
Prolog 1

1 Prolog

1.1 Introduction

Prolog is a logic programming language.
A Prolog program is logic—a collection of facts and rules for proving

things. Prolog programs are not “run”; you pose questions and the language
system uses the program’s collection of facts and rules to try to answer them.

You can do anything in Prolog that you can in any other general purpose
programming language. (It may not be easy.) Prolog is especially useful in
domains that involve searching for solutions to problems that are specified
logically. Prolog is one of the two most popular languages for AI program-
ming (Lisp is the other).

1.2 Prolog Terms

Everything in a Prolog program—both the program and the data it manipulates—
is build from Prolog terms.

1. Constants

2. Variables

3. Compound terms (or structures)

1.2.1 Constants

Integers, real numbers, or an atom.
Any name that starts with a lowercase letter (followed by zero or more

additional letters, digits, or underscores) is an atom. Atoms look like vari-
ables of other languages, but are treated as constants in Prolog. The atom
n is never equal to anything but the atom n.

Sequences of most non-alphanumeric characters (+, *, -, etc.) are also
atoms.

Special atoms:
[] empty list
! cut and
; disjunction



Prolog 2

1.2.2 Variables

A variable is any name beginning with an uppercase later or an underscore,
followed by zero or more additional letters, digits, or underscores.

X

Y

is the anonymous variable.

1.2.3 Compound terms

Compound terms have an atom followed by a parenthesized, comma-separated
list of terms. For example:

parent(mark,john).

parent(mark,Child).

Note Compound terms may look like function calls in other languages, but
they almost never work anything like function calls. It is best to think of
them as structured data

1.2.4 Unification

Pattern-matching using Prolog terms is called unification. Prolog makes
extensive use of pattern matching. Two terms are said to unify if there is
some way of binding their variables that makes them identical. Consider
these two terms:

parent(mark,john).

parent(mark,Child).

These unify by binding the variable Child to the atom john. Finding a
way to unify two terms can be tricky.



Prolog 3

1.2.5 Facts

Define facts

parent(mark,john).

• The names of all relationship and objects must begin with a lowercase
letter.

• The relationship is written first, and the objects are written separated
by commas, and the objects are enclosed by a pair or parentheses.

• A period (’.’) must come at the end of a fact.

Note: Must be careful about the order of the objects in the relationship!
Examples

parent(mark,john). ;; mark is the parent of john

parent(sally,sue).

parent(sally,john).

parent(mary,sally). ;; mary is sue’s grandmother. order?

parent(steve,mark).

An atom that starts a compound term with n parameters is called a
predicate of arity n.

The program above gives some facts about a parent predicate of arity 2.

1.3 Using a Prolog System

SWI-Prolog should be on the Windows systems. Exit halt.

Welcome to SWI-Prolog (Version 5.0.10)

Copyright (c) 1990-2002 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- consult(relations). . at the end of a query



Prolog 4

consult predicate adds the contents of a file to the system’s internal data
base.

?- parent(mary,sally).

Yes

?- parent(barney,bambam).

No

?-

?- parent(P,sally).

P = mary

Yes

?- parent(P,pebbles).

No

?- parent(mary,Child).

Child = sally

Yes

?- parent(Parent,Child)

Parent = mary

Child = sally

1.3.1 Conjunctions

likes(john,food).

likes(john,coke).

likes(john,motorcycles). Order?

likes(jack,food).

likes(jack,pepsi).

likes(jack,football).

Do John and Jack like food?

?- likes(john,food), likes(jack,food).

Yes

?- likes(john,motorcycles), likes(jack,motorcycles)

No



Prolog 5

The comma is pronounced “and”, and it serves to separate any number
of different goals

Is there anything that both Jack and John both like?

?- likes(john,X), likes(jack,X)

Prolog answers the question by attempting to satisfy the first goal. If the
first goal is in the database, then Prolog marks the place in the database and
attempts to satisfy the second goal.

Each goal keeps its own place!

1.3.2 Rules

Rules are used when you want to say a fact depends on a group of other facts.
A rule is a general statement about objects and their relationships.

Rules consist of a head and a body. The head and body are connected by
the symbol :- (colon and a hyphen) and is pronounced if.

male(john). facts

male(john).

female(mary).

female(sally).

parents(john,adam,sally).

parents(mary,adam,sally)

sister_of(X,Y) :=

female(X),

parents(X,M,F),

parents(Y,M,F). M and F indicate mother and father

1.3.3 Structures (compound terms) Again

Recall that compound terms (structures) are a collection of other objects,
called components.

Structures help to organize the data in a program because they permit
a group of related information to be treated as a single object instead of
separate entities.



Prolog 6

Structures are written by specifying its functor, and its components. The
functor names the general kind of structure, and corresponds to a datatype
in many programming languages.

Structures can be used in the question-answering process by using vari-
ables.

owns(bruce,book(prolog,clocksin_mellish)).

owns(bruce,book(the_c_Programming_Language,kernighan)).

owns(bruce,book(X,clocksin_mellish)).

owns(bruce,book(X,_)). ??

Note the syntax for structures is the same as for facts. A predicate is
actually the functor of a structure. The arguments of a fact or rule are
actually the components of a structure.

is the anonymous variable.

1.3.4 Equality and Matching

= is an infix operator that checks to see if there is a match and is pronounced
“equals”.

?- X = Y.

\= is a predicate pronounced “not equal”.

?- X \= Y.

1.3.5 Arithmetic

Typical relational operators

X = Y X and Y stand for the same number

X \= Y X and Y stand for different numbers

X < Y X is less than Y

X > Y X is greater than Y

X =< Y X is less than or equal to Y

X >= Y X is greater than or equal to Y



Prolog 7

1.3.6 Population density

pop(usa,280). /* 280 million */

pop(india,1000). /* 1 billion */

pop(china,1200). /* 1.2 billion */

pop(brazil,130).

area(usa,3). /* millions of square miles */

area(india,1).

area(china,4).

area(brazil,3).

density(X,Y) :- The population density of country X is Y, if:

pop(X,P), The population of X is P, and

area(X,A), The area of X is A, and

Y is P/A. Y is calculated by dividing P by A.

- consult(population).

% population compiled 0.00 sec, 1,548 bytes

Yes

?- density(usa,D).

D = 93.3333

Yes

?- density(china,D).

D = 300

Yes

Note the use of the is operator. Prolog evaluates its righthand argument
according to the rules of arithmetic. is is required to evaluate arithmetic
expressions.



Prolog 8

1.3.7 Factorial

/* factorial.pl */

factorial(0,1).

factorial(N,F) :-

N > 0,

N1 is N-1,

factorial(N1,F1),

F is N * F1.

?- consult(factorial).

% factorial compiled 0.00 sec, 736 bytes

Yes

?- factorial(3).

ERROR: Undefined procedure: factorial/1

ERROR: However, there are definitions for:

ERROR: factorial/2

No

?- factorial(3,F).

F = 6

Yes



Prolog 9

1.3.8 Farmer, Wolf, Goat, and Cabbage Crossing

Wolf eats goat if farmer not there. Goat eats (very large) Cabbage if farmer
not there. Boat can only hold two things at a time.

change(e,w).

change(w,e).

move([X,X,Goat,Cabbage],wolf,[Y,Y,Goat,Cabbage]) :-

change(X,Y).

move([X,Wolf,X,Cabbage],goat,[Y,Wolf,Y,Cabbage]) :-

change(X,Y).

move([X,Wolf,Goat,X],cabbage,[Y,Wolf,Goat,Y]) :-

change(X,Y).

move([X,Wolf,Goat,C],nothing,[Y,Wolf,Goat,C]) :-

change(X,Y).

oneEq(X,X,_).

oneEq(X,_,X).

safe([Man,Wolf,Goat,Cabbage]) :-

oneEq(Man,Goat,Wolf),

oneEq(Man,Goat,Cabbage).

solution([e,e,e,e],[]).

solution(Config,[Move|Rest]) :-

move(Config,Move,NextConfig),

safe(NextConfig),

solution(NextConfig,Rest).



Prolog 10

1.4 Lists in Prolog

Lists are ordered sequences of elements that can have any length.
Lists can be represented as a special kind of tree. A list is either empty,

or it is a structure that has two components: the head and tail.
List of one element is .(a.[])

.

/ \

a []

List notation consists of the elements of the list separated by commas,
and the whole list is enclosed in square brackets. For example, [a] and
[a,b,c]. Lists can contain other lists.

Split a list into its head and tail using the operation [X|Y]. For example:

p([1,2,3]).

p([the,cat,sat,[on,the,hat]]).

?- p([X|Y]).

X = 1 Y = [2,3] ;

X = the Y = [cat,sat,[on,the,hat]]

1.4.1 List Membership

member(X,[X|_]).

member(X,[_|Y]) :- member(X,Y).


