
Scripting Languages 1

1 Scripting

1.1 Introduction

Scripting languages have been around for a long time. Many applications
have some sort of language to help users work with the application program-
matically.

Many scripting languages are interpreted. Some are both compiled and
interpreted. Most are multi-platform.

Generally easier to use than a compiled language (C/C++).
Many are written in C!

1.2 Some Scripting Languages

• Shell (sh, csh, ksh, bash, DOS batch files)

• awk

• Tcl/Tk (Jacl)

• Perl

• Python (Jython) Parrot

• Ruby (JRuby)

• AppleScript (Apple)

• AutoLisp (AutoCAD)

• Javascript (Internet browsers)

• VBScript (Windows)

• Many more (ASP, PHP) ...

A number of scripting languages interact with each other, e.g., Perl/Tk,
Python/Tk, Ruby/Tk. Some scripting languages interact with major lan-
guages: SchemeTk, CamelBones (Perl/Cocoa), RubyCocoa.

Most have considerable support for regular expressions.
Closer look at Tcl, Perl, Python, and Ruby. All support modular con-

struction (modules), procedures (subprograms/functions), decision making
constructs, and looping constructs.

Scripting Languages 2

1.2.1 Tcl/Tk

Version 8.4.2
Very popular because of graphical support
UC Berkeley → Sun → Scriptics

puts "hello, world"

set greeting "hello"

set addressee "world"

puts "$greeting, $addressee"

button .b -text "Push Me" -command {tk_messageBox -message "hello, world"}

pack .b

Here is the factorial procedure:

proc fac {x} {

if {$x < 0} {

error "Invalid argument $x: must be a positive integer"

} elseif {$x <= 1} {

return 1

} else {

return [expr {$x * [fac [expr {$x-1}]]}]

}

}

Scripting Languages 3

1.2.2 Perl

Version 5.8
Text processing, regular expressions
Lots of cryptic symbols ($, @, #)
Support for arrays, tables, hashes
Bioinformatics (Lisp and Python).

print "hello, world"

print array

@array = ("red", "yellow", "green");

print "I have ", @array, " marbles.\n";

print "I have @array marbles.\n";

I have redyellowgreen marbles.

I have red yellow green marbles.

logn(x) =
loge(x)

loge(n)

sub log_base {

my ($base, value) = @_; args

return log($value)/log($base);

}

$answer = log_base(10, 10_000);

print "log10(10,000) = $answer\n"

log10(10,000) = 4

Scripting Languages 4

1.2.3 Python

Version 2.2 (2.3 in beta)
Object Oriented
Support for dictionaries, lists (array), tuples
Internet support
Indentation counts! Readable Perl.
Blocks are indicated through indentation, and only through indentation. (No
BEGIN/END or braces.)

print "Hello World"

Print out the values from 0 to 99 inclusive.

for value in range(100):

print value

>>> list = [’a’, ’d’, ’f’]

>>> list[1:1] = [’b’, ’c’]

>>> print list

[’a’, ’b’, ’c’, ’d’, ’f’]

>>> list[4:4] = [’e’]

>>> print list

[’a’, ’b’, ’c’, ’d’, ’e’, ’f’]

def times(n):

for i in range(1,13):

print "%d x %d = %d" % (i, n, i*n)

print "Here is the 9 times table..."

times(9)

Scripting Languages 5

1.2.4 Ruby

Version 1.8
Readable Perl
Object Oriented
Regular expressions
Smalltalk-like features
Support for arrays, tables, hashes
Internet support

http://www.rubycentral.com/book/intro.html

puts "Hello World"

Object Oriented

"Bruce".length 5

number = Math.abs(number) //Javacode

number = number.abs

def sayGoodnight(name)

result = "Goodnight, " + name

return result

end

Time for bed...

puts sayGoodnight("John-Boy")

puts sayGoodnight("Mary-Ellen")

num = 8

7.times do

print num.type, " ", num, "\n"

num *= num

end

Fixnum 8

Fixnum 64

Scripting Languages 6

Fixnum 4096

Fixnum 16777216

Bignum 281474976710656

Bignum 79228162514264337593543950336

Bignum 6277101735386680763835789423207666416102355444464034512896

3.upto(6){ |i| print i }

(’a’..’e’).each{ |char| print char }

abcde

