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In contrast to the classic form of distributed agreement, called Byzantine Agreement, Approaz-
imate Agreement does not require non-faulty processes to achieve exact agreement. Rather,
non-faulty processes need only agree on values within a predefined tolerance.

Recent research has revealed simple expressions for the convergence rate and fault tolerance
of a broad family of convergent voting algorithms called Mean-Subsequenced-Reduced (MSR)
algorithms. The analysis was done for simultaneous presence of asymmetric, symmetric, and
benign fault modes. This paper introduces a new fault-model, Omission-MSRE (OMSR). The
new model broadens the applicability of hybrid fault-models by introducing an additional
fault-mode, omissive faults. It will be shown that OMSR has a number of advantages over
the MSR model. Also, the results of the two models will be transformed into a singular set of
relations and tables so that their convergence rate and fault tolerance can be compared. In
the context of this paper, these relations and tables provide the means to easily determine the
convergent properties of different voting algorithms for completely and partially connected
networks.
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1 Introduction

An important issue in fault-tolerant distributed computing is the ability of non-faulty pro-
cesses to reach agreement on data values in the presence of faulty processes. This issue arises
whenever non-faulty processes legitimately form differing “opinions” regarding the correct
value. They must then exchange and vote upon their local values to arrive at a single con-
sensus value. The problem is significantly more complex if a faulty process is permitted to
send conflicting values to different non-faulty processes. A faulty process with this property

has been called two-faced, Byzantine, or asymmetric.

In many real world applications, such as sensor data management and fault-tolerant clock
synchronization [19, 24, 26, 29, 31|, non-faulty processes need not achieve exact agreement.
Rather, they need only agree on a value to within a specified tolerance. This criterion is
known as Approzimate Agreement. Given an arbitrarily small positive real value €, Approx-

imate Agreement is defined by two conditions [13, 15]:

Al: AGREEMENT - The voting algorithms executed by all non-faulty processes eventually

halt with voted values that are within ¢ of each other.

A2: VALIDITY - The voted value held by each non-faulty process is within the range of

the initial values held by the non-faulty processes.

Recent research has addressed convergent voting in the simultaneous presence of multiple
fault modes [20]. This work used the hybrid fault model of Thambidurai and Park, which
partitions faults into three modes: asymmetric (Byzantine), symmetric (single-valued) and
benign (self-incriminating)[30]. Using this hybrid fault model, simple expressions were de-
rived for the performance and fault-tolerance of a broad family of convergent voting algo-

rithms called Mean-Subsequence-Reduced (MSR) algorithms.

MSR algorithms produced more accurate bounds on the properties of the algorithms than
possible with any single-mode fault model. However, these algorithms along with other

traditional voting algorithms are still restrictive in that they can not exploit omissive faults.



This paper introduces a new fault model which is capable to deal with omissive behavior
which could be the dominant mode of failure in large distributed systems. It also permits
the processes to ignore locally diagnosed errors and hence deal with different number of data

items.

Section 2 presents some background material necessary to understand the convergent voting
process. Section 3 introduces the new fault model, Omission-MSR (OMSR), and justifies
the inclusion of omission faults into the new model. Section 4 presents the convergence rate
and fault tolerance for two large families of OMSR voting algorithms which together cover
the commonly used voting algorithms. Section 5 compares OMSR and MSR fault-models. It
will be shown that the new model provides greater accuracy in fault-tolerance of synchronous
voting algorithms. And finally, Section 6 concludes the paper with a summary and some

remarks for future research.

2 Background and Definitions

The objective of reaching an approximate agreement is to guarantee that, at the termination
of a voting algorithm, the voted value for each non-faulty process is within the range of the
initial correct values and that the diameter of the voted values for each of the non-faulty
processes is within a prespecified small positive real value e. The final voted value, at the end
of the voting algorithm, is obtained by employing multiple rounds of message exchange. In
each round, each process sends its value to all receiving processes. On receipt of a collection
of values, each process executes a voting function /', to obtain its latest voted value, which
it then broadcasts in the next round of message exchange. The objective of Approximate
Agreement is achieved if it is guaranteed that the range of values held by the non-faulty
processes is reduced in each round [13, 15, 24, 32, 33]. This property, called single-step
convergence, guarantees that the range of values will eventually be less than ¢, given enough

rounds.

In general, there are two forms of voting algorithms: synchronous and asynchronous [13].

In a synchronous distributed system the processing and the communication delays of non-



faulty processes are bounded. There is thus a point in time by which any process executing
a convergent voting algorithm will have received all data from all non-faulty processes.
Any data arriving after that time is considered to be from a faulty process. By contrast,
asynchronous systems impose no bounds on process operation [13]. It is thus impossible to
differentiate between a slow non-faulty process and a “dead” faulty process. The analysis of
Approximate Agreement in this research is restricted to synchronous systems. These systems
are representative of real time functions such as data sensor management and fault-tolerant

clock synchronization [19, 24, 26, 29, 31].

2.1 Real-Valued Multisets

Approximate Agreement requires the manipulation of non-disjoint multisets of real values.
A multiset is a collection of objects similar in concept to a set. However, it differs from
a set in that all elements of a multiset are not necessarily distinct. For example, a set of
real numbers contains no more than one occurrence of any given value, while a multiset of
real numbers may contain multiple occurrences of a value. The number of times a particular
object (value) appears in a multiset is called the Multiplicity of that object. A finite multiset
V of real values may be represented as a mapping V : £ — X. For each real value r, V (r)

is defined as the multiplicity of r in V. The size of Vis V = |V| =X, c5 V(r).

An alternative representation for a multiset of real numbers is a monotonically increas-
ing sequence of the real values of its elements, i.e. V = (vy, ... ,vy) ordered such that:
v; <wigr Vi e{l, ... ,V—=1}[1, 25]. Both representations of a multiset are equivalent,
but for most operations the second notation is more convenient. To avoid confusion, we
use upper-case symbols for elements in the real-to-integer mapping form, e.g. V(r). Sim-
ilarly, we use angle-braces and lower-case symbols for elements in the sequence form, e.g.

V = (v, ... ,op).

Real-Valued Parameters — A multiset of real numbers has several useful parameters.



min(V) = min(r € R: V(r) >0) = vy; the minimum value of the elements in V.
max(V) = max(re€ R:V(r) >0) = vy; the maximum value of the elements in V.

p(V) = [min(V),max(V)] = [vy,vy]; the real interval spanned by V. p(V) is called
the range of V.

6(V) = max(V) — min(V) = vy — vy; the difference between the maximum and

minimum values of V. 6(V) is called the diameter of V.

mean(V) = The arithmetic mean of the real values of all elements of V;

mean(V) = < (% v<r>.7~) = - (; v)

Multiset Relations — Two multisets U and V may be related to each other by Union,

Intersection, Sum, or Difference.

Union: Let W=V UU. Then W(r) =max[V(r),U(r)] Vr eR.
Intersection: Let W =V N U. Then W(r)=min[V(r),U(r)] VreR.
Sum: Let W=V 4+ U. Then W(r)=V(r)+U(r) ¥V r e R.

Difference: Let W =V —U. Then Vr e R:

) V() =U(r) i V(r)>U(r)
Wir) = { 0 otherwise
Subsequences — Intuitively, a subsequence of a multiset is a submultiset whose elements

are determined solely by their relative positions in the sequence of the original multiset.
For a more formal definition consider two non-empty multisets V. = (v;) Vi€ {1, ... ,V}
and U = (u;) Vj e {1, ... U}, where U C V. U is a subsequence of V if there is
an order-preserving one-to-one mapping k, from the indices of U to the indices of V, 1i.e.

uj =vpy Vj el ..., U} and k(y)<k(j+1)Vje{l, ... ,U—1}



2.2 Fault Classification

A handful of voting algorithms exist which guarantee convergence. Most of these algorithms
assume that allfaults behave in Byzantine manner. But in many applications true Byzantine
faults occur rarely and under complex conditions. This limitation leads to system designs
which are more complex and require a greater number of processes than necessary to guar-
antee convergence. A more realistic approach to designing fault-tolerant distributed systems
is to incorporate different types of faults and place a limit on the maximum number of faults
in each class. Accordingly, Meyer and Pradhan [27] partitioned the space of all faults into
two classes: Benign faults and Malicious faults. Benign faults are defined as those which
are self-incriminating or self-evident to all nodes. Malicious faults are the ones which do not
qualify as benign faults. Specifically, a malicious fault is caused by a process which behaves
maliciously by “lying” when asked for a data value. Thambidurai and Park [30] further
partitioned the malicious faults into two subclasses: Symmetric (single-valued) faults and
Asymmetric (Byzantine, active asymmetric, two-faced) faults. A symmetric fault is defined
as a fault whose value is perceived identically by all receiving non-faulty processes. An
asymimetric fault is the one which is capable of sending conflicting (arbitrary) messages to
different non-faulty processes. Given asymmetric faults a, symmetric faults s, and benign
faults b, the total number of faults ¢ in the system is then t = a + s + b. Thambidurai
and Park used this partitioning to derive tighter bounds on the fault-tolerance of Byzantine

Agreement algorithms [30].

By employing the Thambidurai and Park model, we have achieved a tighter bound on fault-
tolerance and have shown that convergence can be determined more accurately [21, 20].
It will be shown that by partitioning some of the fault modes into disjoint submodes, the
fault-tolerance can be further improved. Furthermore, we will show that the OMSR voting

algorithms use less time to reach agreement than the existing voting algorithms.

For ease of reference, the single-mode Byzantine fault-model is labeled “BYZ-17. Similarly,
we abbreviate the Meyer and Pradhan Hybrid fault model as “MPH-2", and the Thambidurai
and Park Hybrid fault model as “TPH-3".



2.3 MSR Voting Algorithms

MSR algorithms employ a particular family of voting algorithms with the general form
[15, 20]:
F(V)=mean[Sel, (Red"(V))]. (2.1)

The “Reduction” function Red™ removes the 7 largest and 7 smallest elements from multiset
V,ie Red” (V) = <v(1+7), e ,U(V_T)>. The new submultiset is called medial multiset M.
The “Selection” function Sel, then selects a submultiset S of o elements from the reduced

multiset Red” (V). The final voted value is the arithmetic mean of the selected multiset.

It we restrict the choice of selection functions such that Sel, always produces a subsequence
of Red™(V), then F(V) is the Mean of a Subsequence of the Reduced multiset. The family
of all voting algorithms with this property are called Mean-Subsequence-Reduced or MSR
algorithms [20]. Members of the MSR family differ from each other only in their definition
of the selection function Sel,. Some examples of MSR algorithms are the Fault-Tolerant
Midpoint and Fault-Tolerant Mean [13], Dolev’s Optimal algorithm [15], and the Mixed

Mode Optimal, Binary Mean, and Binary Suboptimal algorithms [20].
In the context of MSR algorithms, the following definitions are used frequently:

P; = The set of processes adjacent to process ¢. P; is defined similarly for j.



P,n; = P;NPj, the set of processes adjacent to both processes ¢ and j.

P,,; = P;UP;, the set of processes adjacent to either or both of processes ¢ and j. Com-
pletely connected systems have the property that P; = P;y; = Pin;.
X = |Pi| — |Pinj| = |P;| — |Pin;|, the number of processes whose values are receivable

by either ¢ or j, but not by both. For completely connected systems, y = 0.

f = The maximum number of faulty processes in either P;\P;n; or P;\P;n; regardless
of the fault modes exhibited.
V; = The multiset of values received in a given round by non-faulty process :. The

number of elements in V; is V; = |V,

M; = Red’(V;), the Medial Multiset of V;. The number of elements in M; is M; =

M| = V; — 27.
S, = Sel,,(Red™(V;)), the Selected Multiset generated by F(V;).
o; = |S;], the number of elements in S;.
U;n; = The multiset of correct values generated in Pjn;.
U,u; = The multiset of correct values generated in Pj;.

MSR algorithms assume that the multisets V for non-faulty processes are all of the same
size. Consequently, the sizes of medial multisets and o for all not-faulty processes will be the

same as well. Therefore, when there is no room for ambiguity, subscripts may be omitted.

2.4 Single-Step Convergence

It is known that Approximate Agreement can be achieved if a voting algorithm is single-step
convergent. However, the precise definition of single-step convergence depends on whether

the system is completely connected or partially connected.

2.4.1 Completely Connected Systems

In a completely connected system, U; = U;n; = U,y;. Each non-faulty process ¢ executes a
convergent voting algorithm, producing voted value £'(V;). A voting algorithm is single-step

convergent if both of the following conditions are true for every voting round:



[C1] For each non-faulty process 7, F(V;) € p(U;).

[C2] For each pair of non-faulty processes (¢,7), |F(Vi)— F(V;)| < C6(Uy;),

where 0 < C < 1.

2.4.2 Local Convergence with Partial Connectivity

A partially connected system differs from a completely connected system in that a given
process ¢ does not receive values from all non-faulty processes. Rather, it receives values
only from processes in P;. There are now two types of convergence to be considered: local
convergence over a specified subgraph, and global convergence over the entire system graph.
It has been shown that local convergence is necessary for global convergence [21]. It has also
been shown that in a fault-free system, local agreement is both necessary and sufficient to
ensure eventual global agreement [21]. However, the fault-tolerance and convergence rates
to achieve global convergence are open questions at this time. Global convergence is thus

the topic of ongoing research and is beyond the scope of this paper.

This paper addresses local convergence without the benefit of message relays. Several con-
straints are placed on the system: (1) The system topology is a non-hierarchical, regular,
homogeneous, undirected graph of IV processing nodes, each with degree d, and (2) messages
may not be relayed between processes; thus, each non-faulty process ¢ receives only the val-
ues of its immediate neighbors (including itself). Hence, V; < |P;| =d+ 1, (3) N > d so

that “wrap-around” effects can not assist the convergence process.

In a partially connected system, U;n; C U,y;, yielding two distinct criteria for local conver-

gence.

Intersection Convergence: Given a voting algorithm £'(V), two processes ¢ and j are

single-step convergent if the following conditions are both true:

[L1] (Vi) € p(Uin;), and F(V;) € p(Uiny),

[12] |F(V2) — F(V])| < Cé(Um]’), where 0 < C < 1.



Union Convergence: Given a voting algorithm £'(V), two processes ¢ and j are single-step

convergent if the following conditions are both true:

[UL] £(Vi) € p(Uiy;), and F(V;) € p(Us;),

[UQ] |F(V2) — F(VJ)| < C5(U¢Uj), where 0 < C < 1.

2.5 Hybrid Analysis of MSR Algorithms

To date, MSR voting algorithms are the only family of convergent voting algorithms to have
been analyzed under a hybrid fault model. Results have shown that the fault-tolerance of
these algorithms is significantly better than predicted by the single-mode Byzantine fault
model. In addition, a simple relation has been derived for the convergence rate of any MSR

algorithm [20, 21].

2.5.1 Fault-Tolerance

MSR algorithms assume that the voting multisets for two arbitrary non-faulty processes @
and j are of the same size. Let this size be denoted by V. Then to ensure that V, = V; =V},
if less than V, values are received, an arbitrary default value is chosen for each value not

received.

A major difference between completely connected and partially connected systems is their
handling of benign faults. In a completely connected system, benign faults can be ignored
because all processes can delete the benign errors from their voting multisets and vote with
a smaller size multiset [20], so that V, = V; — b. However, in a partially connected system
without message relays, no value is received by all processes. Thus, no faull is self-evident
to all non-faulty processes as required in the definition of a benign fault [27]. Therefore, in
partially connected systems, only symmetric and asymmetric faults are considered, so that

Vo=V, =V,.



Although malicious errors play an important role in determining the convergence rate and
fault tolerance expressions, the results revealed that it is the effective number of asymmetric
values, which includes both erroneous and non-erroneous values, that is actually the basis for
these expressions. Completely connected systems have the property that P; = P; = Piq;.
Therefore, the effective number of asymmetric values between two non-faulty processes is
the number of faulty processes which send conflicting messages to ¢ and j, i.e. the number
of asymmetric faults a. However, in partially connected systems, P; # P; and thus a non-
faulty process k € P;\P;n; communicates with process ¢ but not with process j. Similarly,
a process { € P;\P;n; communicates with j but not with process 7. In the worst case, two
processes k and ( can send different values to processes ¢ and j, respectively. Thus, each
process pair (k, () can have the same impact on V; and V; as a single asymmetrically faulty
process in P;q;. This effect can occur regardless of the fault status of £ and (. The number
of such process pairs is x. Accordingly, in the worst case, the effective number of asymmetric

values is (a + x).

To show the conditions under which MSR algorithims are convergent, the following parame-

ters are introduced:

« = The effective number of asymmetric values in a voting multiset V.

B = The fault burden of the system, i.e. the minimum number of processes in P;n; to

guarantee convergence.

7, = The effective number of malicious errors in a voting multiset V, i.e. the number of
malicious processes in P;n; plus the number of processes in P;\P;n; = P;\P;n; that

must be treated as malicious.

An MSR algorithm is convergent if the following are all true [20]:

T > To, (2.2)
Vo 2 21+ max(a+1,0), (2.3)
[Pins| = 5. (2.4)

where the values for 7,, o, and  are defined in the following table:
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Connectivity To Q@ I¢]

Complete a-+ s a Vo + b
Union at+s+f |l x+alVo—x
Intersection |[a+s+ x| x+a | Vo—x

Table 1: Summary of MSR Convergence Parameters

2.5.2 Convergence Rate

The convergence rate of an MSR algorithm depends on two parameters of the selection
function Sel,(M) [20]. The first parameter, o, is the size of the selected multiset S. The
second parameter, 7, is a measure of how uniformly the elements of S are distributed within

the medial multiset M, which is defined below?®.

Recall that selected multiset S = (s1, ... ,s,) is a subsequence of medial multiset M =
(my, ... ,mp). Let g be an index into S. Then, for each g € {1, ... ,o} there exists exactly
one k(g) € {1, ... ,M} which guarantees that s, = my, for all possible M. Given the
multisets M; and M, let M, be any multiset of size min(M;, M;). Then, given subsequence
S, = Sel,,(My) and two indices ¢g,h € {1,...,0,} such that ¢ < h, we define Ak(g,h) as
the number of elements in the submultiset <mk(g)+1, . ,mk(h)> of M, spanned by elements

(Sgy..ysp) in Se. So, Ak(g,h) = [k(h) —k(g)].

For a given non-negative integer o < My, it will be usetul to know the minimum value of

(h—g) for which Ak(g,h) > «. Thus, for each g € {1, ... ,0,}, define A(g) as follows:

IE: Ak(g,00) 2 «,
THEN: A(g) = the minimum value of the difference (h — g) such that Ak(g,h) > «,
ELSE:  A(g) does not exist for this value of g.

3Herein, the original definition of v defined for MSR algorithms has been modified to ensure that MSR,
and OMSR algorithms can uniformly reference the same definition

11



Finally, 7, is defined as:
Yo = max (A(g)). (2.5)

v ge{lv 10'[}

Accordingly, given any index ¢ into S, for which (¢g47) < o, it is assured that Ak(g,g+~) >

a. In other words, the submultiset (s,, ... ,$;4-,) 1s guaranteed to span « elements of My,

for any g € {1, ... ;00— Ya}-

As a practical matter, obtaining the value of =, is simple, given constants M,, «, and a
specified selection function Sel,,. For each g € {1, ... ,0,}, A(g) is found by inspection.
Then, v, is simply the maximum of all existing A(g) values. If there is no value of ¢ for

which A(g) exists, then ~, does not exist.

The Fault-Tolerant Mean algorithm provides a simple example [13]. This algorithm selects all

elements of medial multisets M; and M; for inclusion in S; and S; respectively. Accordingly,

Sy =My, 00 = My, and s, =m, ¥V ge{l, ... o). It follows that Ak(g,9+1) =1V g€
{1, ... ;oo —1}. Thus, Ak(g,g + @) = a ¥V g € {1, ... ;00— a}, which implies that
Alg)=aVge{l, ... 00— a}. Therefore, v, = a.

The significance of v, is in its importance to the convergence rate. It has been shown
[20] that the convergence rate C' of any synchronous MSR algorithm is given by the simple

expression:

3 Omissive/Transmissive Fault Model

Analysis of MSR voting algorithms under the TPH-3 model has revealed that under the
most likely fault scenarios, fault-tolerance is significantly better than predicted by the BYZ-1
model. However, there is still significant room for improvement based on further partitioning
of fault modes. What follows is a continuation of this work, which further partitions the
asymmetric and symmetric fault modes of the TPH-3 model into transmissive and omissive

modes.

12



We begin by partitioning each round of an MSR voting algorithm into two sequential phases:
a sampling phase, and an execution phase. During the sampling phase, each process ¢ collects
incoming values, filters out the recognized erroneous values, substitutes default values for
missing values, and produces the voting multiset V;. During the execution phase, process ¢

executes its voting function to reduce V; to a single voted value F'(V;).

3.1 Fault Model Definitions

As used herein, a transmissive fault is one which delivers erroneous value(s) to one or more
receiving processes. By contrast, an omissive fault fails to deliver any value to one or more
receiving processes. Thus, a transmissive fault delivers a transmissive error while an omissive
fault delivers an omissive error. The precise definition of transmissive and omissive behavior

differs among the three fault modes of the TPH-3 model.

1. Benign errors are deleted from V; by the sampling phase before it is passed to the
execution phase. Thus, as viewed by the execution phase, all benign faults are by

default omissive.

2. By definition, a symmetric fault delivers the same value (or absence of value) to all

receivers. Thus, a symmetric fault may be either transmissive or omissive, but not

both.

3. An asymmetric fault can be simultaneously transmissive and omissive with respect to
different receiving processes. For example, a faulty process can deliver one value to
one receiver, a second value to a second receiver, and no value to a third receiver. We
must therefore be more precise in differentiating between transmissive and omissive

behavior in asymmetric faults. Specifically:

(a) Omissive Asymmetry is the case where a faulty process sends a single value to a

subset of receivers, and no value to all remaining receivers,

(b) Transmissive Asymmetry is the case where a faulty process exhibits any form of

asymmetric behavior other than omissive asymimetry.

13



We define a subclass of omissive asymmetric faults as strictly omissive in which a process
sends a single “correct” value to some processes and no value to other processes. Under this

new hybrid model, the total number of faulty processes in the system is:

t=(a +wu)+ (s +ws)+0, (3.1)
where:
wg1 = The number of strictly omissive asymmetric faults in the system,
a = The number of faults in the system displaying any form of asymmetric behavior
other than strictly omissive,
s’ = The number of transmissive symmetric faults in the system,
w; = The number of omissive symmetric faults in the system,
b = The number of benign faults in the system.

We will abbreviate this five-mode Omissive/Transmissive Hybrid fault model as “OTH-5".
The relationships between the OTH-5 and TPH-3 model are specified by the relations: a =
(¢/ + wy1) and s = (" + ws). Figure 1 illustrates the relationships among all fault models

discussed herein.

BYZ-1: All Faults
—————————————————ﬁ———— .
MPH-2 Malicious Benign
___________ 7/_\_______|____ ]
TPH-3 Asymmetric Symmetric Benign
T TN SN TN
OTH-5: Transmissive Omissive Transmissive Omissive Benign

Figure 1: Relationships Between Fault Models

14



3.2 Model Justification

Any number of hypothetical fault models can be postulated and studied. However, the
practical utility of a fault model depends on whether its fault modes can be traced back to
specific physical faults in a system. Thambidurai and Park noted that in a fault-tolerant
distributed system, each “process” occupies a separate processor or computer. Furthermore,
each source process can be partitioned into two modules, which we call the generator module

and the delivery module.

1. The generator module comprises those components responsible for correctly generating
a value v. It generally includes the processor, memory system, internal bussing, and

all input devices.

2. The delivery module comprises those components responsible for correctly transmit-
ting the generated value v to all receivers. It generally includes a hardware-based

transmitter, bus drivers, and the transmission medium.

The value of this partitioning lies in the potential behaviors of the two modules. If the
delivery module is non-faulty, then any error caused by a faulty generator module will be
delivered symmetrically by the delivery module. Thus, an asymmetric fault must originate
within the delivery module. In general, the generating module contains significantly more
hardware and software than the delivery module. Indeed, the system can be designed such
that each processor’s delivery module contain only a few simple integrated circuit chips [19].
Hence, the vast majority of faults are expected to occur within the generator module, and

are thus guaranteed to be symmetric.

Similar observations can be made regarding omissive and transmissive behavior. For exam-
ple, a process containing an omissive symmetric fault simply fails to transmit any messages.
This behavior is equivalent to the common definition of a crash fault or a fail-stop fault
[10, 11]. Any fault which causes the generating module of a process to halt or “hang” is
then an omissive symmetric fault. In many systems, such faults are considered extremely

likely [5, 8, 9]. In addition, even a modest amount of internal self-checking can dramatically

15



increase the probability that a fault will behave omissively [34, 35]. Finally, some delivery
modules such as Boeing’s DATAC bus terminal [16] have been designed with significant in-
ternal self-checking to strongly bias its fault behavior toward the fail-stop mode. It is then

reasonable to assume that a significant fraction of symmetric faults will be omissive.

A strictly omissive asymmetric fault corresponds to the definition of “omission fault” used
by several other authors [6, 7, 10]. Its behavior also corresponds to the rather common
assumption that messages are protected by unforgeable “authenticators” [14, 28]. In reality,
this form of asymmetry can readily occur in systems where messages are protected by any

form of data redundancy (e.g. Error Correction Codes or Cyclic Redundancy Checks) [17].

Any form of asymmetry other than strictly omissive requires the delivery of an undetectably
incorrect value to one or more receivers. This in turn requires either that the generating
module delivers an incorrect value to the faulty delivery module (a double fault within
one process) or that the delivery module alters the original value in such a way that it
“escapes” detection by the data redundancy checks of the receiver. Since both of these
events are relatively unlikely, strictly omissive asymmetric faults could easily constitute the

vast majority of all asymmetric faults.

4 OMSR Voting Algorithms

In all previous studies of synchronous Approximate Agreement, it was required that the size
of the voting multiset received by the execution phase of the voting algorithm be identical
for all processes, i.e. |V, =|V,| Vi,5 € {1, ... ,N}. Thus, if an omissive error occurred,
the sampling phase was required to substitute a default value for the missing value. This
action had the effect of transforming omissive errors into transmissive errors. The only
exception allowed was for a value transmitted by a globally recognized faulty process (i.e. a
benign fault). This value could be discarded by the sampling phase because it was assured
a priori that all other non-faulty sampling phases would do likewise, preserving the equality

J =1Vl e net result is that none of the previous voting algorithms can exploit the
A% V;|. Th t It is that the previ ting algorith ploit th

16



omissive behavior of malicious faults.

Similarly, there was no ability to simply disregard locally diagnosed transmissive errors,
such as parity errors. The sampling phase either had to use the erroneous value as received,
or substitute the default value into V. The net result is that none of the previous voting

algorithms can exploit local diagnosis of self-evident errors.

This paper presents a variant of the MSR family of voting algorithms which can exploit omis-
sive behavior. The new family of algorithms, called Omission-MSR, or OMSR algorithms,
differs from MSR algorithms only in the sampling phase. Specifically, when an OMBSR algo-
rithm receives either an omissive error or a self-evident transmissive error, it simply discards
that value. No defaults are substituted into the voting multiset V. Thus, omissive errors
remain omissive, and self-evident errors become omissive. As a result, the equality of | V]

and |V;| is no longer preserved.

4.1 Definitions and Notation

Recall that w,; is the number of strictly omissive asymmetric faults in the system. Assume
that w,y, 1s the number of processes whose values are received by process ¢ but not by process
J. Similarly, assume w,;; is the number of processes whose values are received by process
7 but not by process ¢. However, it is possible that a strictly omissive asymmetric process

may send values to processes other than ¢ and j. Therefore, w1, + war, < wai.

Recall that OMSR algorithms are different from each other only in their definition of the
selection function. It is the selection function that determines the values of o; and ;. There
are thus two general families of selection functions: enumerative and non-enumerative. In
an enumerative selection function, the relative position of each selected element in M does
not depend on M. More formally, for two different size medial multisets M; and M;, if
Sig = Mg, then s;, = mj,, V ke {1,...,min(M;, M;)}. Whereas, in non-enumerative

selection functions, the position of at least one of the elements selected must depend on M.

There are some known selection functions which are enumerative, such as Fault-Tolerant
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Mean, Dolev’s Optimal algorithm [15], and Mixed-Mode Optimal algorithm [20]. However,
there are voting algorithms which are not enumerative. For instance, Fault-Tolerant Mid-
point [13] selects only the two extremal values of a medial multiset, i.e. my and my;. Due
to the existence of omission faults, two arbitrary medial multisets M; and M; could be of

different sizes, so that the relative positional value of the right extremal value of M; may

not be the same as that of M, i.e. M; # M;.

4.2 Dynamic-o Selection Functions

There could be many sub-families of enumerative selection functions. The sub-family adopted

for our fault model is the dynamic-o selection functions defined below.

Let us define the medial multiset M,,00 = (m1, ..., M., ), Where M, ., is the maximum
possible size of all medial multisets in the system. Also, let us define the enumerative
selection set as a set of integers £ = {e1,...,€5,... 1, Where e¢; < e;11 Vje{l,...,0mu — 1}
and 0,4, 1s the number of elements selected from M,,,,,;, such that S, = Sel,, .. (M) =
<me1 S Meys e e ns meamw>. In other words, F lists the indices of all elements of M, selected
for inclusion in S,,4,. Then, for an arbitrary V;, let the selected multiset S; be Sel,, (M;) =
<mel, .. .,meai>, where o; is the largest value such that e,, < |M;|. In other words, S;

includes the elements from M, whose indices are listed in £ and are less than or equal to

| ML

The number of elements selected depends on the size of M; which is:
M; = V;—27 (4.1)

Let V, represent any voting multiset with the largest number of data values received. Fur-
thermore, assume U, to be the multiset with the smallest number of correct values al-
lowed in the system. Then, due to the definition of dynamic-o selection functions, the
number of elements selected by process ¢ is maximized when M; = M,... That oc-
curs, for instance in a fault-free system, when V; receives a value from every process, 1i.e.
Vi=Vo=(Us+d 4w+ +w,). Similarly, the smallest medial multiset M,,;,, is obtained

when V; contains the minimum number of correct elements, i.e. U,, plus those faults which
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can not behave omissively, i.e. s'. Therefore, V; = U, + s'. Accordingly, by substituting the

minimum and maximum values of V; into (4.1), we obtain the following:

Mmaa: - ‘/0 — 27 (42)

Muyiw = (Us+s)—27 (4.3)

Once M, and M,,;, are determined, the enumeration set £ can be applied to obtain o,,,,

and o,,;,, respectively.

Using (4.1), it is useful to observe the following:

Mmaa: - Mmzn - ‘/0 - (UO + S,)
= [Us+(d +wa + 5" +ws)] = (Us +5)

= a4 wy + ws (4.4)

4.3 Fixed-o Selection Functions

Recall that a selection function is a mapping from the set {1,...,0} to the codomain set
{k(1),k(2),...,k(c)}. A selection function is non-enumerative if at least one of its codomain

set values is a function of M, i.e. the size of the medial multiset.

Like enumerative selection functions, there exist many sub-families of non-enumerative func-
tions. We adopt the name fized-o for one such sub-family, where o; = o;, regardless of
the sizes of M; and M;. That makes the convergence rate expression simpler because
Omaz = Omin. However, for two arbitrary processes ¢ and j, if M; # M;, then the sets of
codomain values obtained for processes ¢ and j will not be the same. Specifically, the value
k(g), g € {1,...,0}, for process ¢ may not be the same as that for process j. This problem
does not exist with dynamic-o selection functions. Therefore, to distinguish between k(g) of

different processes, the following are defined:
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ki(g) = ls the same as k(g) defined before, except that k(g) is associated with M.

Aki(g,h) = [ki(h) — ki(g)], is the number of elements of M; in <mki(g)+1, e mki(h)>.

Other than o; = 05, fixed-o selection functions have the following properties:

ki(g) > k;(g), Vgedfl,...,o}
M; > Mj =
Aki(g,9+1) =2 Akj(g,9+1), Yged{l,...,o—1}

Informally, these properties state that as M increases the number of elements between each

pair of selected elements and the index of any selected element in M increase.

4.4 Convergence with OMSR Algorithms

As indicated previously, OMSR algorithms do not require processes to deal with a fixed
number of data items. Therefore, the number of selected elements for two processes ¢ and j

could be different. This affects the convergence rate. Accordingly, let us define the following:

o Omaz — Tmin
=

Omax
This is the fraction that “offsets” the convergence rate of OMSR algorithms in comparison to
MSR algorithms [3, 4]. This fraction does not exist in MSR algorithms because 0,4 = 0
and so p = 0.

An OMSR algorithm can be convergent only if [3, 4]:

T 2 T07 (46)
V >2r +max(a+ 1,0, ), (4.7)
[Pinj| = 5. (4.8)

It is seen that these equations are very similar to equations (2.2) — (2.4) except that o is

replaced with ¢,,:,. Based on these equations, Table 2 shows the values for 7,, «, and f.
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Connectivity To Q@ I¢]

Complete a + s o'+ wa Vo + b
Union ad+s+flx+dtwa | Vo—x
Intersection || @'+ 4+ x | x +a +wa | Vo — ¥

Table 2: Summary of OMSR Convergence Parameters

The convergence rate of an OMSR voting algorithm is:

Vo

Uma.x

C=p+

Recall that OMSR algorithms do not require equality in medial multiset sizes. However,
fixed-o voting algorithms require equality in the number of selected elements, i.e. o; = 03,

so that 0,4, = 0in. Therefore, p = 0 for fixed-o voting algorithms.

4.5 Application Example

Previous section indicated that convergence can be guaranteed if:
Vo > 27 + max(a + 1, 0min) (4.9)

To determine the minimum value of V, for which a convergent OMSR voting algorithm

exists, consider the lower bounds on ,,;, when: (1) « =0, (2) a > 0.

Case 1 : If the number of effective asymmetric values « is zero, i.e. the system is fault free,
then v, = 0. To guarantee convergence, it is only necessary that S,,;, be non-empty, so any

Omin > 1 will suffice. Substituting the lower bound of ¢, into (4.9) then yields:
Vo > 214+ a+1 (4.10)

Case 2 : If @ > 0, then 0,,;, must be at least two, to ensure that v, exists. Substitution of

Omin = 2 into (4.9) then produces:
Vo > 214+ a+1 (4.11)
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By noting that in both cases, (4.10) and (4.11), max(a + 1, 0,,) = (o 4 1), shows that a
convergent OMSR voting algorithm exists if:

Vo > 214+ a+1 (4.12)

Let Viy and V; represent V, of Union and Intersection convergence respectively. Then, from

Table 2, by substituting for 7 and « in (4.12), the lower bound on Vi and V; become:

Vo =2 (Bd +258"'+ 1)+ (x +2f) + wa

Vi > (3 +28 + 1) 4+ 3x + wa

Three common meshes are shown in Figure 2, with degrees d =4, d = 6, and d = 8. Since
each node receives its own value, then V' < d + 1. For each network, two nodes are chosen
and labeled ¢ and j such that |P;q;| is maximized. In this figure, the nodes enclosed within

a dashed box comprise P;n; for each network.

-O—O—0O-
-O+O+HO-
OO0
OO0

Figure 2: Common Mesh Networks

For readability sake in the following, let us use Vi, Vi, Vo to represent V, of quadratic,

hexagonal, and octagonal meshes respectively.

The inspection of the figure shows that in all three meshes y = 3 for nodes 2 and j. Thus,
in a fault-free case, Intersection-Convergence yields :

b=d+1 > Vo=V, > 3’ +25+1)+3xy +w,u =10

T=d+1 > Vyg=V, > (B’ +25+1)+3x+wa =10

9=d+1 = Vo=V, = (3¢ +25'+1)+3x +wa =10
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Since all these relations are false, no convergent OMSR algorithm exists for any of these

meshes.

In a fault-free case, Union-Convergence gives :

b=d+1 > Vo=W > (Bd4+25+1)+(x+2f)+wa =4
T=d+1 > Vy=WVu > Bd 425 +1)+(x+2f) 4w =4

9=d+1 > Vo=W > Bd+25+1)+(x+2f)fwa =14 (4.13)

Thus, all three meshes are Union-Convergent in the fault-free case. It can be seen that, in
any single-fault scenario, both the Hexagonal and Octagonal meshes are Union-Convergent,
whereas the Quadratic mesh can handle only a single omissive fault. Furthermore, the
Octagonal mesh can tolerate a double-fault if ¢’ < 1, whereas if omissive faults are not

coexistent, non of these networks can tolerate a double asymmetric fault in P;q;.

This example reveals that a network is more robust: (1) if Union-Convergence is used because
it requires less restrictive conditions on convergence rate than Intersection-Convergence,
(2) if the network is more densely connected, (3) if a good fraction of faults are strictly
omissive. Strictly omissive faults could be a dominant mode of failure in large geographically

distributed networks due to lost or delayed messages.

5 Comparison with MSR Voting Algorithms

Convergence Rate — Recall that the convergence rate of OMSR voting algorithms is:

Vo

Uma.x

Comsr =t + (5.1)
and that of MSR voting algorithms is:
Crrsn = = (5.2)
o

Since a = (a’ +wq1), then the values of « for both MSR and OMSR models are the same. In

addition, the number of selected elements in MSR is always fixed, so that ¢ = 0,.:, = Tras.
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Therefor, (5.2) can be written as:

Crisp = —2 (5.3)

Uma.x

In general, since Coarsr 2> Chsr, the OMSR rate of convergence is worse than that of MSR

voting algorithms. To improve Copyrsgr, the following options can be employed:

1. Use fixed-o voting algorithms,

2. Use dynamic-o but ensure that ¢; < M,,;,, V e; € E.

In either case, since 0,4, = Onin, ¢ = 0 which implies that Coyrsp = Crrsg-

Fault-Tolerance — OMSR algorithms differ from MSR algorithms only in the sampling
phase. Specifically, when an OMSR algorithm receives either an omissive or a self-evident
error, it simply discards that value. The advantage of this approach can be illustrated by
comparing the fault burden of MSR model under completely connected systems with that
of OMSR model. Equation (4.12) showed that:

Vo 2 214+a+1 (5.4)

Under the MSR model, using Table 1 and relations (2.4) and (5.4), the fault burden is:

|Pinj|

v

2r4+a+b+1

= 2a+s)+a+b+1

= 3a+2s+b+1

= 3(d' +wa) +2(s tw,)+b+1

= (3a" 4+ 25 +b+ 1)+ 3war + 2w, (5.5)
Similarly, using Table 2 and relations (4.8) and (5.4), the fault burden for OMSR model is:

|Pinj| > 27+a+b+1
= 2d+s)+tdFwa+b+1

= (3d +25" +b+1)+wa (5.6)
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Thus the value of |P;n;| predicted by (5.6) is 2(w,; + ws) processes less than (5.5). By a
similar observation, partially connected systems under OMSR model show an improvement
of 2(wg1 + w;) processes. The reason for the improvement is that MSR algorithms must deal
with a fixed number of data items in each round of voting. So, omissions are either presumed
not to occur, or the voting algorithm employs defaults values for those values not received.
The later has the effect of transforming the omissive behavior into a more severe fault mode
such as asymmetric or symmetric. Whereas, an OMSR process, upon the detection of an
error, can simply drop the erroneous value from its voting multiset V and not use it in the

execution phase. So, omissive faults are treated as omissive.

In addition, under OMSR, if the error is detected by every process, the effect will be the same
as a globally diagnosed benign error. But, if the error is detected by just a subset of processes,
then diagnosis at the global level will be of no help. So, in either case, employing OMSR
algorithms reduces the duration of the sampling phase. Finally, as observed in Subsection
3.2, the majority of malicious faults can be omissive. Thus, they can be the dominant mode
of failure. As a result, the amount of improvement just shown can be very significant in

designing fault tolerant systems.

6 Summary and Conclusions

The problem of reaching Approximate Agreement in the simultaneous presence of five types
of fault modes (asymmetric omission, symmetric omission, asymmetric, symmetric, and
benign) has been addressed. The objectives were: (1) To adopt a fault model capable of
masking the effects of different types of fault modes. The fault model is complete in the
sense that it can degenerate to lesser number fault models, by simply setting the appropriate
parameters (wg1, ws, @, s, b) to zero. (2) To develop a new class of convergent voting
algorithms (OMSR) capable of exploiting omission faults. (3) To achieve simple expressions

for these algorithms, so that convergence rate and fault-tolerance can be determined easily.

A distinctive feature of OMSR, in comparison to previous fault models on Approximate
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Agreement [21, 20, 27, 30, 33], is the integration of omissive faults. Consequently, each
process may deal with a different size voting multiset. In contrast, previous models could
not exploit the existence of omissive faults, because of the assumption that each process
must operate on the same size multiset. To avoid dealing with different size multisets, these
models substituted default values for omissions. As a result, omissions were transferred into

symmetric or asymmetric faults.

Another major constraint of the previous Approximate Agreement algorithms is that a pro-
cess can not simply ignore a “missing” value or a self-evident error unless it is assured that
all other processes do likewise. Thus, an error can not be classified as benign unless an
agreement algorithm is first executed to ensure that all processes agree that it is benign. As
a result, previous classes of convergent voting algorithms can not exploit undiagnosed benign
errors. Furthermore, these restrictions and the facts that agreement algorithms are time
consuming and require reliable network communication, may make the benign fault mode
an impractical concept. However, the OMSR algorithms by having the ability of ignoring

erroneous data items are able to exploit undiagnosed benign errors.

The OMSR model can be adapted in any situation in which erroneous values can be detected,
due to either self-incriminating errors, error-detecting techniques, or message authentication
schemes. For instance, a message may be corrupted by a faulty process or a faulty link. If
message authentication is employed, a corrupted message can be detected with a very high
probability, and thus be ignored by the receiving non-faulty process. This scenario has the

same effect as if no message were received.

Analysis of using same size multisets has the advantage that, for a pair of processes ¢ and 7,
the corresponding index positions of the selected elements in M; and M;, and the number of
elements selected for o; and o; are the same, i.e. S; = 5; and k;(g) = k;j(g). Therefore, any
selection function will perform wniformly on M; and M;. Since this is no longer true in the
OMGSR model, it was necessary to distinguish among different families of selection functions.
Two sub-families were examined: fixed-o and dynamic-o. Fixed-o selection functions utilize

a fixed o regardless of multiset sizes. Dynamic-o selection functions allow o to vary as V
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changes in size, so that o; # 0;. These two sub-families were adopted because together they
encompass all commonly used voting algorithms. If 0,,,, = 0,,i, the fixed-o and dynamic-
o models will yield the same relation C' = (Yy4w,,+a)/0, but will not necessarily produce
the same convergence rate because the distribution of the selected elements in each model
is different, which may affect v. On the other hand, if omissions were not allowed to occur,
both models converge into the three-mode fault model (MSR) because then all multisets will

be of the same size.

Since OMSR has the ability of handling different multiset sizes, it offers potential in exam-
ining the convergence process in rregular networks, where the nodes may not all be of the
same degree. Even if omission faults were not present, its approach to dealing with different
multiset sizes can be useful. In addition, in networks where the degree of some nodes are not
of sufficient size to meet the lower bound requirements, multiple levels of messages relays

can be used to meet the minimum requirements on V, and |P;q;|.

Historically, there has been strong dualism in performance and fault-tolerance of Byzantine
Agreement and Approximate Agreement. As the algorithms in MSR, the Byzantine Agree-
ment algorithm, known as the Interactive Consistency (1C) algorithm, has the same property
of substituting a default value for “missing” data items, so that benign faults are hard to
justify [23]. For instance, Thambidurai and Park [30] developed a model for 1C, in presence
of three modes of failure, asymmetric, symmetric, and benign. The result of their analysis
is very similar to that of MSR algorithms. Due to their result and other similar studies
[12, 23, 27|, we conjecture, by using the OMSR methodology, that an OIC (Omission-1C)
algorithm can be designed which will have the same advantages as OMSR algorithms, so

that omission and undiagnosed benign faults can be exploited.

One area currently under investigation is global convergence for partially connected systems.
Although, local convergence is a prerequisite for global convergence, it is not by itself suffi-
cient to guarantee global convergence. The main problem is that, unlike local convergence,
it is infeasible, in a large distributed system, to place a limit on the number of faults for each

failure mode. Accordingly, examples have shown that if a single non-faulty node diverges,
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due to exceeding its fault tolerance limit, then the entire system may become non-convergent

[20].
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