Functions—Parameter Passing Techniques

1 Parameter Passing Techniques

e Pass by Value
e Pass by Reference

e Pass by Pointer

1.1 Parameter Passing—Pass by Reference
e Don’t want to pass by value always.

e Used when we want to return more than one
value from a function.

1.2 Swapping two values

int main()

{
int nl, n2;
cout << "Enter two numbers: " << flush;
cin >> nl >> n2;
if(n1 > n2)
Swap(nl1, n2);
cout << "Sorted order: " << nl << ", " << n2 << endl;
return O;
}

How to write swap()?

// WARNING: This swaps the values inside the function
void Swap(int nl, int n2)

{
int temp = nl;
nl = n2;
n2 = temp;

Functions—Parameter Passing Techniques 2

This won’t work! If we change from pass by value (default parameter passing
mechanism) to pass by reference, it will. Note the changes made to Swap()!

void Swap(int& nl, int& n2)

{
int temp = nil;
nl = n2;
n2 = temp;

+

Another way to write this function is by using pointers (more about that
later). To use this, we also need to change our call to Swap () —Swap(&nl1, &n2);

void Swap(int* nl, int* n2)

{
int temp = *nl;
*nl = *n2;
*n2 = temp;

}

Note how strange this looks—especially since we haven’t discussed pointers!
Passing by reference is much cleaner than using pointers and it accomplishes
the same general function.

Functions—Parameter Passing Techniques 3

1.3 Basic Pointer Concepts

e Point to a memory location.

Operators:

& Address operator
*x Dereferencing operator

Call by reference is based on pointers.

Machine/compiler dependencies exist.

Care and caution should be exercised when using pointers.

Pointers will be extensively in later Computer Science courses—unless
everything moves to Java. There are no pointers in Java.

1.4 Pointer examples

int a;
int *xaPtr;

a = b;

aPtr = &a;

cout << a << endl;

cout << *aPtr << endl; //
*aPtr = 6;

cout << a << endl;

cout << *aPtr << endl; //
cout << &a << endl; //
Output:

5

5

6

6

0x024b2fa8

contents of a

contents of a
address of a (compiler/machine dependent)

Functions—Parameter Passing Techniques 4

1.5 Example: reading values from a file

A function that retrieves three values from an input file stream.
Verifies that the x-value is greater than zero and that the y-value is less than
ten.

int GetData(ifstream& inF, double &x, double& y, double& z)
{
int rCode = 1; // return code

inF >> x >> y >> z;

if(x < 0.0)

{
cerr << "Unexpected negative value for x" << endl;
rCode = -1;
b
if(y > 10.0)
{
cerr << "Unexpected value for y" << endl;
rCode = -1;
}

return rCode;

Why is this good? Checks data integrity and localizes error messages. What
if we want to change our validity checking? Not so good—a general purpose
function(s) would be useful.

Functions—Parameter Passing Techniques

// quadParams.cpp

#include <iostream.h>
#include <iomanip.h>
#include <stdlib.h>
#include <math.h>

// prototypes
void ReadCoefficients(double& a, double& b, double& c);
void CalculateRoots(double a, double b, double c);
void OpenInputAndOutputFiles();

// global variables
ifstream fIn;

ofstream fOut;

int main()

{
OpenInputAndQutputFiles();
char ans; // answer
double a, b, c; // coefficients
do
{

// Get coefficients from file
ReadCoefficients(a, b, ¢);

CalculateRoots(a, b, c);

do
{
// prompt
fOut << "Continue (y/n)? " << flush;
// read answer
fIn >> ans;

fOut << ans << endl;

Functions—Parameter Passing Techniques

} while ((ans != ’y’) && (ans != ’n’));
} while ((amns == ’y’));

cout << " Done!" << endl;

return O;

Functions—Parameter Passing Techniques

void ReadCoefficients(double& a, double& b, double& c)

{

fIn >> a >> b >> c;

fOut
fOut
fO0ut
fO0ut

//

Echo values

"\nThe
lla: n
llb: n
IIC: n

polynomial coefficients are: " << endl;
<< a << endl;
<< b << endl;
<< ¢ << endl;

Functions—Parameter Passing Techniques 8

void CalculateRoots(double a, double b, double c)
{

double discr = bxb - 4.0%*ax*c;

if(discr <= 0.0)

{
fOut << "Unable to solve quadratic equation:" << endl;
fOut << "\tDiscriminant is less than or equal zero" << endl;
}
else
{
discr = sqrt(discr);
double denom = 2.0 * a;
double x1 = (-b + discr) / denom;
double x2 = (-b - discr) / denom;
fOut << "x1: " << x1 << endl;
fOut << "x2: " << x2 << endl;
}

Functions—Parameter Passing Techniques

void OpenInputAndOutputFiles()
{
// Open input file
fIn.open("quad.in", ios::in);
if(!'fIn) // verify file was opened
{

cerr << "Unable to open input file: quad.in" << endl;

exit(-1);

// Open output file

fOut.open("quad.out", ios::out);

if('f0ut) // verify file was opened
{

cerr << "Unable to open output file: quad.out" << endl;

exit(-1);

Functions—Parameter Passing Techniques

Output:

The polynomial coefficients are:

a: 2
b: 3
c: 5

Unable to solve quadratic equation:
Discriminant is less than or equal zero

Continue (y/n)? y

The polynomial coefficients are:

a: 2

: b
c: 3
x1: -1
x2: -1.5

Continue (y/n)? y
The polynomial coefficients are:

a: 2
: 6
c: 2
x1: -0.381966
x2: -2.61803

Continue (y/n)? n
Done!

10

Functions—Parameter Passing Techniques 11

2 Function Overloading

What if we want to find the minimum of some number of integers or real
numbers? We could write one function and cast the arguments to the neces-
sary type (e.g., double to int). It works, but might lose values and it isn’t
very neat. Or we can write two functions that use the desired arguments.

int Min(int a, int b, int c)
{
b

double Min(double x, double y, double z)
{
+

These functions can be used as follows:

int main()

{
int i;
double x;

Min(3, 1, 5);
Min(2.71, 1.01, 5.23);

M
i n

Functions—Parameter Passing Techniques 12

The compiler resolves which function to call.

e [f a function defintion exists where the type of the parameters exactly
match, that function is used.

e If there is not an exact match, the compiler will cast the parameters.
e Rules are complicated.
e Be careful when using function overloading.

Function overloading is very useful when doing Object-Oriented Program-
ming, especially when creating objects.

