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ABSTRACT
This research addresses scheduling issues in networked computer systems with sur-

vivability requirements, i.e. systems in which essential services must survive malicious
acts. In order to achieve survivability based on spatial redundancy, agreement algo-
rithms are needed as a mechanism to consolidate results of individual replicas. The
potentially enormous overhead associated with communication and voting schemes of
the algorithms put unique burdens on the scheduler as the efficiency of scheduling de-
termines the suitability of the agreement algorithm. This paper derives agreement task
graphs, representing computations, and inter-process communication based on phantom
tasks. Task graph primitives are identified and it is shown how their scheduling directly
influences the performance of the agreement algorithm. Finally, the notion of dynamic
k-of-N precedence is introduced and its impact on resource reclaiming for early stopping
algorithms is discussed.

1. Introduction

With malicious computer attacks, i.e. hacking, reaching epidemic proportions,
issues of computer and network survivability have surfaced in recent years. Of real
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concern is the reliance of critical applications on networked computer systems. Fail-
ure or compromises of such systems could cause threats to national infrastructures
or lead to catastrophe, e.g. loss of life, damage to the environment, or unaccept-
able financial losses. It is therefore of great importance to consider the resilience of
system under attack.

Survivability is a new area of research concerning the capability of a system
to fulfill its mission, in a timely manner, in the presence of attacks, failures, or
accidents [11]. Other definitions focus their attention to satisfy survivability of cer-
tain critical requirements, addressing specific requirements for security, reliability,
real-time responsiveness, and correctness [25].

The key assumption in system survivability is that anything is possible. One
therefore assumes that intrusions will occur sooner or later. When considering
effects of intrusions, one has to recognize that in a computer any mechanism that
empowers can (and will) be used against you, e.g. root or administrator privileges.
This is different from fault-tolerance, which addresses dependability considering
issues such as aging of components, system environment, or electrical interference.
Assumptions are made about the statistical probabilities of certain events, e.g. it is
assumed to be much more likely for a component to fail in a safe state than to fail
in a specific asymmetric way causing pathological behavior. In survivability, this
assumption does not hold. Attacks are assumed to be malicious rather than benign,
and the probability of an attack does not necessarily follow predictable patterns.
For example, if a vulnerability has been found in a specific system, but has not been
published anywhere, the probability of this system being successfully attacked using
the vulnerability is probably very small. However, posting the system’s vulnerability
in “hacker news groups” will almost certainly result in a successful attack.

Even though in survivability the statistical assumptions about faults are not
the same, one should keep in mind the general principles of fault-tolerance under
different fault models when considering methods to avoiding or surviving attacks
and their effects. This argument holds if one views a system as a “black box”.

Many different types of faults have been defined, some having orthogonal prop-
erties [1,18]. For example, fail-stop behavior implies that the faulty processor ceases
operation and alerts other processors of this fault. Crash faults, on the other hand,
assume that the system fails and looses all of its internal state, e.g. the processor
is simply down. One speaks of omission faults when values are not delivered or
sent, e.g. due to a communication problem. If outputs are produced in an untimely
fashion, then one speaks of a timing fault. Transient faults imply temporary faults,
e.g. glitches, with fault free behavior thereafter. If transient faults occur frequently,
one speaks of intermittent faults. This set of fault types is by no means complete
and serves only as a basic introduction. The definition of faults seem to change with
the application domain. For instance, fault models suitable for computer depend-
ability may not necessarily match the behavior of network and computer security
applications [1].

Whereas the previous paragraph considers different types of classical faults,
their behavior with respect to other processors can be described in simpler models
which have been used with respect to replication and agreement algorithms. Specif-
ically, fault models have been considered whose main behavior types are benign, i.e.



globally diagnosable, symmetric, i.e. faulty values are seen equal by all non-fault
processes, and asymmetric or malicious, i.e. there are no assumptions on the fault
behavior [21,27].

Even though much research has been conducted that considers issues of fault-
tolerant scheduling, the types of faults addressed are actually small. The main
focus has been on benign and transient faults [12,14,22,23]. With respect to fault-
tolerance, k-fault-secure scheduling [4,15,16,17] has been introduced which implies
that the system can tolerate up to k faults. However, again the research consider
only permanent and transient fault models.

This paper addresses scheduling issues beyond the context of benign and tran-
sient faults to include the full spectrum of faults represented in hybrid fault models.
The research focus is on survivability applications which have to deal with multi-
processor scheduling as part of redundancy management. The distributed workload
of interest is defined by the agreement algorithm used to consolidate results of repli-
cated tasks in the presence of malicious acts, i.e. malicious faults. Section 2 gives
the motivation for spatial redundancy and introduces agreement algorithms and
hybrid fault models. The scheduling and communication model are described in
Section 3. For given agreement algorithms, agreement task graphs and task graph
primitives are presented in Section 4. Section 5 focuses on performance issues.
The scheduling of the graphs or primitives is shown to depends on the effective
scheduling of certain groups of tasks. Finally, Section 6 concludes the paper.

2. Background

Survivability has been defined with respect to Resistance, Recognition, Recov-

ery, and Adaptation [11]. The first three are referred to as “Three-R’s”. Resistance
addresses intrusion prevention, Recognition implies intrusion detection, and Recov-
ery addresses the need to return to a safe state after or during an attack or fault.
Finally, Adaptation applies knowledge gained as a result of an attack in order to
robustify the Three-R’s.

2.1. Inherent Need for Redundancy

Survivability, as compared to security, views recovery as an integral part of the
process. Recovery from loss of information, e.g. data, status, or context, implies
redundancy. Redundancy, in turn, puts an extra burden on the scheduling envi-
ronment with respect to redundancy management. The redundancy mechanisms
available are “spatial”, “information”, and “time redundancy”. With respect to
the scheduler, spatial redundancy presents the greatest challenges, requiring multi-
processor scheduling and the associated problems of data movement and communi-
cation delays. The redundancy management indirectly implies the need for infor-
mation exchange in order for redundant components to agree on correct values or
actions. Time redundancy requires scheduling the same tasks multiple times on the
same processor, however, no communication is required. Information redundancy
only cause additional computational overhead to process the additional information,
e.g. error correction codes. In the rest of this paper we refer to spatial redundancy
only.
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2.2. Agreement Algorithms

Redundancy is the assumed mechanisms to allow for recovery from the affects of
faults and malicious acts. In order to detect or mask any discrepancies among the
redundant copies, voting mechanism must be in place. Agreement algorithms are the
common solution. The algorithms considered range from simple majority voting to
full Byzantine Agreement [20]. A wide pallet of agreement solutions exist, differing
in the constraints put on the fault model and the networking environment. The
main issues are the fault model considered, e.g. benign or malicious, the network
topology, e.g. fully or partially connected graphs, the networking protocol, e.g.
point-to-point or multicast, and communication synchronization, e.g. synchronous
or asynchronous.

One key issue is the time of the agreement, addressed by the notion of immediate

and eventual Byzantine agreement [8]. Immediate agreement implies that all pro-
cessors agree at the same time. In eventual agreement, all processors will eventually
agree, but perhaps at different times.

The fault model and the agreement algorithms used in the replication scheme
define the number of processors as well as the extent of the communication. Typi-
cally, as the number of processors increases, there is potential for dramatic increase
in communication. This has direct implications on the scheduler and the scheduling
environment.

2.3. Hybrid Fault Models

A fault model partitions the fault space. Together with the agreement algorithm,
satisfying certain algorithm specific assumptions, it defines the total number of
processors N needed and the overhead with respect to inter process communication.
Not only does N have direct implications on the cost of the distributed system,
which scales linear in N , but it also defines the communication overhead. For
agreement using point-to-point protocols, algorithms can have run time and message
complexity of up to O(Nm), where m is the number of malicious faults [20].

In fault-tolerant system design, hybrid fault models have been used in order to
achieve higher reliability or lower degree of replication. Figure 1 gives an overview
of fault models.
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Fig. 1. Fault model

The simplest model is the single-mode Byzantine fault model at the root level.
Every fault is assumed to be malicious, i.e. asymmetric, and the agreement algo-



rithms needs N ≥ 3t+1 processors and r ≥ t+1 rounds of communication, where t

is the number of faults. An algorithm satisfying these requirements was introduced
in [20].

At the second level, faults are partitioned into malicious and benign faults. This
two-mode fault model was introduced in [24] and requires N > 3m + b processors
and r > m rounds, where m and b are the number of malicious and benign faults
respectively.

In the three-mode hybrid fault model at the next level malicious faults are
furthermore partitioned into symmetric and asymmetric faults [21,27]. The model
requires N > 2a + 2s + b + r processors and r ≥ a rounds, where a and s indicate
the number of asymmetric and symmetric faults respectively. In fault-tolerance this
model thrives under the assumption that the fail rates λ for the individual fault types
decrease drastically with their respective fault complexity, i.e. λa << λs << λb.

At the lowest level is the five-mode hybrid fault model of [2] which adds the no-
tion of transmissive and omissive fault behavior. Transmissive asymmetric behavior
implies that conflicting values are delivered, strictly omissive asymmetric implies
that the correct value is received by at least one, but not all. Transmissive symmet-
ric assumes the delivery of the same erroneous value, whereas omissive symmetric
fails to deliver the value to any receiver. The result is N > 3a′+2s′+3ωa+2ωs+b+1.

3. Scheduling and Communication Model

The application workload we are interested in is the computation and commu-
nication associated with the agreement algorithms. Unless otherwise indicated, we
will limit the scheduling considerations strictly to the agreement induced workload.

The application environment consists of Linux based computers in a general
local area network (LAN). Thus, we assume a heterogeneous processor environment
consisting of N processors or computers and a network topology that is logically
fully connected. As such, it can be a partially or fully connected graph or a bus.
The connectivity of the topology is assumed to be at least unity. Note that this
guarantees that the network is connected, but it does not imply fault-tolerance, e.g.
link or processor failures could result in partitioning the network. Otherwise higher
connectivity must be assumed [3,20].

The smallest unit of computation considered is a task T , which may be pre-
empted during execution. The application to be scheduled consists of a task graph
G = (V, E), where V is the set of vertices, i.e. tasks Ti, and E is the set of edges
representing the precedence relation among tasks.

We consider a hybrid scheduling model which assumes two kinds of tasks. Task
set V consists of real and so-called phantom tasks. In [7] real tasks are defined as
tasks in the usual sense, whereas phantom tasks are special tasks which consume
time, but unlike real tasks, they consume no resources. Phantom tasks will be
our primary mechanism for modeling communication. Therefore, we adjusted the
definition in [7] slightly to reflect that a phantom task takes time but no CPU
resources. This is motivated by a view of a network interface card as an autonomous
identity that is not CPU bound. Throughout the paper, real tasks will be depicted
by circles and phantom tasks by rectangles.

In general, two types of communication are considered, synchronous and asyn-
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chronous. Strictly speaking, in the synchronous model, communication primitives
operate in perfect synchronization, i.e. in lock-step. In a real system, such assump-
tion is unrealistic. An asynchronous communication scheme, on the other hand,
makes no assumption about the timing of communication. It is therefore difficult
or impossible to differentiate between a communication unit, i.e. a message, that is
late and one that got lost. Realistic networks operate under asynchronous commu-
nication assumptions with bounded communication delays.

There are basically two communication primitives in typical LANs. The first
is point-to-point and is typically represented by sockets, pairs of communicating
ports in the Transport Control Protocol (TCP). The second primitive is multicast,
which constitutes communication to a set or subset of computers in a network.
Broadcast is a special case of multicast addressing all nodes on the network. The
most common broadcast protocol is User Datagram Protocol (UDP). Our primary
focus is on point-to-point communication.

4. Agreement Task Graphs

In order to execute agreement algorithms, the associated tasks, represented by
an agreement task graph, need to be scheduled in the multi-processor environment.

4.1. Benign Faults & Conditional Precedence

If only benign faults are considered, the resulting system can be represented as
a parallel Reliability Block Diagram (RBD) with N blocks. This defines a 1-of-N

system, i.e. all N components must fail to cause a system failure.

The general model is the k-of-N model which requires at least k of the N mod-
ules to function fault free. Such model is very common in reliability analysis, and is
referred to as a k-of-N system. The task graph of an N-of-N and k-of-N system are
shown in Figure 2. Recall that squares denote phantom tasks modeling communi-
cation. Even though both graphs are the same, i.e. they have the same vertex and
edge set, the graphs present different scenarios with respect to the release of task
Ti. For the N-of-N graph, task Ti is released at the time the last of the predecessors
finishes. This is different for the k-of-N graph, in which Ti is released at the time
the first k predecessor tasks finish. Such behavior is referred to as conditional prece-

dence [13], and is depicted in the graph by dashed edges. The concept of dynamic
conditional precedence will be described in Subsection 5.3.
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4.2. Malicious Faults

Malicious faults for point-to-point communication environments have been ad-
dressed in [20]. An Oral Message algorithm OM(t) was presented that could deal
with t faulty processors, assuming a total number of processors of N ≥ 3t + 1. The
algorithm is an immediate algorithm and works in t+1 rounds of message exchange.
Each node keeps track of values received in a so-called EIG-Tree [5], where each
level represents a round of message exchange. Figure 3 shows the EIG-Tree of pro-
cessor P2 for OM(2). Each node maintains such a tree. Edges represent messages
received, leaf vertices contain the received value. Edge labels indicate from which
processor a value has been received. For example, following the path from the root
to the right most leaf node indicates that this leaf node received a value that orig-
inated at processor P0, was sent to P6 and lastly received from P5 with value 0.
The depicted EIG-Tree has one single leaf node at level 2, all other leaf nodes are
at level 3. This stems from the fact that the tree is stored at processor P2, which
does not need confirmation about its own value from others.
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Fig. 3. EIG-Tree of OM(2)

The EIG-Tree embodies the computation and communication tasks that need
to be scheduled in order to execute an agreement algorithm. Therefore, EIG-Trees
build the basis for the agreement task graphs to be introduced below. Whereas
computations involve updating of data structures, e.g. EIG-Tree entries, the com-
munication is under the control of the network interface card. Therefore commu-
nication is assumed not to be CPU bound, which justifies its representation as a
phantom task.

4.2.1. Task Graphs for OM(1)

In order to generate the task graph for an agreement algorithm let us consider an
example task graphs for OM(1). Figure 4 shows the task graph for round 0. On the
left side, P0 sends out messages, indicated by phantom tasks, to all other processors.
This graph is extended on the right side, reflecting that the network interface of
the other processors receive the messages and passes them on to the processor. The
task graph after round 1 is captured in Figure 5. Note that each phantom task is
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Fig. 4. Task graph: OM(1) round 0

incident to exactly one edge, i.e. each phantom task has one incoming edge. To
avoid visual clutter, multiple phantom tasks are depicted as arrays of rectangles,
each element representing one phantom task.

messages sent messages received

Round 1Round 1

P P PP 10 2 3 P P PP 10 2 3

Fig. 5. Task graph: OM(1) round 1

The extent of the number of messages passed becomes more apparent as the
number of faults increase, as will be shown by going from OM(1) to OM(2), which
requires r = t + 1 = 3 rounds of communication. The resulting task graphs after
each round are shown in Figure 6 and Figure 7. It should be noted that in the last
round of communication in Figure 7 each edge represents N − r messages. If one
needs to consider each message separately, then each edge and the corresponding
phantom task has to be replicated N − r times. This is in consequence to the
algorithm, which always sends each message received to all other processors that
have not received it yet.

4.2.2. Simplex versus Multiplex

The previous discussions showed task graphs for scenarios in which one single
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Fig. 6. Task graph: OM(2) round 0 and 1
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Fig. 7. Task graph: OM(2) round 2

processor, i.e. P0, distributed a value which every processor had to agree on. Such
scenario is called simplex. This of course does not constitute fault-tolerance, since
validity of the value cannot be guaranteed, e.g. if the originating processor lies to
the other processors it can manipulate which value all good processors should agree
on.

To satisfy fault-tolerance, it is assumed that each node in the redundancy con-
figuration executes an agreement algorithm, i.e. each processor executes a simplex
agreement. The final result is that each non-faulty processor has the same agreed
upon values, one per simplex agreement. This multiplex scenario N -folds the number
of messages sent, as each task at the top layer becomes the initiator of an agreement.
Figure 8 shows the agreement task graphs for the simplex and multiplex scenarios
of OM(2).

4.3. Task Primitives
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Fig. 8. Task graph: OM(2) simplex and multiplex

All task graphs shown so far can be derived from three task graph primitives.
The first primitive is broadcast, in which a real task sends out messages using
phantom tasks. The broadcast primitive should not be confused with a broadcast or
multicast protocol. Here the term broadcast only refers to the distribution, not the
protocol. The second primitive is receive, in which a real task receives the messages
from phantom tasks. The third primitive is compute, which manipulates the data
structures, e.g. EIG-tree, and voting. The three task primitives are depicted in
Figure 9. A forth primitive can be defined representing k-of-N precedence. This
primitive looks just like the receive primitive, however, at run-time, it behaves
different, as explained in Subsection 4.1. Scheduling these primitives effectively will
increase performance of the algorithms, as will be shown in the next section.

...

Broadcast

...

Compute

...
Receive

Fig. 9. Task graph primitives

5. Scheduling and Performance

The performance of an agreement algorithm under a specific environment can be
measured by the time needed for reaching an agreement or by the communication
overhead, e.g. the total number of messages sent. Performance is mainly affected
by two factors: the processing power of each processor and the network speed.

The number of messages sent depends on the agreement protocol and the mes-



sage forwarding strategy [28]. For instance, a simple majority requires only a single
round of communication, whereas on the other extreme the OM(t) algorithm of [20]
requires t + 1 rounds of message exchange. Note that we are not considering multi-
cast or broadcast operations since the focus of our research is mainly on networks
using TCP/IP protocols.

5.1. Timing Issues

Given the non-deterministic behavior of most distributed environments, we fo-
cused our performance analysis of agreement on direct measurement. Even though
the measurement of time is a very simple idea, the actual process is very compli-
cated. The reason for this is twofold. First, in a distributed environment each
processor has a different view of time. This is mainly due to differences in clock
initialization times and differences in actual clock speeds, i.e. clocks usually drift
apart slowly. With non-deterministic network delays, it is difficult to synchronize
time. The second issue is the transparent behavior of operating systems in a multi-
tasking environment. The problems associated with distributed clocks have been
addressed extensively in the literature [6,10,26].

Figure 10 illustrates the different times of interest during the process of reach-
ing agreement. Assume that Tinit is the initiating task of a simplex agreement.
At time tsinit, the initiating processor begins to send out messages to all other pro-
cessors in order to start an agreement. At times ts

p1
, tsp2

, ..., tspn the replicated tasks
Tp1, Tp2, ..., Tpn, executing on different processors, receive the value from the initiat-
ing processor respectively. Each processor starts its message exchange process and
tries to reach an agreement. At times te

p1
, tep2

, ..., tepn, the processors make a deci-
sion and reach agreement. Each processor then sends a signal back to the initiating
processor to inform it that an agreement has been reached. The initiating processor
receives the last message at teinit. From the initiating processor point of view, the
whole agreement took ∆tinit time units. It is also possible that each processor will
act immediately after it makes its decision, i.e. it does not need to report back
to the initiating processor. Under this situation, the initiating processor does not
know when an agreement is reached.
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Fig. 10. Communication timing
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If Figure 10 represents a majority voting scheme, then ts
pi−tsinit is the communi-

cation time observed by processor Pi in the first (and only) round of communication.
The communication phantom task Ti in the agreement task graph has thus an ex-
ecution time equal to tspi − tsinit.

5.2. Scheduling for Performance

Of special interest with respect to performance are the intervals ∆tstart and
∆tend between the dashed lines shown in Figure 10. Not all processors start and
reach agreement at the same time. Interval ∆tstart represents the maximum time
difference among receiving processors when they become aware of the start of an
agreement. If we assume that processors act immediately after they reach an agree-
ment, then ∆tend indicates the maximum time difference among processors in taking
action. This difference can be very important for many applications, since for ∆tend

different processors can be in non-agreement states. If, for example, the agreement
is in the context of database entries, then the distributed database is in an incon-
sistent state during this time.

Assuming a homogeneous processor environment, the single most important
criteria affecting performance of agreement algorithms is the relative position of
related real tasks across processors. For the OM(2) algorithm, Figure 11 identifies
these groups of tasks in the shaded ellipses. If one wants to minimize ∆tend, the
leaf tasks have to be considered as a group as well.

... ... ... ... ... ...

... ... ... ... ... ...

P P PP 10 2 3 P P P4 5 6

... ... ... ... ... ...

... ... ... ... ... ...

Fig. 11. Task groups in OM(2)

In general, task groups can be derived directly from the task graph primitives,
as shown in Figure 12. The effectiveness of the agreement algorithm depends on
how closely aligned these tasks can be scheduled across the processors. Whereas
the groups in the broadcast and receive primitives are phantom tasks, the compute
group consists of real tasks. In order to minimize communication, the phantom
groups must be aligned. In the best case, this can be achieved by using a multicast
protocol for agreement [3]. For point-to-point protocols one can force communica-



tion to all processors be an atomic operation within the operating system.

ReceiveBroadcast Compute

...
...

...

Fig. 12. Task groups of graph primitives

5.3. Dynamic k-of-N Precedence

In the simple k-of-N system of Subsection 4.1 k is a constant. In agreement
algorithms with early stopping behavior [5,9,19], k is not known a priori but run-
time dependent. These algorithms differ from the standard algorithms in that each
processor agrees to a correct value as soon as a certain threshold of correct values
is received. Early stopping algorithms are therefore eventual rather than immedi-
ate algorithms. Since the threshold determination is value driven, and therefore
run time dependent, we define the notion of dynamic k-of-N precedence as a gen-
eralization of k-of-N precedence. Dynamic k-of-N precedence has big implications
on processor and communication link reclaiming, e.g. slack-time reclaiming. The
reason is that, whereas the entire task graph needs to be scheduled, upon the condi-
tional release of a task Ti by k predecessors, the remaining N−k predecessors can be
aborted, thereby freeing up respective processor resources. Furthermore, aborting
tasks reduces message complexity since these tasks refrain from sending messages.
The impact of early stopping on the message complexity has been quantified in [28].

5.4. Experimental Results

Scheduling the groups of the task graph primitives conforms to the general notion
that synchronizing the groups across processors gives the highest performance. This
follows directly from the definition of ∆tstart and ∆tend of Figure 10.

In an attempt to capture the real timing associated with the task groups in-
dicated in Figure 12, an experiment was conducted that involved the execution
of three different agreement algorithms in computer clusters of variable size. The
number of computers in the cluster is equal to the size of the task group in the task
graph primitives. Only in k-of-N precedence primitives might the actual number of
tasks executed in the group be less than the cluster size, i.e. only if k < N .

The clusters consisted of 80X86 compatible computers running RedHat Linux
version 6.0 and 6.2 with a standard TCP/IP protocol stack, configured using 10Base-
T and a Cisco System Catalyst 1900 switch. In order to overcome the time mea-
surement problems indicated in Subsection 5.1 the xntp3-5.93 time synchronization
package was utilized.

The agreement algorithms implemented were the classic OM(m) algorithm by
Lamport et. al. [20] and two derivations of early stopping agreement algorithms [19].
Whereas the Lamport algorithm utilized the task graph primitives of Figure 9, the
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early stopping algorithms imply primitives with k-of-N precedence, where k is a
threshold value depending on the data received at run-time. Two early stopping
algorithms, SyncES and AsyncES were considered. SyncES implements early stop-
ping with synchronized voting after every message in a round is present, whereas
AsyncES is an asynchronous version where a voting process is started after each
received message. Readers interested in the early stopping algorithms are referred
to [19] and [28] for details.

Next, the cluster sizes were fixed. Given the number of processors required to
reach agreement [20], i.e. N ≥ 3t + 1, we considered the number of malicious fault
to be t = 1, 2, and 3, resulting in cluster sizes of N = 4, 7, and 10, respectively.

Measuring the time intervals ∆tstart and ∆tend in Figure 10 reveals how close
the groups in the task primitives could be scheduled. The data presented next is
based on repeating the executions of each algorithm 200 times. Figure 13 shows
the maximum starting time differences ∆tstart observed. The three algorithms
show similar timing behavior with only slight differences among algorithms within
the same cluster. However, with increasing cluster size the differences grow. It is
expected that the overall ∆tstart must increases with the cluster size as more tasks
in the task groups must obtain their messages.

Fig. 13. Maximum starting time difference ∆tstart

As each agreement executes, the impacts of the differences among the algorithms
compound, resulting in looser scheduling of the task groups within the primitives.
Figure 14 shows differences in ∆tend as the cluster grows. The small task graph
primitives associated with the 4 processor cluster are tightly synchronized and show
little differences in ∆tend. However, as the cluster grows the hight of the task graph,
the size of the task groups in the primitives, and the number of messages increase.
The time differences compound from each stage of the task graph to the next. The
affect is a larger diversion in the ending time differences, which is most visible in
the 10 processor scenario. Actually, the results are not surprising when one looks
at the growth in the graph hight, which is linear to t + 1, and the task primitive
group size, which is bound by 3t + 1. Whereas the task graph for a 10 processor
scenario is not shown due to its size, the growth for the 4 and 7 processor scenario
can be seen by comparing Figure 5 and Figure 7.



Fig. 14. Maximum ending time difference ∆tend

The significantly better ∆tend for the early stopping algorithms in larger clus-
ters shows the strength of k-of-N scheduling as compared to Lamport’s N-of-N

primitives. It should be noted, that in a pathological scenario, the early stopping
algorithms degenerate into Lamport’s algorithm, i.e. in the worst case scenario
k = N . The dynamic determination of k at run-time [19] increases resource re-
claiming as k decreases since the size of the task groups within the primitives is
reduced.

Lastly, the number of messages have to be considered when interpreting ∆tend.
Figure 15 shows the total number of messages sent. In the 4 processor cluster the
number is constant by the nature of the task graph and its execution. The power
of k-of-N scheduling in the early stopping algorithms shows better performance as
the cluster size increases.

Fig. 15. Total number of messages sent

5.5. Fault Models and Task Graphs

After the establishment of agreement task graphs, their task graph primitives,
and the performance implications based on scheduling the task groups, the impact
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of the fault models needs to be addressed.

The most significant realization is that complex agreement algorithms are needed
only if malicious faults can not be prevented. As a result, agreement involving only
benign and symmetric faults can be achieved using majority voting. The simplex
task graph of a majority voting algorithm involves a single round of communication.
An example of such graph is the round 0 graph of Figure 6. If asymmetric faults
are unavoidable, then complicated agreement algorithms must be employed. In the
worst case, this results in task graphs similar to the one shown in Figure 11, which
considered a 7 processor scenario under OM(2).

The real strength of using the hybrid fault models shown in Figure 1 is that
one can reduce the overall complexity or size of the agreement task graph by com-
mitting to a mixture of faults. For instance, in the three fault model addressed
in [21,27], the number of rounds can be fixed to the number of asymmetric faults,
independent of how many benign or symmetric faults should be considered. This
has direct implications on the agreement task graph, whose depth is directly linked
to the number of rounds. Addressing survivability, the fault mix can constitute a
separation of (1) malicious faults caused by hackers and (2) the faults introduced
by traditional dependability considerations. Whereas in the latter case asymmet-
ric faults can be avoided by design [29], the hacker impact should not be assumed
avoidable or preventable.

6. Conclusions

This research addressed scheduling of agreement algorithms used in survivability
applications where recovery is based on spatial redundancy. For specific agreement
algorithms, agreement task graphs, consisting of real and phantom tasks, were
presented. Whereas real tasks represent CPU bound operations, phantom tasks
model communication under the control of the network interface card. The effec-
tive scheduling of the agreement tasks graphs directly affects the performance and
thereby feasibility of specific agreement algorithms. By using hybrid fault models,
a mix of faults can be specified in order to reduces the complexity of the agree-
ment and therefore the size of the associated agreement task graph. Task graph
primitives for broadcast, receive and compute operations were identified. Within
these primitives task groups were identified whose efficient scheduling is directly
linked to the performance of the agreement. For early stopping agreement algo-
rithms the agreement task graphs include dynamic k-of-N precedence, which allows
for processor reclaiming.
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