
Introduction to Qt 1

A Brief Introduction to Qt

Bruce Bolden

March 25, 2009

Introduction to Qt 2

What is Qt1?

A platform independent (cross-platform) graphics library for the
development of applications with/without UIs (user interfaces).

Features

• Intuitive C++ class library

• Portability across desktop and embedded operating systems

• Look and Feel of the native OS

• Integrated development tools with cross-platform IDE

• High runtime performance and small footprint on embed-
ded systems

Note: Qt is pronounced cute by Europeans.

1Qt is pronounced cute by Europeans.

Introduction to Qt 3

Some frequently Used Acronyms

API Application Program Interface
GUI Graphical User Interface
IDE Integrated Development Environment
KDE K Desktop Environment
LGPL GNU Lesser General Public License
RTTI Run Time Type Identification
SDK Software Development Toolkit

KDE details: http://www.kde.org/

http://www.kde.org/

Introduction to Qt 4

Why Qt?

• Not Java

• Platform independent (cross-platform)

• Large C++-based library

• The choice for KDE development

• Easy transition to OpenGL

Introduction to Qt 5

Qt History

• Trolltech was founded in 1994

• Nokia acquired Trolltech ASA, in June 2008

• Active development!

– 4.5 released March 3, 2009

– 4.2 released August 24, 2006

This is Qt 4.5: http://www.youtube.com/watch?v=8xRfNsY53GY

http://www.youtube.com/watch?v=8xRfNsY53GY

Introduction to Qt 6

Qt History—Details

Nokia acquired Trolltech ASA, in June 2008, to enable the ac-
celeration of their cross-platform software strategy for mobile
devices and desktop applications, and to develop its Internet
services business. On September 29, 2008 Nokia renamed Troll-
tech to Qt Software.2

Trolltech was founded in 1994. The core team of designers at
Trolltech started developing Qt in 1992, and the first commercial
version of Qt was released in 1995. Since then, Trolltech has
experienced rapid growth, and Qt is currently used in thousands
of successful commercial software development projects world
wide. At Trolltech, we continuously work to improve and expand
Qt to ensure that it always represents the state of the art in
usability, look and feel, performance, and stability.3

2http://www.qtsoftware.com/about
3http://doc.trolltech.com/4.0/trolltech.html

http://www.qtsoftware.com/about
http://doc.trolltech.com/4.0/trolltech.html

Introduction to Qt 7

Qt Information

Main Qt Site

http://www.qtsoftware.com

Qt In Use

http://www.qtsoftware.com/qt-in-use

Qt Documentation

http://doc.trolltech.com/

http://doc.trolltech.com/4.5/index.html

http://doc.trolltech.com/4.2/index.html

Designing Qt-Style C++ APIs

http://doc.trolltech.com/qq/qq13-apis.html

http://www.qtsoftware.com
http://www.qtsoftware.com/qt-in-use
http://doc.trolltech.com/
http://doc.trolltech.com/4.5/index.html
http://doc.trolltech.com/4.2/index.html
http://doc.trolltech.com/qq/qq13-apis.html

Introduction to Qt 8

Qt Development Tools

• Qt Creator: Cross-Platform Qt IDE

• GUI Designer

• qmake

Introduction to Qt 9

Qt Books

• C++ GUI Programming with Qt4 2e
http://www.amazon.com/C-GUI-Programming-with-Qt4/

dp/B0013TX6YE/

• The Book of Qt 4 - The Art of Building Qt Applications
http://www.amazon.com/Book-Qt-Art-Building-Applications/

dp/1593271476

• An Introduction to Design Patterns in C++ with Qt 4
http://www.amazon.com/Introduction-Design-Patterns-Perens-Source/

dp/0131879057

• Foundations of Qt Development
http://www.amazon.com/Foundations-Development-Experts-Voice-Source/

dp/1590598318

• Rapid GUI Programming with Python and Qt (2007)
http://www.amazon.com/Programming-Python-Prentice-Software-Development/

dp/0132354187

• Rapid GUI Development with QtRuby (2005)
http://www.pragprog.com/titles/ctrubyqt/rapid-gui-development-with-qtruby

• KDE Programming Bible (KDE 2, 2000)
http://www.amazon.com/KDE-Programming-Bible-Arthur-Griffith/

dp/0764546821

http://www.amazon.com/C-GUI-Programming-with-Qt4/dp/B0013TX6YE/
http://www.amazon.com/C-GUI-Programming-with-Qt4/dp/B0013TX6YE/
http://www.amazon.com/Book-Qt-Art-Building-Applications/dp/1593271476
http://www.amazon.com/Book-Qt-Art-Building-Applications/dp/1593271476
http://www.amazon.com/Introduction-Design-Patterns-Perens-Source/dp/0131879057
http://www.amazon.com/Introduction-Design-Patterns-Perens-Source/dp/0131879057
http://www.amazon.com/Foundations-Development-Experts-Voice-Source/dp/1590598318
http://www.amazon.com/Foundations-Development-Experts-Voice-Source/dp/1590598318
http://www.amazon.com/Programming-Python-Prentice-Software-Development/dp/0132354187
http://www.amazon.com/Programming-Python-Prentice-Software-Development/dp/0132354187
http://www.pragprog.com/titles/ctrubyqt/rapid-gui-development-with-qtruby
http://www.amazon.com/KDE-Programming-Bible-Arthur-Griffith/dp/0764546821
http://www.amazon.com/KDE-Programming-Bible-Arthur-Griffith/dp/0764546821

Introduction to Qt 10

Platform Support for Qt

• Windows

• Mac OS X

• Linux/X11 (KDE)

• Windows CE

• Embedded Linux

• Target over 80 million devices with Qt for S60 (coming mid-
2009)
http://wiki.forum.nokia.com/index.php/Category:Qt_

for_S60

• Create innovative applications for the Maemo4 platform
with Qt for Linux/X11
http://wiki.forum.nokia.com/index.php/Category:Maemo

4Maemo is a computer architecture platform built on desktop open source components.
It is aimed at enabling applications and innovative technology for mobile handheld devices.
http://www.qtsoftware.com/products/platform

http://wiki.forum.nokia.com/index.php/Category:Qt_for_S60
http://wiki.forum.nokia.com/index.php/Category:Qt_for_S60
http://wiki.forum.nokia.com/index.php/Category:Maemo
http://www.qtsoftware.com/products/platform

Introduction to Qt 11

Qt Videos

• KDE windows with Qt 4.5 (2:21)
http://www.youtube.com/watch?v=IPVd2fnUrQU

• Qt Animation Framework (0:17)
http://www.youtube.com/watch?v=00a7eSJvWEw

• John Conways “Game of Life” in Qt 4 (0:29)
http://www.youtube.com/watch?v=nZwwX-Eo_aM

• Qt Widgets enter the third dimension: WolfenQt (4:10)
http://www.youtube.com/watch?v=MXS3xKV-UM0

• Qt Creator - 01 An Introduction (1:35)
http://www.youtube.com/watch?v=U7yje3D1UM4

• OpenGL test with Qt4 (5:26)
http://www.youtube.com/watch?v=5A0_IW08Qq8

• OpenGL test with Qt4 v2 (4:34)
http://www.youtube.com/watch?v=mZ6vvZcvUGI

http://www.youtube.com/watch?v=IPVd2fnUrQU
http://www.youtube.com/watch?v=00a7eSJvWEw
http://www.youtube.com/watch?v=nZwwX-Eo_aM
http://www.youtube.com/watch?v=MXS3xKV-UM0
http://www.youtube.com/watch?v=U7yje3D1UM4
http://www.youtube.com/watch?v=5A0_IW08Qq8
http://www.youtube.com/watch?v=mZ6vvZcvUGI

Introduction to Qt 12

More Qt Videos

• Qt 4.5: The Cocoa Port (1:49)
http://www.youtube.com/watch?v=tWIq1YFRyqE

• Qt for Mac on Cocoa in Plain English (8:42)
http://www.youtube.com/watch?v=B-SKcIFA7z0

• GTK vs. Qt (7:17)
http://www.youtube.com/watch?v=MXS3xKV-UM0

• CGAL: The Open Source Computational Geometry Algo-
rithms Library (54:59)
http://www.youtube.com/watch?v=3DLfkWWw_Tg

http://www.youtube.com/watch?v=tWIq1YFRyqE
http://www.youtube.com/watch?v=B-SKcIFA7z0
http://www.youtube.com/watch?v=MXS3xKV-UM0
http://www.youtube.com/watch?v=3DLfkWWw_Tg

Introduction to Qt 13

Language Support for Qt

• Python

• Ada

• Pascal

• Perl

• PHP

• Ruby

• Java (Qt Jambi)

Note: Qt Jambi — a port of Qt to the Java programming
language — has been discontinued in order to focus resources
on the Qt cross platform application and UI framework. Qt
Jambi will be maintained for one year after the March 2009
release of Qt Jambi 4.5.0 01, and will be made available upon
release under the LGPL license.5

5http://www.qtsoftware.com/products/programming-language-support

http://www.qtsoftware.com/products/programming-language-support

Introduction to Qt 14

Building a Qt project

The following steps can be used to build a Qt application from
the command line:

• Generate a Qt project file: qmake -project

Looks at all the files *and* subdirectories to generate a
project file that is used to generate a makefile for the project.
The name of the project file is the directory name.

Note: Hiding files (backups) in subdirectories doesn’t seem
to work, since qmake finds the files and adds them to the
make file. Changing the name or compressing the files may
hide them.

• Generate a makefile: qmake proj.pro

• Build application (executable): make

• Run/execute: open Proj.app

Runs the final executable. Proper bundles are created in
version 4.x.

Introduction to Qt 15

Building MinDraw

Looking at the initial contents of the MinDraw directory before
creating the project file.

drawarea.cpp drawarea.h main.cpp

mainwindow.cpp mainwindow.h

Introduction to Qt 16

Project File Creation

Create the project file using the command qmake -project

After creating the project file, MinDraw.pro is generated:

MinDraw.pro drawarea.h mainwindow.cpp

drawarea.cpp main.cpp mainwindow.h

Note that the project name is the directory with the file suffix
pro.

Introduction to Qt 17

Make File Creation

Create the makefile using the command qmake MinDraw.pro.

After creating the makefile, we see:

Makefile drawarea.cpp main.cpp mainwindow.h

MinDraw.pro drawarea.h mainwindow.cpp

Introduction to Qt 18

Application Creation

After running the makefile/or using QtCreator to build the ap-
plication:

Makefile drawarea.o mainwindow.o

MinDraw.app main.cpp moc_drawarea.cpp

MinDraw.pro main.o moc_drawarea.o

drawarea.cpp mainwindow.cpp moc_mainwindow.cpp

drawarea.h mainwindow.h moc_mainwindow.o

Note: The file names starting with moc . These are generated
by Qt’s meta object tool moc, the Meta-Object Compiler.

Introduction to Qt 19

Some Qt Internals

• QObject

• Meta-Object System

• Signals and Slots

• QPainter

• namespace Qt

Introduction to Qt 20

QObject

The QObject class is the base class of all Qt objects.

#include <QObject>

Note that the Q OBJECT macro is mandatory for any object that
implements signals, slots or properties. You also need to run
moc (the Meta Object Compiler) on the source file. The use
of the Q OBJECT macro is strongly recommend in all subclasses
of QObject regardless of whether or not they actually use sig-
nals, slots and properties, since failure to do so may lead certain
functions to exhibit strange behavior.

Q OBJECT location

The Q OBJECT macro must appear in the private section of a
class definition that declares its own signals and slots or that
uses other services provided by Qt’s meta-object system.

Introduction to Qt 21

Meta-Object System

Qt’s Meta-Object System provides the signals and slots mecha-
nism for inter-object communication, run-time type information,
and the dynamic property system.

The Meta-Object System is based on three things:

1. The QObject class provides a base class for objects that
can take advantage of the meta-object system.

2. The Q OBJECT macro inside the private section of the class
declaration is used to enable meta-object features, such as
dynamic properties, signals, and slots.

3. The Meta-Object Compiler (moc) supplies each QObject

subclass with the necessary code to implement meta-object
features. The moc tool reads a C++ source file. If it finds
one or more class declarations that contain the Q OBJECT

macro, it produces another C++ source file which contains
the meta-object code for each of those classes. This gener-
ated source file is either #include’d into the class’s source
file or, more usually, compiled and linked with the class’s
implementation.

Introduction to Qt 22

Additional Meta-object Features

In addition to providing the signals and slots mechanism for
communication between objects (the main reason for introduc-
ing the system), the meta-object code provides the following
additional features:

• QObject::metaObject() returns the associated meta-object
for the class.

• QMetaObject::className() returns the class name as a
string at run-time, without requiring native run-time type
information (RTTI) support through the C++ compiler.

• QObject::inherits() function returns whether an object
is an instance of a class that inherits a specified class within
the QObject inheritance tree.

• QObject::tr() and QObject::trUtf8() translate strings
for internationalization.

• QObject::setProperty() and QObject::property() dy-
namically set and get properties by name.

Introduction to Qt 23

Dynamic Casts

It is also possible to perform dynamic casts using qobject cast()

on QObject classes. The qobject cast() function behaves sim-
ilarly to the standard C++ dynamic cast(), with the advan-
tages that it doesn’t require RTTI support and it works across
dynamic library boundaries. It attempts to cast its argument
to the pointer type specified in angle-brackets, returning a non-
zero pointer if the object is of the correct type (determined at
run-time), or 0 if the object’s type is incompatible.

Introduction to Qt 24

Signals and Slots

Signals and slots are used for communication between objects.
The signals and slots mechanism is a central feature of Qt and
probably the part that differs most from the features provided
by other frameworks.

Note: Signals in Qt are not signals in Unix-like operating
systems.

Introduction to Qt 25

The QPainter Class

#include <QPainter>

The QPainter class performs low-level painting on widgets and
other paint devices.

The painter provides highly optimized functions to do most of
the drawing GUI programs require. QPainter can draw every-
thing from simple lines to complex shapes like pies and chords.
It can also draw aligned text and pixmaps. Normally, it draws
in a “natural” coordinate system, but it can also do view and
world transformation.

The typical use of a painter (object):

1. Construct a painter.

2. Set a pen, a brush etc.

3. Draw.

4. Destroy the painter.

Introduction to Qt 26

A common use of QPainter is inside a widget’s paint event.
Here’s one simple example:

void DrawArea::paintEvent(QPaintEvent * /* event */)

{

QPainter painter(this);

painter.setPen(Qt::red);

painter.drawLine (50, 50, 350, 350);

painter.drawLine (50, 350, 350, 50);

painter.setPen(Qt::green);

painter.drawText(200, 200, "The Center");

}

Introduction to Qt 27

Prototypes for drawing a line, text, and changing the pen
color:

void QPainter::drawLine(int x1, int y1, int x2, int y2);

void QPainter::drawText(int x, int y, const QString & text);

void QPainter::setPen();

Introduction to Qt 28

namespace Qt

Is defined in src/corelib/global/qnamespace.h. The file is
about 1600 (1625 to be exact) lines (was about 1300 lines long
(1354 to be exact) in Qt 4.3). Numerous properties are defined
in it.

Colors

enum GlobalColor {

color0,

color1,

black,

white,

darkGray,

gray,

lightGray,

red,

green,

blue,

cyan,

magenta,

yellow,

darkRed,

darkGreen,

darkBlue,

darkCyan,

darkMagenta,

darkYellow,

transparent

};

Introduction to Qt 29

Keyboard Modifiers

enum KeyboardModifier {

NoModifier = 0x00000000,

ShiftModifier = 0x02000000,

ControlModifier = 0x04000000,

AltModifier = 0x08000000,

MetaModifier = 0x10000000,

KeypadModifier = 0x20000000,

GroupSwitchModifier = 0x40000000,

// Do not extend the mask to include 0x01000000

KeyboardModifierMask = 0xfe000000

};

Q_DECLARE_FLAGS(KeyboardModifiers, KeyboardModifier)

Introduction to Qt 30

Videos

Questions?

