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With exascale multicores, the question of how to efficiently support a shared 

memory model is of paramount importance. As programmers demand the 

convenience of coherent shared memory, ever-growing core counts place higher 

demands on memory subsystems, and increasing on-chip distances mean that 

interconnect delays exert a significant effect on memory access latencies. 

Over the past decade, heat dissipation limits have halted the drive toward ever-

higher core frequencies, but transistor density continues to grow, 1 and CPUs with 

eight or more cores are now common in the commodity- and server-class 

general-purpose processor markets. 2 To improve performance further and use 

available transistors more efficiently, architects are resorting to medium- and 

large-scale multicore processors, both in academia—Raw, 3 TRIPS, 4 and the 

Execution Migration Machine, 5 for example—and in industry—Tilera, 6 ,7 Intel 

TeraFLOPS, 8 and Intel Phi. 9 Pundits predict 1,000 or more cores within only a 

few years. 10 

How will these massively multicore chips be programmed? A shared memory 

abstraction stands out as a sine qua non for general-purpose programming. 

Although architectures with restricted memory models, most notably GPUs, are 

extremely successful in specific applications such as rendering graphics, most 

programmers prefer a shared memory model, 11 and commercial general-purpose 

multicores support this abstraction in hardware. The main question, then, is how 

to efficiently provide coherent shared memory on the scale of hundreds—or 

thousands—of cores. 



These cores will typically contain per-core L1 and L2 caches because cache power 

requirements grow quadratically with size; therefore, the only practical option for 

implementing a large cache is to physically distribute it on the chip so that every 

core is near some portion of the cache. 7 , 9 

For programmability, these cores should present a unified addressing space, and, 

for efficiency, this space must be managed automatically at the hardware level. 

Cache coherence must be maintained at the L1 caches (and at L2 in case of 

private L2 caches) to support shared memory. Snooping cache coherence 

protocols, popular at small (such as four) core counts, are not viable in many-core 

architectures due to serialization overheads. Another difficulty arises from the 

fact that conventional bus-and-crossbar interconnects no longer scale due to 

bandwidth or area limitations. Many-core chip multiprocessors (CMPs), instead, 

tend toward a tiled architecture—where arrays of tiles are connected over a point-

to-point on-chip interconnect. 

On scales in which bus-based mechanisms fail, the traditional solution for 

hardware-shared memory is directory-based cache coherence, where a logically 

central directory coordinates sharing among the per-core caches, and each core 

cache must negotiate shared (read-only) or exclusive (read/write) access to each 

cache line via a coherence protocol. However, the use of directories poses its own 

challenges. Coherence traffic can be significant, which increases interconnect 

delay, congestion, and power usage. Additionally, the performance of 

applications can suffer due to long latency between directories and requestors, 

especially for shared read/write data; directory sizes must equal a significant 

portion of the combined size of the per-core caches, or else directory evictions 

will limit performance. 12 

In this special issue, the first two articles address these directory-related 

challenges and provide novel techniques for improving power and performance 

of directory-based coherence. 

In “The Impact of Dynamic Directories on Multicore Interconnects,” Matthew 

Schuchhardt and his colleagues recognize that a large fraction of on-chip traffic 



originates not from actual data transfers, but from intercore communication to 

maintain data coherence. They describe how placing directories near the data 

sharers eliminates a large fraction of on-chip interconnect traversals. 

In “An Application-Tailored Approach to Hardware Cache Coherence,” Arrvindh 

Shriraman, Hongzhou Zhao, and Sandhya Dwarkadas propose tailoring 

coherence support to applications in many-core processors. They present a 

technique that reduces directory storage requirements by recognizing sharing 

patterns. Additionally, they present a protocol-level technique to exploit the 

spatial access granularity of an application and thereby avoid communication of 

unnecessary data. 

In the third article, “Single-Cycle Multihop Asynchronous Repeated Traversal: A 

SMART Future for Reconfigurable On-Chip Networks,” Tushar Krishna and his 

colleagues directly address the latency issue of the on-chip interconnect. The 

SMART (single-cycle multihop asynchronous repeated traversal) on-chip 

network presents a single-cycle path all the way from the source to the 

destination, irrespective of the physical number of hops between them. SMART 

potentially reduces the latency of coherence traffic significantly. 

The fourth article, “Toward Holistic Soft-Error-Resilient Shared-Memory 

Multicores” by Qingchuan Shi and Omer Khan, presents an error-resilient 

shared-memory multicore architecture. Their distributed redundancy control 

mechanism operates in concert with the coherence protocol to enable a 

deterministic rolled program state for redundant execution at per-core 

granularity. Additionally, Shi and Khan combine their technique with a resilient 

cache coherence protocol to trade off performance and energy for soft-error 

coverage. 13 

There are, of course, other challenges in the design and implementation of many-

core systems in addition to hardware shared memory—off-chip bandwidth 

requirements and on-chip power budgets, to name two. Enabling many-core 

shared memory will go a long way toward easing programmer burden, so the 



focus can be on application optimization to reduce bandwidth and energy 

requirements. 
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