
limit on the heap size represents a limit of the C frame-
work, although heap sizes may be set arbitrarily large.
The limit could be removed for C programs that do not
depend on a true sbrk() for contiguous heap expansion.
The C framework also supports a mode in which moni-
tors and the target program share the standard C heap,
without limits but also without the separation that the
independent heaps approach gives. Figure 6 shows the
runtime environment provided by AME.

Memory protection

Memory protection in the Icon framework is implicit;
the language has no pointers and is strongly typed at
runtime, so a target program can perform no operation
that violates monitor integrity. In the C framework,
errant programs pose a real threat to monitors. Un-
der Solaris and many flavors of UNIX, monitors can be
protected from errant target programs using the mpro-
tect() system call. Turning on and off memory protec-
tion each time the target program is entered and exited
significantly degrades performance since it requires op-
erating system intervention at every event request and
report. The performance cost is proportional to the

Memory

AME
AME
code, data, stack region
modified to use
current program heap
TP

mallog(...)
. EM EL\/I
S code™ code
/ _data_
stack stack
heap heap

AME heap region

Figure 6: The AME run-time environment.

I

I

I

I

|

I

: e Me
!) code™ ,“code™|
| /[data_\ [/ data \
I stack stack

| heap heap

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

number of events reported; it will be highest for pro-
filers and other monitors that request many events but
do little with them.

Because of the performance degradation entailed and
the fact that many monitors are written to work on pro-
grams that do not contain memory violations, memory
protection is optional in the C framework. When a mon-
itor requests the memory violation event, E_MemViol,
the AME performs the necessary system calls to enable
protection when the target program commences execut-
ing and then disable protection when an event report
causes execution to switch back to the monitor. This al-
lows a monitor to leave memory protection turned off in
those portions of the target program where it is consid-
ered well-behaved, and then turn on memory protection
when it reaches a stage in which the target program’s
memory references are not reliable.

5 Target program access

In addition to the information in events themselves,
a monitor may inspect target program state using a
library of access functions. Access functions extend
the capabilities of the Alamo architecture beyond the
event-driven paradigm and give it monitoring capabili-
ties closer to those provided by a programmable debug-
ger. Monitor writers use access functions for purposes
such as obtaining names of target program variables,
and manipulating target program values.

Type information is a key component of target pro-
gram access for performing operations such as pointer
arithmetic and structure field references. In the Icon
framework, manipulating the target program’s values
or traversing its structures was trivial because type in-
formation is available at runtime and the language has
a fixed set of structure types for a monitor to deal with.

In the C framework, the type information required
for target program access is available only if the tar-
get program is compiled with the -g debugging sym-
bol option enabled. Debugging symbol information is
available in stabs sections. A model that bundles tar-
get program values with type information into descrip-

tors simplifies the access functions and the use of this
stabs information. [6] is a complete description of the
C framework’s target program access library.

6 Example monitors

Some example execution monitors below illustrate how
Alamo’s features are used to perform typical tasks in the
C framework. All Alamo monitors are written starting
from the following template. The monitoring system
is initialized and then the monitor executes the target
program in increments controlled by the event reporting
mechanism until execution terminates, upon which the
monitor may clean up and generate summary reports.
The Alamo library routines used are Evinit(), EvGet(),
EvTerm().

#include <alamo.h>
void main(int argc, char **argv)

{

/* Initialize execution monitoring */
Evinit(argc, argv);
/* Sets up the initial eventmask for the EM */
mask = EvMask(n, eventcode;,... eventcodey,);
while (eventcode = EvGet(mask)) {

/* Process events */

/* Termination code */
EvTerm();

}

This template is omitted from the following exam-
ples. In each example, replace the comment “process
events” in the template with the switch statement in
the example.

Checking array bounds

A common C bug is accessing an array element which
is out of bounds. A monitor that detects this problem
is given below. This example demonstrates the capabil-
ities of the target program access functions that enable
a monitor to inspect additional state information when
it processes an event.

The events related to array access include array ref-
erencing (E_Array) and indexing (E_Index). The event
value for an array reference event is the memory loca-
tion of the array referenced. Variable name and type
information is obtained from the EvStab() access func-
tion. The event value for an array index event is the
integer subscript used. This example uses a stack of
structures that consist of a character pointer to store
the array name and a descriptor to store its memory
location and type information. The stack is required
because several array reference events may occur be-
fore the corresponding index events are resolved in the
case of array references within array subscripts, such as

ala[i]].

switch (eventcode) {
case E_Array:
EvStab(eventvalue, &(array_stack[level++]));

break;
case E_Index:
elem = EvElem(array_stack[— —level].desc,
eventvalue);
if (IsNull(elem))
fprintf(stderr, "index out of bounds:%s[%d]\n”,
array_stack[level].name, eventvalue);

break;

Visualizing Tree Structures

The above example shows that easy forms of mon-
itoring are easy in Alamo; visualizing more interest-
ing dynamic behavior, such as structural changes and
access patterns within a program’s tree structures il-
lustrates the kind of execution monitor Alamo was re-
ally designed to support. One such monitor is CTV, a
C Tree Visualizer [14]. CTV is implemented in about
1200 lines of code.

CTV is an Alamo monitor that extracts and visu-
alizes tree behavior within C programs. It processes
events, looks for references to values whose types are
recursive, and visualizes the trees it finds in the tar-
get program. CTV converts sequences of low level
events such as memory references into higher level
tree-manipulation events using a pushdown automaton
shown in Figure 7. A sequence of events starting with
an E_Refp and ending with an E_Assignp is converted
into creation of a new tree node (top cycle) or insertion
into an existing node (bottom cycle).

E_Assignp

E_Indexs
E_Refa
E_Index

E_Assignp

Figure 7: Constructing tree events from lower-level
events.

The higher-level the information provided by instru-
mentation, the less work will be required of the monitor
writer. In the case of trees, the work of the pushdown
automaton—detecting appropriate structure types and
accesses—can be moved to compile time by a suffi-
ciently powerful automatic instrumentation tool, which
will make tools like CTV easier to implement.

The resulting trees detected by CTV are visualized
using an OpenGL rendering inspired by molecular mod-
els. A sample tree of depth 8 is shown in Figure 8. More
sophisticated tree layout algorithms are available that

scale better to very large trees, such as cone trees [15]
or hyperbolic trees [16].

'ﬂ Alamo C Tree ¥Yisualizer

=

Figure 8: A tree constructed with the tree visualizer.

7 Performance

Preliminary performance results for the Alamo C frame-
work are given in Table 1. The primary performance is-
sues are (1) the cost of the instrumentation, consisting
of assignments to temporary variables for event values
and tests of whether to report an event; (2) the cost of
the context switches between monitors and target pro-
gram when events are reported, consisting of register
saves and restores; and (3) the cost of protecting mon-
itors from errant target programs, an operating system
call. Overall performance depends on the extent of the
analysis performed by the monitors. The cost of the
framework depends on how well the monitors are able
to focus the reported behavior by means of static con-
figuration and dynamic masking.

The target programs are laplace.c, and life.c. laplace.c
approximates the solution to Laplace’s equation at a
point in an annulus via a Monte Carlo method. The so-
lution is approximated using 1000 random walks. life.c
is Conway’s Game of Life; executed for 30 generations.

-0 -g | event | coswitch | mprotect
laplace.c | 0.62 | 0.68 | 1.42 137.54 2130.15
life.c 0.22] 0.26 | 1.52 143.66 2160.37

Table 1: Execution time (in sec) for target programs
in five different cases.

The third column of numbers shows the cost of
Alamo’s instrumentation and motivates selective (con-
figurable) automatic instrumentation techniques; the
times given are worst-case scenarios where every event
is instrumented. In that case, the presence of tests to
decide whether to report events may impose a slow-
down factor of 2-6 even if no events are reported. The
fourth column shows the cost of Alamo’s event report-
ing mechanism based on lightweight context switches.
Two orders of magnitude in execution speed are lost in
these worst-case scenarios where every possible event is
reported to a monitor; this motivates event masking,
which reduces the number of events that are actually
reported. The fifth column shows the cost of invoking
UNIX memory protection features to protect the execu-
tion monitors from the target program. Over an order
of magnitude performance penalty is incurred by this
feature, when it is needed.

8 Related work

Alamo can be compared to several existing systems.
EEL and OM are object file instrumentation tools
that instrument behavior at the instruction level [13]
[17]. Object-code modification allows monitoring of
programs even when source code is unavailable, and al-
lows monitoring of behavior that Alamo does not even
consider, such as register usage or instruction schedul-
ing, but it is oriented towards building monitors that
describe architectural behavior rather than application
behavior. The ATOM system, built on top of OM, is
a framework provides support for building instruction-
level monitors similar to the support that Alamo pro-
vides for building higher-level tools [18].

The key contrasts between systems such as ATOM
and Alamo are: the notation available and seman-
tic level of the instrumentation, the performance of
the event delivery mechanism, and the programming
model provided to monitor writers. In ATOM, the
monitor writer specifies instrumentation by writing a
program that works with abstractions such as basic
blocks and machine instructions. In Alamo, the moni-
tor writer specifies instrumentation in a declarative set-
based notation, works with abstractions such as the
program’s defined types and interfaces, and can re-use
instrumentation for standard libraries to obtain higher-
level events for such functions at no cost. The perfor-
mance of ATOM is close to optimal, and for comparable
events ATOM’s procedure-call execution model should
run an order of magnitude faster than Alamo’s corou-
tine model. Alamo monitors tend to work with fewer,
higher-level events than ATOM monitors.

The contrast of real note is the programming model.
Using ATOM, monitors are written as a series of call-
back procedures. Any sort of state maintained be-
tween events must be stored in global or static variables.
Callback-based programming tends to consist of proce-
dures with lots of large switch statements; switches on

the event type, switches on the values being observed,
and switches on the implicit state that is maintained be-
tween events. In Alamo monitor writing is still a com-
plex task, but monitors have their own main() proce-
dure, their own locus of control, and their state is main-
tained in between events, which they obtain by per-
forming an ordinary-looking function call, rather than
by being called.

Several other existing monitoring systems are impor-
tant and form interesting contrasts with Alamo. IBM’s
PV system provides visualization tools with events for
program behavior at multiple levels of abstraction, in-
cluding operating system and hardware levels not con-
sidered here [8]. PV provides automatic instrumen-
tation of lower-level behavior, but higher-level events
are hand-instrumented. The UW Illustrating Compiler
UWPI is a system that infers higher-level semantic in-
formation in the form of abstract data types for vari-
ables in programs written in a subset of Pascal; the
abstract data types are then used to produce visualiza-
tions of data structures [7]. UWPI is not an architecture
for constructing monitors, but an instance of a monitor
that exploits compiler information to improve informa-
tion in a manner similar to Alamo.

Dalek is a flexible programmable debugging system
based on gdb; it provides an execution model as con-
venient as Alamo’s, but suffers in the area of perfor-
mance. Its authors point out performance limitations
for monitoring using the conventional two-process exe-
cution models employed by source-level debuggers and
many monitoring frameworks[11]. Dynascope is a sys-
tem that employs interprocess communication to allow
a program to direct the execution of several programs,
possibly on different machines [9] [10]. Because the di-
recting server is a separate process it has its own locus of
control, Dynascope must deal with similar performance
and communication issues as Dalek. But Dynascope
uses a hybrid model in which a monitoring function li-
brary is embedded into the program being monitored.
Dynascope is geared towards monitoring larger-grained
behavior such as distributed communication for which
it is suited.

BEE++ is a C++ monitoring framework in which
programs are instrumented by hand or by subclassing
instrumented classes, and specialized monitors can be
written by subclassing more general monitors [12]. Al-
though hand-instrumentation is an unattractive prospect,
instrumented versions of standard class libraries would
allow high-level semantic information to be obtained
without effort for C++ applications that use those class
libraries.

9 Conclusions

The Alamo monitor architecture significantly reduces
the development cost of writing program execution
monitors. The design has been realized by monitor
frameworks for two very different programming lan-

guage implementations. The C framework that has
been developed required a substantial systems program-
ming effort, which can now be avoided by programmers
engaged in exploratory development of new kinds of
monitors such as program visualization tools for C pro-
grams. Monitor performance under Alamo is quite at-
tractive when the available static and dynamic means of
reducing the number of reported events are employed.
The Alamo architecture has inherent limitations.
There is no support for real-time or shared-memory
multiprocessor-based parallel applications. Not all ex-
ecution monitors can be written using an Alamo-based
framework; those that cannot tolerate intrusion of in-
strumentation code require a two-process model such as
that employed by standard source-level debuggers.

10 Acknowledgements

Ralph Griswold contributed to the development of the
Icon framework from which Alamo sprang. Robert
Shenk and Sandra Dykes read this manuscript and
made numerous useful suggestions.

References

[1] Bernhard Plattner and Jurg Nievergelt, “Monitor-
ing Program Execution: A Survey,” IEEE Com-
puter, November 1981, pp. 76-93.

[2] Clinton L. Jeffery and Ralph E. Griswold, “A
Framework for Execution Monitoring in Icon,”
Software—Practice and Experience, Vol. 24(11),
November 1994, pp. 1025-1049.

[3] C.D. Marlin, “Coroutines (Lecture Notes in Com-
puter Science 95)”, Springer-Verlag, Berlin, 1980.

[4] Steven B. Wampler, “The Control Mechanisms for
Generators in Icon”, University of Arizona Depart-
ment of Computer Science TR 81-18, December
1981.

[5] Kevin S. Templer and Clinton L. Jeffery “The De-
sign of a Configurable C Instrumentation Tool”,
University of Texas at San Antonio Division of
Computer Science TR 96-6, February 1996.

[6] Wenyi Zhou and Clinton L. Jeffery, “Target Pro-
gram State Access in the Alamo Monitor Frame-
work”, University of Texas at San Antonio Division
of Computer Science TR 96-5, February 1996.

[7] Robert R. Henry and Kenneth M. Whaley and
Bruce Forstall, “The University of Washington I1-
lustrating Compiler”, in Proceedings of the ACM
SIGPLAN ’90 Conference on Programming Lan-
guage Design and Implementation, pp. 223-233.

[8] Doug Kimelman and Bryan Rosenburg and Tova
Roth, “Strata-Various: Multi-Layer Visualization

of Dynamics in Software System Behavior”, in Pro-
ceedings of IEEE Visualization "94.

[9] R. Sosic, The Dynascope Directing Server: Design
and Implementation, USENIX Association, Com-
puting Systems, Vol. 8(2), 107-133, 1995.

[10] R. Sosic, A Procedural Interface for Program Di-
recting, Software Practice and FEzperience, Vol.
25(7), 767-787, July 1995.

[11] Ronald A. Olsson and Richard H. Crawford and
W. Wilson Ho, “Dalek: A GNU, Improved Pro-
grammable Debugger”, in Proceedings of the
USENIX Summer '90 Conference, June 1990, pp.
221-231.

[12] B. Bruegge, T. Gottschalk, and B. Luo, A Frame-
work for Dynamic Program Analyzers, OOPSLA
93 Proceedings, Sigplan Notices, 28(10), 65-82,
Oct. 1993.

[13] J. R. Larus and E. Schnarr, EEL: Machine-
Independent Executable Editing, SIGPLAN Con-
ference on Programming Language Design and Im-
plementation, June, 1995.

[14] Michael Chase Brazell and Clinton L. Jeffery, Tree
Structure Detection and Visualization, Technical
Report CS-97-7, Division of Computer Science,
University of Texas at San Antonio, August, 1997.
www.cs.utsa.edu/research/alamo/tr97_7/

[15] George G. Robertson, Jock D. MacKinlay, and Stu-
art K. Card, Cone Trees: Animated 3D Visualiza-
tions of Hierarchical Information, Proceedings of
CHI 91, New Orleans, April 1991, pp. 189-194.

[16] John Lamping and Ramana Rao, Layout out and
Visualizing Large Trees Using a Hyperbolic Space,
Proceedings of UIST ’94, Marina Del Rey, Novem-
ber 1994, pp. 13-14.

[17] A. Srivastava and D. W. Wall, A Practical Sys-
tem for Intermodule Code Optimization at Link-
Time, Journal of Programming Language, 1(1), 1-
18, March 1993.

[18] A. Srivastava and A. Eustace, ATOM: A System
for Building Customized Program Analysis Tools,
Proceedings of SIGPLAN 9 Conference on Pro-
gramming Language Design and Implementation,
196-205, ACM, 1994.

