
Lex (October 17, 2003) 1

1 Lexical Analysis

What is Lexical Analysis?
Process of breaking input into tokens. Sometimes called “scanning” or

“tokenizing.”
Lexical Analyzer scans the input stream and converts sequences of char-

acters into tokens. Identifies tokens in input string (stream).

1.1 lex

• Lex (Lesk & Schmidt[Lesk75]) was developed in the early to mid-’70’s.

• lex reads a specification file containing regular expressions (rules and
actions) to generate a C routine that performs lexical analysis.

• lex is a rule-based language. [Prolog later.]

1.2 lex File Format

definitions

%%

rules (regular expressions and associated actions)

%%

user routines (C functions)

%% is used to separate the sections.

1.2.1 definitions section

%{
C code

%}

%definition(s)

Lex (October 17, 2003) 2

1.2.2 rules section

pattern action

pattern action

pattern action

1.2.3 user routines section

C functions

1.2.4 Details

The first part, definitions, is optional. It can contain

• Lines controlling the dimensions of certain tables internal to lex

• Definitions for text replacements

• Global C code preceded by a line beginning with %{ and followed by a
line beginning with %}

The second part, rules, contains a table of patterns and actions. This
part is line-oriented! A pattern starts at the beginning of a line and extends
to the first non-escaped white space. An action is specified after an arbitrary
amount of white space.

The third part, user-defined functions, and the separator preceding it
are optional. This part contains C code (local functions) which are used in
the rules part.

Note: Do not leave extra spaces and/or empty lines at the end of the lex

specification file.
What about comments? C comments can be placed in the definition or user
routines section.

1.3 Building an application with lex

General commands to create an application using lex.

Lex (October 17, 2003) 3

lex lexFile.l

generates (outputs) a C file lex.yy.c and constructs a C function yylex().

Compile and link with lex library.

cc -o scanner lex.yy.c -ll

1.4 Example 1

Note when start and stop commands are encountered in a file.

1.4.1 lex file: example1.l

%{

#include <stdio.h>

%}

%%

stop printf("Stop command received");

start printf("Start command received");

%%

lex example1.l

output: lex.yy.c (1500+ lines)
cc -o example1 lex.yy.c -ll

1.4.2 example1.dat

start

stop

start

rest

stop

go

start start start

rest

stop stop stop

Lex (October 17, 2003) 4

1.4.3 Output

% ./example1 < example1.dat

Start command received

Stop command received

Start command received

rest

Stop command received

go

Start command received Start command received Start command received

rest

Stop command received Stop command received Stop command received

1.5 Special lex Variables

yytext is an external variable that contains the matched string.

yyleng is an external variable that contains the length (the number of char-
acters) of the matched string.

yylineno is an external variable that contains the number of the current
input line (version dependent).

Study the man page for lex for more detail.

1.6 Example 2: Name Matching

Find a name and bracket it with < and > if it is encountered.

1.6.1 nameMatch.l

%{

#include <stdio.h>

%}

%%

Dexter|DeeDee printf("<%s>", yytext);

%%

Lex (October 17, 2003) 5

1.6.2 Input: cartoon.dat

Animaniacs: Yakko, Wakko, Dot

Bugs Bunny: Bugs Bunny

Dexter’s Laboratory: Dexter, DeeDee

Speed Racer: Speed, ChimChim

Spongebob Squarepants: Spongebob

1.6.3 Output

% ./example2 < cartoon.dat

Animaniacs: Yakko, Wakko, Dot

Bugs Bunny: Bugs Bunny

<Dexter>’s Laboratory: <Dexter>, <DeeDee>

Speed Racer: Speed, ChimChim

Spongebob Squarepants: Spongebob

1.7 Pattern Resolution Rules

lex patterns tend to be ambiguous. The following rules are used by lex:

1. chars are only matched once

2. longest match wins (action of longest match is used)

3. same length: first pattern wins

4. no pattern matches character(s) are printed

1.8 Example 3: Word Count (wc)

%{

/* wc.l

lex file for word count

*/

#include <stdio.h>

int nL = 0;

Lex (October 17, 2003) 6

int nW = 0;

int nC = 0;

%}

%%

[a-zA-Z]+ { nW++; nC += yyleng; }

\n { nL++; nC++; }

. { nC++; }

%%

int main()

{

yylex();

printf("%d\n%d\n%d\n", nL, nW, nC);

}

1.8.1 Build and Execute

% lex wc.l

% cc -o wcount lex.yy.c -ll

% ./wcount < cartoon.dat

5

20

155

1.9 Example 4: Yet Another Word Count

%{

/* yawc.lex

Yet another word count program.

Derived from "Jumpstart your Yacc...and Lex too!"

IBM developerWorks

http://www-106.ibm.com/developerworks/linux/library/

l-lex.html?dwzone=linux

Bruce M. Bolden February 20, 2003

*/

Lex (October 17, 2003) 7

int wordCount = 0;

%}

chars [a-zA-Z_\’\.\"\,\:\?]

numbers ([0-9])+

delim [" "\n\t]

whitespace {delim}+

words {chars}+

%%

{words} { wordCount++; }

{whitespace} { /* do nothing */ }

{numbers} { wordCount++; }

%%

int main()

{

yylex();

printf("words: %d\n", wordCount);

return 0;

}

int yywrap()

{

return 1;

}

1.9.1 Build and Execute

% lex yawc.lex

% cc -o yawc lex.yy.c -ll

% ./yawc < cartoon.dat

words: 15

Lex (October 17, 2003) 8

1.10 Example 5: Line Numbering

The following examples are derived from the line numbering examples in
Schreiner and Friedman [S&FB85].

%{

/* lineNum.l

Line numbering

*/

%}

%%

\n ECHO;

^.*$ printf("%d\t%s", yylineno, yytext);

% lex lineNum.l

% cc -o lineNum lex.yy.c -ll

lineNum.l: In function ‘yylex’:

lineNum.l:11: ‘yylineno’ undeclared (first use in this function)

lineNum.l:11: (Each undeclared identifier is reported only once

lineNum.l:11: for each function it appears in.)

1.10.1 Blank lines not numbered

% lex lineNum1.l

% cc -o lineNum lex.yy.c -ll

% ./lineNum < lineNum1.l

0 %{

1 /* lineNum1.l

3 Line numbering (modified version)

4 yylineno not defined in flex.

5 */

7 int lineNum = 0;

8 %}

Lex (October 17, 2003) 9

10 %%

12 \n { ECHO; lineNum++; }

13 ^.*$ printf("%d\t%s", lineNum, yytext);

1.10.2 Blank lines numbered

% lex lineNum2.l

% cc -o lineNum lex.yy.c -ll

% ./lineNum < lineNum2.l

1 %{

2 /* lineNum2.l

3

4 Line numbering --- blank lines also

5 */

6

7 int lineNum = 0;

8 %}

9

10 %%

11

12 ^.*\n printf("%d\t%s", ++lineNum, yytext);

1.10.3 yylineno fix—lex compatability

%{

/* lineNum.l

Line numbering

*/

%}

%option lex-compat

%%

\n ECHO;

Lex (October 17, 2003) 10

^.*$ printf("%d\t%s", yylineno, yytext);

1.11 lex command line options

lex supports numerous command line options. For example
-l turn on compatibility with the original AT&T lex.
-p generates a performance report to stderr.

See the man page for lex for more command line option information.

1.12 Comparing Lexical Analyzers

Why use lex? Consider a handwritten lexer with lex description for a simple
command language. The lex description is about one third the size of the
C source file!

% wc lexer.[lc]

64 183 1116 lexer.c

26 71 499 lexer.l

Note: The source files are not displayed since they were displayed in class.
The point is that lex is a very powerful tool and can save development time.
Naive approach to keyword recognition:

%%

char printf("char");

int printf("int");

double printf("double");

if printf("if");

else printf("else");

/* <

>

*/

\n printf("
\n");

[] printf(" ");

%%

Robust keyword recognition:

Lex (October 17, 2003) 11

%{

#define MAX_NAME 32

struct keytable

{

char name[MAX_NAME];

int nOccurences;

};

typedef struct keytable KeyTable;

KeyTable keys[] =

{

"char", 0,

"int", 0,

"double", 0,

"if", 0

};

%}

%%

[A-Za-z][A-Za-z0-9]*

{ if(IsKeyword(yytext))

{

printf("%s", yytext);

}

else

{

printf("%s", yytext);

}

}

\n printf("
\n");

[] printf(" ");

%%

int IsKeyword(char* s)

{

// search keyword table

Lex (October 17, 2003) 12

}

References

[Lesk75] M. Lesk, E. Schmidt, “Lex-A Lexical Analyzer Generator,”
Computing Science Technical Report 39, AT&T Bell Labora-
tories, Murray Hill, NJ 07974, 1975.

[LM&B90] Levine, Mason & Brown, lex & yacc, O’Reilly & Associates,
1990.

[S&FB85] Schreiner and Friedman, Introduction to Compiler Construction
with Unix, Prentice-Hall, 1985.

[LnYP03] The Lex & Yacc Page, http://dinosaur.compilertools.net/

