
Compiling in Unix
Makefiles, Common Errors, and Debugging

CS-121

Using make

make is a program which simplifies the task
of compiling programs

Often a program is made up of many C++
source files (.cpp), make keeps track of which
have changed and only compiles those

Make knows about C++ and compiling files. It
calls g++ for you (often you just type make)

make rules

Make compiles programs based on rules which
you specify in a file named “Makefile”

Each rule defines 3 things

The program you want to create (target)

The source (.cpp) file or files needed to
create the target (dependencies)

Shell commands for creating the target
from the dependencies

make rules

The basic format of rules in the Makefile is
as follows:

target : dependecies (space seperated)
[tab]Shell command

The tab is
important!

dependencies are
usually files, but they
can be other rules!

make rules

Example:

helloworld : helloworld.cpp
[tab] g++ helloworld.cpp -o helloworld

Because make already
knows how to make cpp
programs you can leave
the shell command out

helloworld : helloworld.cpp

make rules

You can have any number of rules in a
makefile

The first rule is the default rule -- it’s
executed by just typing make

Other rules you need to type make
[targetname]

make rules

You can have phony rules

phony rules don’t make anything but they
are useful

clean :
[tab] rm helloword

the clean rule doesn’t
have any dependencies

this is okay

Makefile example

Modules

A program may be made of multiple modules.

Each module is defined as in its own cpp file.

Modules

prog1.cpp

mathfuncs.cpp

graphicsfun.cpp

prog1

Modules allow you to
organize large
programs into
smaller files

Modules

mathfuncs.cpp

prog1

Each module has an
associated header
file that defines

function prototypes
and shared variables

prog1.cpp

mathfuncs.h

Modules

Other modules include this header file so that
they become aware of functions or variables

defined in other modules.

prog1.cpp
#include <iostream>

#include <string>

#include “mathfuncs.h”

Modules

We use quotes “” when specifying local headers
and <> for system headers.

Headers specified with “” are searched for in
the current directory.

prog1.cpp
#include <iostream>

#include <string>

#include “mathfuncs.h”

Modules

We always include local headers AFTER we
include system headers. Not a strict rule, but

good form.

prog1.cpp
#include <iostream>

#include <string>

#include “mathfuncs.h”

Header Files

mathfuncs.h
Define:

Functions

Variables

Data structures

Header Files

mathfuncs.h

#ifndef __MATHFUNCS_H_

#define __MATHFUNCS_H_

extern int compute_dist(int x, int y);

extern float compute_dist (float x,

 float y);

#endif

Header files look like this
typically:

Header Files

mathfuncs.h

#ifndef __MATHFUNCS_H_

#define __MATHFUNCS_H_

extern int compute_dist(int x, int y);

extern float compute_dist (float x,

 float y);

#endif

These preprocessor commands
insure you don’t accidently
include the same header

twice!

Header Files

mathfuncs.h

#ifndef __MATHFUNCS_H_

#define __MATHFUNCS_H_

extern int compute_dist(int x, int y);

extern float compute_dist (float x,

 float y);

#endif

Notice we have typical
function prototypes but these

are defined as external.

Compiling Modules
You really need to use a make file.

Simply specifying all cpp files as dependencies will
combine all modules to form the program.

Here prog1 is created from 3 modules.

The main module has the same name as the program.

CPPFLAGS=-g

prog1 : prog1.cpp mathfuncs.cpp graphicsfun.cpp

Compiling Modules

prog1.cpp

mathfuncs.cpp

graphicsfun.cpp

prog1

Using this makefile
all .cpp files are
always compiled

together even if only
one file chages!

Compiling Modules

prog1.cpp

mathfuncs.cpp

graphicsfun.cpp

We can compile
cpp files

separately.

This creates
“object” files

which are parts
of C++ program
in machine code.

prog1.o

mathfuncs.o

graphicsfun.o

Compiling Modules

prog1.o

mathfuncs.o

graphicsfun.o

prog1

These object files
can be linked to
form the final

program.

Compiling Modules

prog1.o

mathfuncs.o

graphicsfun.o

prog1

If only one cpp file
changes you need to
generate only one

object file.

Compiling Modules

prog1.o

mathfuncs.o

graphicsfun.o

prog1

This saves loads of
time on large

programs!

Compiling Modules and
Linking

Notice dependencys are now object files not cpp files.

Make is smart enough to know it needs to generate
object files from cpp files you don’t have to tell it.

CPPFLAGS=-g

CC=g++

prog1 : prog1.o mathfuncs.o graphicsfun.o

Compiling Modules and
Linking

CC=g++ tells make to use the cpp compiler for linking,
the default is to use the c compiler.

Make is smart enough to know which object files to
generate when you change a .cpp file

CPPFLAGS=-g

CC=g++

prog1 : prog1.o mathfuncs.o graphicsfun.o

Compiling Modules and
Linking

You can store all of the object file in a variable and
just reference that variable in your rule.

CPPFLAGS=-g

CC=g++

OBJS= prog1.o mathfuncs.o graphicsfun.o

prog1 : $(OBJS)

Modules and Scope

When a variable is global it is global to all
modules, but in order to see the variable it
must be defined with the extern keyword.

These definitions are typically made in local
header files.

extern int i;

Modules

