The Performance of Inherently Stable

Priority List Dispatchers in Hard Real-Time Systems

A W. Krings R.M. Kieckhafer
Dept. Comp. Sci. Dept. Comp. Sci. and Eng.
Technical University of Clausthal University of Nebraska
38678 Clausthal, Germany Lincoln, NE 68588-0115
J.S. Deogun

Dept. Comp. Sci. and Eng.
University of Nebraska
Lincoln, NE 68588-0115

Abstract

This paper investigates low overhead solutions to the problem of scheduling instability in
non-preemptive static priority list scheduling. Non-preemptive priority list scheduling is
vulnerable to several multiprocessor anomalies. For example, in precedence constrained
task systems, real-time deadlines can be missed due to a reduction in the duration of one
or more tasks. A system displaying this behavior is called unstable. Several inherently
stable run-time dispatchers of varying complexity are presented and their performance is
investigated. These algorithms are less restrictive than previous stabilization methods and
are based on an Eztended Scheduling model that includes phantom tasks as a mechanism
to model non-transparent overhead and events external to the processor.

The dispatchers presented range from the simplest priority sequence enforcing dispatcher,
up to a minimally stable algorithm based on the conditions necessary and sufficient for insta-
bility to occur. Extensive simulation on a wide range of task systems, including real-world
workloads, shows that very simple low-overhead dispatchers have near-optimal average per-
formance. Thus, real-time system developers are supplied with simple run-time dispatching
algorithms that make complicated stabilization methods unnecessary.

1 Introduction

Non-preemptive static priority list scheduling is a relatively simple, low-overhead approach
to scheduling computational tasks in real-time multiprocessor systems. In this type of
scheduling, all tasks are pre-assigned to a single list with unique fixed priorities. When a
processor becomes available, a run-time dispatcher scans the priority list in order of de-
creasing priority and begins execution of the first unstarted ready task on the idle processor.
Individual tasks are part of a task system in which a precedence graph specifies precedence
constraints between tasks. The precedence graph defines a partial order, in which vertices

represent tasks and directed edges represent precedence constraints.

Non-preemptive scheduling has proven desirable in several real-time systems, including
the Spring Kernel [11], the Reliable Computing Platform (RCP) [1] and the Multicomputer
Architecture for Fault Tolerance (MAFT) [5]. Simplicity and low run-time overhead are the
main motivators for its use [1, 5]. However, it is vulnerable to anomalous timing behavior
caused by variations in task durations. Specifically, reducing the duration of one or more
tasks can cause the starting time of another task to be delayed [2]. This phenomenon, called
Scheduling Instability, can make it difficult or impossible to guarantee real-time deadlines
2, 8]. Unfortunately, variability in task duration is a natural occurrence caused by events
such as cache misses, memory refresh cycles, DMA cycle stealing, or bus contention between

Processors.

This paper addresses the relative performance of several dispatcher stabilization algorithms
of widely varying complexity. Section 2 presents background information and describes the
scheduling model employed in this study. Section 3 introduces Scan Window Dispatch-
ing and a new class of provably stable run-time dispatchers. These dispatchers are less
restrictive than known stabilization algorithms, since they are derived from a set of Gen-
eral Instability Conditions which are both necessary and sufficient for instability to occur
[6]. Section 4 describes the general performance testing procedures. Section 5 presents

scheduling simulation data, comparing performance of the run-time dispatchers, including

a “minimally stabilized” dispatcher. Extensive simulations have shown that even simple,
low overhead dispatchers perform remarkably well. This is an important result for devel-
opers of hard real-time systems, in that it suggests that “simple is better”, i.e. one can
implement fast low overhead dispatchers which guarantee stability, but still deliver near

optimal performance.

2 Background and Motivation

Non-preemptive priority list scheduling is vulnerable to several multiprocessor anomalies
2], which describe counter-intuitive or unstable scheduling behavior caused by variations in
system parameters. For example, deadlines can be missed due to (1) increasing the number
of processors, (2) relaxing one or more precedence constraints, (3) reducing the duration of

one or more tasks.

This paper addresses the third anomaly, instability due to variations in task durations. The
motivation for focusing on this one anomaly is that it is the only one of the three likely
to occur as a result of run-time phenomena. For example, one generally does not alter
the precedence relationships between tasks in a running system. Similarly, one does not
insert a processor into a running system without having previously examined the impact
on scheduling. However, task duration can vary from one execution of a task to the next.
These variations are stochastic, and generally unavoidable. Simulating schedules with all
possible variations in the durations of all tasks is in most cases an intractable problem.
Therefore, task dispatching must be provably stable for all permissible variations in task

durations.

2.1 Definitions

For the purposes of this study, a Tuask is defined as an indivisible block of code which
must be executed on a single processor. A task system, described by a directed acyclic

precedence graph with N tasks, is to be scheduled on M processors. Durations for each

task T; are specified by minimum and maximum values. For a given instance of a task, its

actual duration varies randomly within these bounds.

A Scenario describes the schedule obtained with a particular set of task durations. The
Standard Scenario is the scenario in which all tasks execute for their specified maximum
durations. A Gantt chart depicting the standard scenario is called the Standard Gantt Chart
(SGC) [8]. In a Non-Standard Scenario at least one task runs for less than its maximum

duration, producing a Non-Standard Gantt Chart (NGC).

Whenever a processor becomes idle, the run-time Dispatcher selects another ready task for
execution on that processor. The dispatcher is thus distinct from the scheduling algorithm,
which is executed at system design time to assign task priorities and find a feasible schedule

for the standard scenario.

A system is stable if there exists no scenario under which the completion time of any task

on any NGC exceeds its completion time on the SGC ! [8].

2.2 Example of Instability

Figure 1 shows the precedence graph for an example eight-task system, with the maximum
duration of each task listed next to its vertex. Priorities are defined in order of increasing

start times on the SGC.

Figure 2 demonstrates scheduling instability. Gantt chart (a) is the dual-processor SGC
for the task system of Figure 1. Gantt chart (b) is the NGC obtained when task T3 is
shortened by an arbitrarily small value ¢ > 0. On this NGC, the shortened T35 finished
before T, causing Tg to be ready before T5. Ty was thus able to “usurp” the processor on
which Ty was executed on the SGC. As a result, both T and its child T+ started later on
the NGC than they did on the SGC.

'Manacher originally referred to this condition as “strongly stable”

¥o!
®-

Figure 1: Example Precedence Graph

(5
l
l

2.3 Stabilization Options

There are several approaches to stabilizing a task schedule. Two approaches, fizing the task
starting sequence and fixing task starting times are among the most restrictive methods that
will inhibit instability. The potential of these methods to cause poor processor utilization

has motivated the development of several alternative stabilization methods.

Manacher’s Algorithm One early algorithm for stabilizing a system of real tasks was
developed by Manacher [8]. It was intended to permit greater flexibility than the two
approaches stated above. Manacher’s stabilization algorithm alters the original precedence

graph, potentially adding many edges, to produce a graph which is inherently stable.

Hugue’s Algorithm In recent years, stability has been studied in the context of specific
real-time systems. In particular, Hugue [9] has developed a variation on Manacher’s ap-
proach, customized to the scheduling environment of the Multicomputer Architecture for

Fault-Tolerance (MAFT) [5].

Proc 1| T} T T, T

Proc 2 - - - T3 T5 T6 Tg
2 4 6 9 11

(a) Standard Gantt Chart — Maximum Durations.

Proc 1 T1 T2 T4 Tg """

Proc 2| - - - | 13 Ts Ts T
2 4—ce€ 7—e¢ 9—c¢ 12—¢

Non-standard Gantt Chart — T3 shortened by e.

Figure 2: Example of Instability

Run-Time Algorithms An alternative to the a prior: stabilization methods above is
run-time stabilization. In this approach, the dispatcher limits the depth of its scan into
the task list in order to avoid instabilities, using information known at run-time. This less
restrictive approach takes advantage of the general instability conditions described in [6],

which are necessary and sufficient for instabilities to occur.

2.4 Extended Scheduling Model

The arrival and execution of tasks in a real-time system may be partially dependent upon
processes and events occurring outside the processors themselves. To model such events, our
scheduling model incorporates a concept called Phantom Tasks. These tasks take time, but
do not occupy any processors. A critical feature of this model is that phantom tasks are fully
integrated into the precedence graph along with real tasks. This model extension allows
precedence constraints between real and phantom tasks. Some applications of phantom

tasks include:

1. The arrival of a task may be delayed by an external timer. In the extended scheduling

model the timer process is represented by a phantom task. Then, in the precedence

graph, the delayed real task is specified as a child of the phantom task.

2. Task A can initiate an external task B, (e.g. a DMA operation) which must complete
before task C' can proceed. This case can be modeled with a task chain, consisting of

real task A, phantom task B and real task C.

3. In message-based systems, communication between processors can impose a delay
between the completion of the parent task and the release of its children. In the
interim, the processors are available for other unrelated tasks. These delays can be
modeled by a phantom task inserted into the connecting edge of each parent-child

pair.

3 Run-Time Stabilization

Manacher’s algorithm modifies the precedence graph a priori to ensure stability in all pos-
sible scenarios. Run-time stabilization is less restrictive and leaves the original precedence
graph unchanged. The dispatcher is modified to enforce stability, not necessarily consider-
ing all possible scenarios. Rather, it only needs to enforce stability given the actual scenario

up to the current time.

This section presents several provably stable task dispatching algorithms that are based on
restricting the number of tasks which the dispatcher may scan. Due to limited space, the

stability proofs are omitted. The interested reader is referred to [7].

3.1 Scan Window Dispatching

When a processor finishes its current task, the traditional priority list dispatcher may scan
the entire task list to find a ready task. Stability can be enforced at run-time if the number
of tasks scanned is limited such that no usurper task is ever started before a vulnerable

task. A task is called vulnerable to instability if there exists at least one scenario in which

it is the lowest numbered task to miss its deadline.

The subset of unstarted real tasks scanned by the dispatcher are said to be in the Scan
Window. The first task in the scan window is always the first unstarted real task in the
priority list. The number of unstarted real tasks scanned is called the Scan Depth, D,,

where T, is the lowest numbered unstarted real task at the time of the scan.

The General Instability Conditions of [6] provide the basis for determining the maximum
safe scan depth. Three tasks are important to the depth limiting algorithms to follow.

These tasks are defined at the time the list is scanned.

T, is the lowest numbered real task that has an unfinished phantom parent.

T}j is the lowest numbered real task which is also the second real child of an unfinished

forking task.
T, is the lowest numbered real task such that:

1. T, is descended from an unfinished forking task,

2. On the SGC, T, started while another real descendant of the same forking task

was running.

Example: Using the precedence graph of Figure 1 and the NGC of figure 2(b), consider
the status of the list when it is scanned at time ¢t = 4 —e. At this time, the lowest numbered
unstarted task is T, = Tj. Further inspection shows that the only unfinished forking task
at this time is 75. Thus, tasks T,, T, and T, are defined as follows.

T, does not exist since there are no phantom tasks in this system. However, had Ty been
a phantom task instead of a real task, then the lowest numbered real task with an

unfinished phantom parent would be T, = Tx.
T} is the second real child of unfinished forking task 75. Hence, Tz = T5.

7

T, is also T5 because it is the lowest numbered real task such that:

1. It is descended from unfinished forking task 75,

2. On the SGC (Figure 2(a)), it started while T (another descendent of T5) was

executing.

Task T, is called a fan-out task, because it represents an increase in the number of processors
occupied by the descendents of a given parent. Task T, is also a fan-out task, because it
occupies one real processor, while its phantom ancestor occupied zero real processors. The
amount of the fan-out is then the difference between the number of processors occupied by

the descendents and the number of processors occupied by the common ancestor.

We have developed scan depth limiting algorithms which are partitioned into three classes,
Basic, Augmented and Frame-based Algorithms [7]. No dispatcher can scan beyond the end
of the priority list. Thus, the scan depth is always bounded by D, < (N —u) + 1. To

avoid visual clutter, this constraint is not explicitly stated, however, it is always presumed.

3.2 Basic Algorithms

Four basic algorithms have been developed for limiting the dispatcher scan depth D,. All

four have been proven to produce inherently stable dispatchers [7].

Algorithm 1: D, = 1. This scan window contains only the first unstarted real task,
{Tu}-

Algorithm 2: D, = (a—u)+1, where: a = min|[a, (u+1)].
The largest scan window for this algorithm is {Tu, T(u+1)}, so D, <2.

Algorithm 3: D, = (¢—u)+1, where: ¢ = min[a, #].
The scan window is thus {7, ,..., T.}.

Algorithm 4: D, = (w—u)+ 1, where: w = min[a,v].
The scan window is thus {T, ,..., T,}.

8

Example: To illustrate the operation of these dispatchers, consider again the precedence
graph in Figure 1. In this example, instability is possible only if T§ starts before T5. None of
these dispatchers allow that situation to occur. Algorithm 1, with its scan depth of 1, would
not scan Tg until T5 was already started. Algorithm 2, with its maximum scan depth of 2,
would not scan Ty until after T, has started. By that time, Ty will have already been released
by its latest parent, T5. T3 is the second child of forking task 7. Therefore, Algorithm 3
cannot scan beyond Tj until Ty is completed, making T5 ready to run. Similarly, the SGC
of Figure 2a shows that 75 ran in parallel with T}. Since both of these tasks have common
ancestor Ty, Algorithm 4 cannot scan beyond Ty until 75 is completed. Thus, none of these

dispatchers allow Ty to start before T5.

The stability criteria employed by Algorithm 4 are similar to the criteria of Manacher’s

algorithm, expanded to account for phantom tasks?.

3.3 Augmented Algorithms

Let I be the number of idle processors at the time of the scan (including the processor which
initiated the scan). It has been shown that the scan depth of each of the basic algorithms
can be extended by the value (I — 1) [7]. These augmented algorithms are indicated by
appending the letter A to the basic algorithm name. The basic and corresponding aug-
mented dispatcher algorithms, as well as their run-time and pre-processing complexities,
are summarized in Table 1. In a list implementation, Algorithm 1 and 2 have constant
complexity due to the fixed scan depth. This increases complexities for Algorithm 1A and
2A to O(M) since the scan depth can increase to maximally M. The remaining algorithms
have O(N) due to the fact that worse case the full list is scanned. Heap implementations
result in O(logN), due to the reordering of the heap. For more information the reader is

referred to [7].

2Manacher’s algorithm prevents priority inversion with regard to the first task of a co-running pair,
whereas Algorithm 4 prevents inversion with regard to the second task of the co-running pair.

Alg’'m Maximum Scan Depth Run-Time Pre-Proc.
Name Complex. Complex.
linear heap
1 D,=1 O(1) | O(logN) None
1A D,=1 O(M) | O(logN) None
2 D,=(a—u)+1 wherea= O(1) | O(logN) | O(N)
2A D,=(a—u)+1 min|a, (u+1)] | O(M) | O(logN) | O(N)
3 D,=(c—u)+1 wherec= O(N) | O(logN) | O(N)
3A D,=(c—u)+1 min| a, (] O(N) | O(logN) | O(N)
4 D, =(w—u)+1 where w = O(N) | O(logN) | O(N?)
4A D,=(w—u)+1 minla,vy] O(N) | O(logN) | O(N?)

Table 1: Summary of Basic and Augmented Scan Window Dispatchers

3.4 Frame Based Algorithms

Recall that a fan-out task is any real task with at least one of the following properties:
(1) It is a child of a phantom task, (2) It is descended from a (real or phantom) forking
task, and it started execution on the SGC while another descendent of the same forking
task was executing on another processor. In Algorithm 4, the scan window was defined as
{Ty, ..., Ty}, where w = min|a,~]. T, is the first fan-out task, and on the SGC it causes
a fan-out of 1 (note that T, is a descendant of an unfinished parent). Assume that T,
is the only fan-out task in the workload. Then, if one wants to scan past T, stability is
guaranteed only if there is at least one additional (reserved) idle processor that can absorb

the possible fan-out of T,. This argument led to augmented Algorithm 4A [7].

In the search for stabilization algorithms which are less constrained than the augmented
algorithms, it is necessary to identify fan-out tasks beyond T,,. Let T,,; = T, then define
Twi = min[T,,T,] ignoring all T,,;, j < i, as candidates for 7, and T.,. The result is the

complete list of all fan-out tasks. All T,,; are called basic fan-out tasks, in that each T,

10

can cause a fan-out of 1. In the examples of the following sections, it will be shown that
some fan-out tasks have special properties. For ease of notation T, will be used from now

on to denote any arbitrary basic fan-out task 7T,;.

Recall that Algorithm 4A scanned I — 1 tasks beyond 7),1. It can be shown [7], that one
can extend the idea of Algorithm 4A to span the scan window I — 1 fan-out tasks beyond
T, i.e. up to the I*" fan-out task T,,;. This algorithm is called the W-Algorithm. Its
complexity stays the same as Algorithm 4/4A i.e. O(N), since a scan up to T,,; might at

worse require a full scan.

3.4.1 Effective Fan-out

The W-Algorithm is based on the assumption that every basic fan-out task 7T, needs to
be considered when determining the safe scan depth. However certain basic fan-out tasks

cannot cause instability.

Let s denote the start time of T, in the standard scenario, i.e. on the SGC. Define F(T,)
as a function that indicates how many basic fan-out tasks with indices less than or equal
w are executing at s5/4. Then a task T, is said to have an effective fan-out of F(T,). The
example in Figure 3 shows parent tasks 7},; and T), which have 2 and 1 basic fan-out tasks
as children, respectively. In the corresponding SGC shown in Figure 4, where shaded areas

indicate that the task is a fan-out task, F(T,1) =1, F(Tw2) =2 and F(T,1/) = 3.

3.4.2 Overlapping Fan-out Tasks:

If there are k basic fan-out tasks executing on the SGC at some time ¢, then the effective

fan-out of the k overlapping fan-out tasks is k. In the SGC of Figure 4 one can see that at

std
wl’

with f(Twll) =3.

time t; = 7%, the effective fan-out of the three basic fan-out tasks is 3, as reflected by T,/

11

Figure 3: Subgraph of workload

P1 Twi

P2 Tt | Ta

P3 Tp2 Tc2 Tw1’

P4 C Twe
t‘l

Figure 4: SGC overlapping fan-out tasks

3.4.3 Non-Overlapping Fan-out Tasks:

Not every basic fan-out task contributes to an increase in the effective fan-out. Assume that
several basic fan-out tasks exist such that their executions do not overlap on the SGC. It
can be shown that these non-overlapping basic fan-out tasks can collectively contribute only
to an effective fan-out of 1. Figures 5 and 6 show the subgraph and the SGC of a system
with two non-overlapping basic fan-out tasks. Fan-out F(7,;) = 1 and F(T,2) = 1 and the
effective fan-out of {71, T2} at any time is 1 and not 2, as expected by the W-Algorithm.

Figure 5: Subgraph of workload

12

P2 Tp1 Te1 Tw2

Figure 6: SGC non-overlapping fan-out tasks

3.4.4 Effective Fan-out Tasks:

Let T,; denote the lowest numbered basic fan-out task with F(7},) = i. Then T,; is called
an effective fan-out task. T,y is the first effective fan-out task (F(7e;) = 1), Teo the second
and so forth. By definition T.; = T,,;. Every effective fan-out task is also a basic fan-out
task, but the reverse is not necessarily true. It should be noted that T,; is not necessarily

the only fan-out task with a fan-out of ¢, but it is the first.

3.4.5 Scan Frames

The priority list can now be partitioned starting with the first unstarted task T,. The

general priority list at the time of the scan is
PL=(Tuw,....;Te1,....Te2, ., T, -..).

Task T.g = T, if® F(T,) = 0, otherwise T,y does not exist and the list starts with T,;. T,
is the last effective fan-out task, and its effective fan-out is bounded by M, the number of
processors in the system. Positioned between T,; and T, ;1) are any number of tasks T} with
effective fan-outs 0 < F(7;) < i. These tasks, including T,;, are called the Scan-Frame
of T,; and are denoted by A.;. Thus A, is the set {T¢;,..., Te(+1)-1}. The definition of
scan-frames is with respect to the current scan. Whereas the W-Algorithm takes the first
I basic fan-out tasks under consideration, one can modify this algorithm (see subsection

3.4.7) considering effective fan-out tasks T,; only.

3F(T,) # 0 if and only if T, is descended from a phantom task.

13

3.4.6 Impact of Usurper Task Durations

Assume T, is the next task checked for safe starting. It can be shown that the only scan

frames that need to be investigated are those which contain tasks T3, whose SGC starting

std

time s;

overlap timewise with the execution of usurper task 7, on the NGC, assuming

T, were started [7]. This means that scan frames A.; with s8¢ greater than the maximal
finishing time of T, cannot be vulnerable to instability caused by starting 7T,. Thus, a scan
window algorithm has to reserve processors only for the frames whose associated T,; starts

at or before the maximum finishing time of T, since safety of the succeeding frames follows.

3.4.7 The E-Algorithm

As a result of the previous discussion the following E-Algorithm can be specified:

1. Find the first ready task T, and determine its scan-frame k’.

2. Find the last task T, with index v < x whose standard starting time overlaps the

hypothetical execution of T, and find its scan frame k.

3. T, can be safely started if k idle processors can be reserved for tasks from {Agg, ..., A}

3.4.8 The F-Algorithm

The fan-in of a task sub-graph is defined to be the event that causes at least one processor
to permanently become idle, with respect to tasks in that sub-graph. If one extends the
E-Algorithm to include the impact of fan-ins, one derives a run-time implementation of the
General Instability Conditions. This F-Algorithm is then minimally stable in the sense that
no processor is left idle as long as there exists any ready task which can be started safely
[7]. However, the F-Algorithm has exponential complexity due to the need of generating

an NGC-Tree to investigate all possible fan-in scenarios.

14

3.4.9 Slack-Time Reclaiming

Assume the dispatcher scans the list at time ¢. The slack-time of a task 7T} is then s5Y —¢ the
time remaining until the starting deadline of T;. At time ¢, starting a usurper task 7, € T+,
can not cause T; to be unstable as long as its maximum duration ¢4 < s — ¢, If this

inequality is true, then it is said that task T, is slack-time safe with respect to T;.

Each of the dispatcher algorithms above can be extended by including slack-time reclaiming?.
Specifically, a usurper task can be started either if it is inside the scan window, or if it is
slack-time safe with respect to the first vulnerable task recognized by the dispatcher. Slack
time reclaiming can cause the dispatcher to scan all ready tasks to find a slack-time safe
task. Thus, given N tasks, slack time reclaiming adds O(N) to the complexity of each

algorithm, regardless of whether the ready tasks are maintained in a heap.

4 Performance Testing

Extensive scheduling simulations were performed to assess the performance of the dispatch-
ers presented. The objective of performance testing of the dispatchers was (1) to investigate
how well the low overhead dispatchers performed and (2) to investigate the change in per-

formance as dispatcher complexities increase.

Simulations were performed on a variety of representative task graphs, including several
“Real World” workloads for hard real-time systems from the areas of robotics and jet engine
control. In addition, a number of precedence graphs were generated locally to represent
task systems of varying size and structure. In some cases, phantom tasks were embedded

in the graph to model external processes.

Execution of each precedence graph was simulated using each of the scan window dispatch-

ers. In order to obtain relatively efficient SGC’s, the urgency strategy described in [8] was

4Slack time reclaiming is implicit in the F-Algorithm, but may be added as an option to each of the
others.

15

used to assign initial task priorities.

For each simulation trial, the actual duration of each task was randomly generated using a
uniform distribution over the interval between its minimum and maximum durations. The
resulting task system was then scheduled using each of the scan window dispatchers. Each
simulation trial was repeated 10,000 times with different durations on a 2, 4 and 8 processor

system, respectively.

4.1 Performance Metrics

The primary metrics employed are:

= Processor utilization averaged over all trial repetitions and dispatchers.

Ap = The maximum difference in processor utilization observed between dispatchers for
a given precedence graph.

D = The average scan depth at which a ready task was found.

4.2 Test Precedence Graphs

The different graphs tested were partitioned into three categories, according to the appli-
cations they represent. The test graphs are described briefly herein. For complete details,

the reader is referred to [7].

4.2.1 Generic Test Graphs

Different graph structures were generated locally to represent real task systems of varying

size and structure.

Delayed Start Graphs represent systems in which the starting time of some initial real tasks
is non-zero. In such graphs, all phantom tasks are initial tasks. In addition, each child of
a phantom task is a real task with no real parents. On average, one-half of the initial real

tasks were delayed by phantom parents.

16

Communication Delay Graphs model delays between the completion of a task and the
release of its children, considering parameter passing. Such delays occur in loosely coupled
systems, wherein updating of the dispatcher’s data structures is subject to message passing
delays [5]. Each delay is modeled by a phantom task, which is the sole child of a real task.

Any children of the real task then become children of the new phantom task.

Modular Redundancy Graphs model fault-tolerant systems in which multiple copies of each
task are executed concurrently on different processors. The results of the individual copies
are then subjected to a voting process before any copies of any children are released. Some
systems employ separate hardware voters in order to free the processors from voting [5].

Voting processes must then be modeled as phantom tasks.

Arbitrary Graphs represent a more general mixture of real and phantom tasks, comprising
features of the other groups. These graphs were designed to provide structural variety

rather than to model specific features of a system.

4.2.2 Pathological Graphs

Several precedence graphs were constructed with the intent of exacerbating performance
differences between dispatchers. These graphs were designed to reward large scan depths

by imposing large time penalties for dispatchers with inherently small scan depths.

4.2.3 Real World Applications

While the above task systems are intended to be representative of real-time task systems,
they are nonetheless artificial. To obtain data with real-world task systems, simulations
were performed on the five precedence graphs shown in Table 2. Workload “Turbojet” is
the precedence graph for Shaffer’s turbojet engine controller program, originally adapted
to a four-processor system [10]. Workloads “Robot 1”7 through “Robot 3” implement the
Newton-Euler algorithm for control of the Stanford Manipulator arm [3], while workload
“Robot 4”7 implements the Walker and Orin algorithm, also for the Stanford Manipulator
4].

17

In addition to representing real-world controllers, these graphs offer substantial variety in
structure and size, and have the advantage of being available in the open literature. Since
space limitations prohibit complete descriptions of the graphs here, The interested reader

is referred to [7] for more detail.

Name Tasks | Application/Reference
Turbojet 64 | Engine Control [10]

Robot 1 88 Newton-Euler [3]
Robot 2 103 Newton-Euler [3]
Robot 3 90 Newton-Euler [3]

Robot 4 200 | Walker & Orin [4]

Table 2: Real Workloads

5 Simulation Results

The results of simulations are presented separately for each category of precedence graphs.
Simulations were first performed without slack-time reclaiming (except for the F algorithm,
in which slack-time reclaiming is implicit). The impact of enabling slack-time reclaiming is

discussed in subsection 5.5

5.1 Generic Test Graphs

The performance of the generic test graphs is shown in Table 3, where the average utiliza-
tions @ for the minimally stable F-Algorithm, and the maximum difference Ay to any other
dispatcher are given. Averaged over all generic graphs, the 2 and 4 processor simulations
showed relatively high processor utilizations, whereas for the 8 processor case lower 7 were
achieved, due to the limited concurrency of real tasks available in the graphs. The highest
utilization was achieved for the graphs with the smallest number of phantoms, i.e. the

delayed start graphs.

The most important result is the small values of Ap observed, indicating there was very

18

‘ Workload H M=2 ‘ M=4 ‘ M=8 ‘ Ap ‘

Delayed Start 98 93 75 7.6
Communication Delay 96 86 65 4.1
Modular Redundancy 96 79 47 1.0
Arbitrary Graphs 97 80 44 3.3

Table 3: Utilization of generic workloads in %

little difference in average processor utilization across the dispatchers. Furthermore, the
simulations showed nearly identical performance within the set of basic algorithms, (1, 2, 3
and 4), the augmented algorithms, (1A, 2A, 3A and 4A), and the frame based algorithms,
(W, E and F). The reason for the nearly uniform performance of all dispatchers was observed

in the low average scan depth D, i.e. D < 2 for all basic and augmented dispatchers.

Processor utilization depends on ¢/" /™ the ratio of minimum duration to maximum
duration for task T;. This parameter is highly dependent on the system architecture. Simu-
lations were performed for duration ratios in the range: ¢/ /c"** =[0.1,..., 0.8],VT;inT .
The lower value, 0.1, allows for large variations in message passing delays and for cache
memories up to one order of magnitude faster than the main memory. In all cases, the low-
est values of 77 and the largest values of Ay were obtained when ¢™™/c™* = ().1. Hence,

these are the values reported in Table 3.

For the F-Algorithm on average 98%, 87% and 65% of all tasks were selected at a scan
depth of unity, with corresponding average scan-depths of 1.06, 1.29 and 2.08, in the 2, 4
and 8 processor systems respectively. Thus, the more complex dispatchers derived little

benefit from a deeper scan depth.

5.2 Pathological Graphs

The previous results showed nearly identical performance for all dispatchers over a variety
of precedence graphs. Therefore, heuristic “Pathological” graphs were constructed to ex-

acerbate the differences between dispatchers. These graphs were designed to reward large

19

scan depths, and to impose large time penalties on dispatchers with inherently small scan
depths. The graph structure without phantom tasks which gave the largest performance

m

differences is shown in Figure 7a. For each pathological graph, the ratio ¢ /¢ was indi-

vidually selected for each task T; to exacerbate Au. Pathological graphs were constructed

oL oL L/L duration=min/max L/L oL O/L duration=min/max
L =long L =long
1 S=short
ORCROIC @ S
[] phantom task
o/L o/L o/s o/s o/s 0/s o/L o/L
a) b)

Figure 7: Pathological Graphs

for M = 2, 4, and 8, respectively. Utilization and average scan depth for all dispatchers
is shown in Figure 8a and 8b. The effect of forcing deep scans is evidenced by the worst
case values of D > 2. However, the largest value of Ay was still less than 18%. One
reason for the uniformity in performance is that specific combinations of task durations are
needed to induce poor performance. The stochastic nature of task durations makes these

combinations extremely rare.

Figure 8a shows that performance generally improves with increasing complexity of the dis-
patcher. However, the major differences are due to Algorithms 1, 1A and 2. Algorithm 2A

consistently produces results very close to the F-Algorithm.

Figure 7b shows the particular pathological graph with phantom tasks that had the worst
performance. Figure 9a shows significantly lower average utilizations than for the previous
graphs, because the phantom task causes the scan window to stall. Again, the performance
of the augmented and frame based algorithms was uniformly better than that of the ba-
sic algorithms. However, the worst case value of Au was only 12%. The phantom task
stalling the window causes the basic algorithms to limit their window to unity, whereas

the dispatchers taking advantage of extra idle processors increase their window size up to

20

Utilization 8Average Scan-Depth

— M= — wM=8
M= _
R R R RET SEET SRR TR 22
0.8 5
ok e T e e e e —
06 W s} 1.8
0.4 1.6 B e R R B
’ 14 .,*/'
0.2 12 '/.* L AL A i R S
) [Algm’s
0 Algm’s
I la 2233 4 aWEF © I'la 2233 44aWEF
a) 1t b) D

Figure 8: 7i, D for Pathological Graphs Without Phantom Tasks
D = 2.17. The average scan depth for all dispatchers is shown in Figure 9b. The phan-
tom tasks prohibit D from going beyond 1 for all basic dispatchers, thus reducing them to
algorithm 1.

5.3 Real-World Work Loads

Next, the real workloads listed in table 2 were simulated. All work loads implement real
tasks only, with the exception of the Turbojet, which was also simulated in a MAFT-like

dispatching environment, with phantom communication tasks added between real tasks.

The average utilization i for all scan algorithms was about equal for the 2 processor case,
with maximum differences in utilization of less that 2%. The maximum differences in
utilization for the 4 and 8 processor case increased slightly, but remained below 6.2%. The
results are shown in table 4, where column Ap A-F indicates the maximum difference

between augmented dispatchers and the F-Algorithm.

As with the generic graphs, the ratio ¢/"/c™*® was varied from 0.1 through 0.8 to allow
for a variety of system architectures. Again, the value ¢/ /"% = (.1 consistently yielded
worst case values for 77 and Au. Hence, these are the values reported in Table 4. The lower

utilizations for the 8 processor case were due to lack of available parallelism in the graphs.

21

Utilization Average Scan-Depth

0 = i e
7 == M= -- M=
cees M=2 24 M=2
0.6 2.2
0.5 2
0.4f * T w F o wF 1.8
03l * o Ew 1.6
0.2 1.4
0.1 120/ :
, 1 ¥ ¥ Algm’s
0 Algm’s
L 1a 2 22 3 32 4 4a W E F g 1 la 2233 44aWEF
a) 1t b) D

Figure 9: 71, D for Pathological Graphs With Phantom Tasks

‘Testgraph HMzQ‘M:éL‘M:S‘A,u‘AuA—F‘
Turbojet 99.7 97.1 60.0 | 6.1 1.78
Turbojet(MAFT) || 99.4 91.1 54.0 | 5.7 1.50
Robot 1 99.2 89.9 50.0 | 3.7 0.44
Robot 2 99.9 82.3 425 | 54 1.55
Robot 3 99.8 93.5 544 6.2 1.85
Robot 4 97.6 92.8 58.1 | 6.2 3.75

Table 4: Real Work-Load Utilizations (7, Ap in %)

This conclusion was drawn from the observation that in less than 0.01% of the unsuccessful

scans, did ready tasks exist beyond the safe scan window.

5.3.1 Performance of Manacher’s Algorithm

Manacher’s Algorithm implements edge stabilization by inserting extra edges in the graph
to enforce stability a priori. The significant increase in the edge count for the real work
loads is shown in table 5, with highest increase of 59%. Comparing the simulation results of
window dispatchers with Manacher’s algorithm showed that Algorithm 4 and Manacher’s

algorithm performed nearly identically.

22

Test graph | Original | % increase by Mancher’s Alg’m
edges M:2‘M:4‘ M =38
Turbojet 102 21 12 39
Robot 1 130 18 32 59
Robot 2 149 43 50 57
Robot 3 125 29 34 24
Robot 4 339 35 40 39

Table 5: Edges added by Manacher’s Algorithm

5.4 Biased Duration Distributions

The preceding results were obtained with actual task durations uniformly distributed be-
tween their minimum and maximum values. In many systems, the maximum duration can
occur only after an unlikely sequence of events (e.g. repeated cache misses). Thus the
average duration of a task may be much less than the maximum duration. Let R denote
the normalized expected task duration within the minimum to maximum duration interval,
i.e. R = 0.5 implies uniformly distributed durations. Further simulations were performed
using distributions skewed toward the minimum duration (R = 0.2, and R = 0.11). These
simulations revealed that the relative performance of the dispatchers is quite insensitive to

the distribution of task durations [7].

5.5 Impact of Slack-Time Reclaiming

All previous simulations were performed without slack-time reclaiming (except for the F al-
gorithm in which slack-time reclaiming is implicit). All simulation trials were then repeated
with slack-time reclaiming enabled. Table 6 shows the maximum difference in utilizations

between all dispatchers without and with slack-time reclaiming for different R.

As can be seen, the difference in processor utilizations between dispatchers, Ay, was dras-
tically reduced for all of the non-pathological workloads when slack-time reclaiming was
enabled. Slack-time reclaiming is most effective when minimum and maximum task du-

rations vary greatly. Furthermore, for graphs with many levels, slack-time tends to accu-

23

mulate with each task within a chain. In the simulations of all algorithms implementing

Slack-time Reclaiming || disabled enabled
Workload R=05| R=05|] R=02] R=0.11

Real Work-loads 6.2 1.1 0.8 0.5
Delayed Start 7.6 4.7 3.1 2.6
Communication Delay 4.1 1.7 1.5 1.3
Modular Redundancy 1.0 0.9 0.7 0.7
Arbitrary Graphs 3.3 1.0 1.0 0.6
Pathological Graphs 17.9 17.9 14.2 6.8

Table 6: Impact of slack-time reclaiming on Ay in %

slack-time reclaiming, nearly identical results were achieved. This indicates that for work-
loads with large differences in minimum and maximum task durations, enough slack-time
can be accumulated to compensate for the different window sizes of the dispatchers. How-
ever, this performance is achieved by increasing the complexity of the basic and augmented

algorithms to O(N).

6 Summary

The objective of this paper was to examine schedule stabilization algorithms for non-pre-
emptive static priority list dispatchers. Several provably stable run-time dispatchers of
widely varying complexity have been presented. These algorithms are less restrictive than a-
priori stabilization methods. They are based on an extended task model, featuring phantom
tasks to model events like delayed task releases, non-transparent overhead, communication

delays and static task-to-processor allocation.

The concept of scan window dispatching was introduced, leading to dispatching algorithms
reaching from the most limited scan window (Algorithm 1), up to the run-time implemen-

tation of the necessary and sufficient General Instability Conditions of [6] (F-Algorithm).

Performance of the dispatchers was simulated for a variety of precedence graphs, including

24

several real world applications. Simulations showed that the simple dispatchers performed
remarkably well, even though graph structures could be constructed that amplify the ad-
vantages enjoyed by the more complex dispatchers. The largest deviation in processor
utilizations observed with a pathological precedence graph less than 18%. With real-world
precedence graphs, this difference never exceeded 6.2%. The use of slack-time reclaiming

reduced these performance differences even further.

The results of the simulations support an important thesis for developers of hard real-time
systems, in that there is no need to implement complex algorithms for non-preemptive
real-time task dispatching. Extremely simple, low-overhead task dispatchers exist which
are guaranteed to be stable, and yet perform nearly as well as the most complex dispatchers.
Thus, it is only necessary for the designer to find a feasible schedule in the standard scenario.
The stability of all non-standard scenarios is then guaranteed by the dispatcher. Current
research focuses on whether these results still hold for systems with static task to processor

allocation.

References

[1] Butler, R.W., and B.L. DiVito, “Formal Design and Verification of a Reliable Comput-
ing Platform for Real-Time Control”, NASA Technical Memorandum 104196, Phase
2 Results, Jan 1992.

[2] Graham R.L., “Bounds on Multiprocessor Timing Anomalies”, STAM J. Appl. Math.,
Vol. 17, No. 2, pp. 416-429, Mar 1969.

[3] Kasahara, H., and S. Narita, “Parallel Processing of Robot-Arm Control Computation
on a Multimicroprocessor System”, IEEE Journal of Robotics and Automation, 1(2),
pp- 104-113, June , 1985.

[4] Kasahara, H., “Parallel Processing of Robot Control and Simulation”, Parallel Com-
putation Systems for Robotics, Edited by Fijany, A., and A. Bejczy, World Scientific
Publishing Co. Ltd, pp. 77-93, 1992.

[5] Kieckhafer, R.M., et al, “The MAFT Architecture for Distributed Fault-Tolerance”,
IEEFE Trans. Computers, V. C-37, No. 4, pp. 398-405, April, 1988.

25

[6]

Kieckhafer, R.M., and J.S. Deogun, “ On the Stability of List Scheduling in Real-Time
Multiprocessor Systems”, Univ. of Nebraska — Lincoln, Dept. of Comp. Sci. and Eng.,
Report Series #99, Feb 1990.

Krings, A.W., “Inherently Stable Priority List Scheduling in an Extended Scheduling
Environment”, PhD Thesis, Dept. of Comp. Sci. and Eng., University of Nebraska,
Lincoln, 1993.

Manacher, G.K., “Production and stabilization of Real-Time Task Schedules,” JACM,
Vol. 14, No. 3, July 1967.

McElvaney-Hugue, M.C., and P.D. Stotts, “Guaranteeing Task Deadlines for Fault-
Tolerant Workloads with Conditional Branches”, The Journal of Real-Time Systems,
Vol. 3, No. 3, Sep 1991.

Shaffer, P.L., “A Multiprocessor Implementation of Real-Time Control for a Turbojet
Engine”, IEEE Control Systems Magazine, Vol. 10, No. 4, pp. 38-42, June 1990.

Stankovic, J.A., and Ramamritham, K., “The Design of the Spring Kernel”, IEFEFE
Proc. of the Real-Time Systems Symposium, Dec 1987.

26

