
UI-CS-TR-02-024

A Graph Based Model

for

Survivability Analysis

by

A.W. Krings and M.H. Azadmanesh

August 2002

COMPUTER SCIENCE DEPARTMENT

UNIVERSITY OF IDAHO

A Graph Based Model for Survivability Analysis∗

A. W. Krings A. Azadmanesh
Computer Science Dept. Computer Science Dept.

University of Idaho University of Nebraska at Omaha
Moscow, ID 83844–1010 Omaha, NE 68182–0500

krings@cs.uidaho.edu azad@unomaha.edu

Abstract

Many problems found in standard security and survivability applications can be transformed
into graph and scheduling problems, thereby opening up the problem to a wealth of potential
solutions or knowledge of limitations, infeasibility, scalability or intractability. This report
introduces a model to aid in the design, analysis, or operations of applications with security
and survivability concerns. Specifically, a five step model is presented that transforms such
applications into a parameterized graph model that, together with model abstraction and
representations, can be the basis for solutions derived from graph and scheduling algorithms.
A reverse transformation translates the solutions back to the application domain. The model
is demonstrated using a distributed agreement and its transformation into a group scheduling
problem.

∗Portions of this work were funded by grant #60NANB1D0116 from the National Institute of Standards

and Technology, U.S. Dept. of Commerce.

Contents

1 Introduction 1

2 Model Overview 2

2.1 Model Generation . 2

2.2 Parameterization . 3

2.3 Model Abstraction and Presentation . 3

2.4 Graph and Scheduling Algorithms . 4

2.5 Reverse Transformation . 4

3 Applications 5

3.1 Processors and Tasks . 6

3.2 Model Mappings . 7

4 Case Study: Distributed Agreement 10

4.1 Model Generation . 11

4.2 Parameterization . 13

4.3 Model Abstraction and Representation . 14

4.4 Scheduling Algorithm . 16

4.5 Reverse Transformation . 16

5 Conclusion 17

i

List of Figures

1 Model Overview . 3

2 EIG-Tree of OM(2) . 12

3 Task graph: OM(2) round 0 and 1 . 13

4 Task graph: OM(2) round 2 . 14

5 Communication timing . 15

ii

1 Introduction

Malicious attacks on computers and networks have reached epidemic proportions. Although

much research has addressed the issue of increasing security of networked computer systems,

problems and malicious acts are on the rise, rather than getting less [4]. Of special concern

is the reliance of critical infrastructures on networked computer systems. The 1997 Pres-

ident’s Commission on Critical Infrastructure Protection (PCCIP) “designated as critical

certain infrastructures whose incapacity or destruction would have a debilitating impact on

defense or economic security”[17]. Among the eight critical infrastructures identified were

telecommunications, electrical power, gas and oil storage and transportation, transporta-

tion, and water supply. What these critical infrastructures have in common is that their

underlying devices are controlled by communication networks and that their underlying

physical infrastructure can be modeled by graphs. As such, it is reasonable to assume that

many problems associated with these infrastructures may have solution spaces in areas that

use graphs as common models, e.g. graph or scheduling theory.

In the area of cyber terrorism, computer and network security and survivability are the

principal research areas addressing protection. Security is often viewed as addressing issues

of confidentiality, integrity, availability, as well as accountability and correctness. Surviv-

ability, on the other hand, goes beyond security and has been formulated with respect to

Resistance to, Recognition of, and Recovery from attacks, with a final iteration considering

Adaptation [7]. Whereas resistance and recognition are typically associated with security,

the main consideration of survivability is recovery. The recovery aspect can adopt many

concepts from the area of fault-tolerance considering diverse fault models, which are directly

affected by the topology and communication protocols of the systems involved.

The lack of success in securing networked computer systems may be attributable to the

missing theoretical groundwork and mathematical models [9]. Most approaches to security

and survivability are ad hoc. Thus, in the absence of standardized security test procedures

claims, e.g. of intrusion detection systems, cannot be verified. Furthermore, it is not

possible to compare relative results, as such comparisons would require a general common

basis.

1

In an attempt to increase rigor in certain critical cyber problems, we are investigating

transformation of security and survivability problems to other disciplines. Problem trans-

formations in order to solve hard problems have been used extensively in mathematics and

engineering. Well known examples include exponentiation or Laplace transformation. The

general strategy is to transform the original problem into a different problem space in which

known solutions exist, or solutions can be found at lesser cost. After a solution has been

derived in the new problem space, a reverse transformation is used to translate the solution

found back to the original problem space.

This research presents a transformation to formalize certain survivability and security prob-

lems. The transformation model enables solutions to be based on graph and scheduling

theoretical concepts. Section 2 gives a model overview. Section 3 explains the model using

examples of graph and scheduling problems. Section 4 presents an extensive case study

in which a transformation from a distributed agreement problem in a group scheduling

problem is motivated. Finally, Section 5 concludes the paper.

2 Model Overview

The basic philosophy of the model is shown in Figure 1. We will first describe the model

in general and will demonstrate it using a distributed agreement application in Section 4.

For the description of the model overview imagine that the application under consideration

is associated with a general network of computers, or a critical infrastructure such as the

electric power grid together with the data communication network controlling its devices.

2.1 Model Generation

The application is transformed into a task graph together with the task model specification,

if applicable. The general model is based on a directed graph G = (V, E), where V is a

finite set of vertices vi and E is a set of edges eij, i 6= j, representing precedence relations

between vi, vj ∈ V .

2

Parameterization

Model Abstraction and

Representation

Model Generation

Graph Algorithms

Scheduling Algorithms
Optimization

Reverse Transformation

Application A Application X...

Figure 1: Model Overview

2.2 Parameterization

Now that the application is mapped to vertices and edges of G, a mapping of application

specific parameters to generic parameters is needed. Examples of such parameters are

power transmission, network throughput, communication cost, sensitivity or confidentiality,

relative importance based on the cost of loss of services etc. The vertices and/or edges of

the graph generated need to be assigned weights representing their characteristics. The

results can be generalized by integer or real valued weights. Thus, for each vertex in V

and edge in E, vertex and edge weights are defined respectively. Let wv
i denote the vertex

weight of vi. Furthermore, let we
ij denote the weight of edge eij, where vi, vj ∈ V and i 6= j.

If multiple parameters need to be considered simultaneously, scalar weights are insufficient.

Depending on the application that G represents, multiple weights may be defined for vertices

and/or edges. In this case wv
i and/or we

ij are vectors, where wv
i [k] and we

ij[l] represent the

kth and lth parameter respectively. The number of weights, representing the length of the

vector, is denoted by |wv
i | and |we

ij|.

2.3 Model Abstraction and Presentation

Once a weighted graph G is defined, the graph can be considered in the context of standard

graph or scheduling problems. A graph theoretical formulation can be represented by the

graph itself, along with the manipulative objectives, such as max-flow or min-cut. On the

3

other hand, a scheduling theoretical formulation requires the specification of the scheduling

model, i.e. the processing environment, and the optimization criteria. In order to avoid

lengthy descriptions of scheduling models S, a compact description of the form S = (α|β|γ)

is commonly used [?]. The fields α, β, and γ indicate the processor environment, the task

and resource characteristics, and the optimization criteria respectively. The most important

feature of the model generation process is the matching of the survivability requirements

and objectives with the graph and scheduling model and objectives.

2.4 Graph and Scheduling Algorithms

Graph G and schedule model S are now subjected to graph and scheduling theoretical al-

gorithms respectively. The goal is to find optimal or suboptimal solutions for the sought

after survivability criteria, applying the best suitable algorithm(s). A wealth of algorithms

and heuristics of varying space and time complexity exist. Appropriate algorithms need

to be identified that suit the optimization criteria, i.e. the survivability criteria, consider-

ing response time or computation requirements. One of the desired aspect of using graph

or scheduling models is that the time or space complexity may be inherited from the al-

gorithms, i.e. many problems have been shown to be intractable, e.g. NP-complete or

NP-hard. This may provide valuable information about the solution space. However, it

should be noted that intractability in the general case does not necessarily imply that the

problem cannot be solved efficiently. In fact, for specific limited problem sizes solutions

may be obtainable efficiently or at acceptable cost, despite of the problem being computa-

tionally hard. After the application of graph or scheduling algorithms or heuristics, optimal

or sub-optimal solutions will be available.

2.5 Reverse Transformation

The solutions of the graph or scheduling algorithms must now be translated back to the

application. This requires a reverse transformation analogous to the transformation used

in the Model Generation. This step represents the transformation from the solution space

back to the application space.

4

3 Applications

The process outlined above will now be explained using examples for a graph and scheduling

problems.

Assume we need to analyze the vulnerability of a data communication infrastructure. The

communication network may be represented by a digraph with weights equal to a spe-

cific Quality of Service (QoS) parameter, e.g. maximal data rate. The objective may be

maintaining a desired data rate, even if some links fail. Such scenario may arise when a

communication infrastructure is to be analyzed with respect to its resilience to malicious

acts destined to disrupt communication links.

In this scenario the graph G is defined by the network graph. Vertices in V constitute

communication hardware, e.g. gateways or routers, and edges in E are communication

links. The QoS parameter, the maximal data rate we
ij, is defined for each link between

devices vi and vj.

The scenario above is a graph problem which can be formulated as follows: Given a minimal

required data rate between any two vertices vi and vj, find the minimal number of network

links that must be destroyed in order to violate the data rate requirement. The answer

should provide insight about vulnerabilities, and the minimal attack scenarios could be

used to motivate enhancement to the robustness against attacks.

To demonstrate how security problems can benefit from solutions of their transformed

scheduling problems, consider a system facilitating autonomous agents to perform security

related operations, e.g. patch management or diagnostics. Assume that, as a result of an

exposed vulnerability, patches need to be automatically installed in a large set of computers

in such a way that patch management does not affect the overall mission.

The patch management agents will have a set of core tasks to be performed, diagnosing the

presence of a certain vulnerability and installing the associated patch. As patch manage-

ment often implies disruption of normal operations, including reboot of the computer, each

computer needs to be queried, identifying the earliest time ri at which the patch may be

installed as well as the disruption weight wi on computer vi. If a patch management agent

5

is viewed as a processor, and diagnosing and installing the patches on a specific computer

vi as a task Ti with a minimum and maximum processing time pmin
i and pmax

i equal to

the diagnosis and patch installation duration respectively, then the agents paths may be

determined by solving the scheduling problem that optimizes the makespan Cmax,
∑

Ci or
∑

wiCi.

3.1 Processors and Tasks

Whereas in scheduling resources are usually seen in the traditional sense, e.g. computers

and machines, in the field of security and survivability resources may be interpreted more

generally. There are many different attributes associated with different resources. For

example, processors may be identical, uniform, unrelated or dedicated [3].

1. Identical: homogeneous environments, e.g. homogeneous computers and input/output

devices, software licenses, personnel with same skill level.

2. Uniform: processors with different speed bi, e.g. heterogeneous computers and in-

put/output devices, network devices with different bandwidth, personnel at different

skill levels within the same expertise domain, network sniffers with different sniffing

capabilities.

3. Unrelated: in classical scheduling theory, uniformity implies that processor speeds

differ but individual processor speeds are considered constant. If the speed is depen-

dent on the task performed, processors are called unrelated [3]. Typical examples are

computers or networks subjected to Denial of Service (DoS) attack, which may be

distributed (DDoS).

4. Dedicated: specialized for the execution of certain tasks. Examples include special

purpose computers, or domain specialists with different areas of specialization, e.g.

Unix and NT system administrators.

Tasks may be non-preemptive or preemptive.

6

1. Non-preemptive: once a task is started, its execution can not be interrupted. The

classical example is printing. However, security policies often have strong require-

ments for patch management, redundancy management, and maintenance operations

such as backups and logging that represent atomic, i.e. non-preemptable operations.

2. Preemptive: task execution can be interrupted. This is standard for the majority of

applications run on most commercial general purpose and real-time operating systems.

Besides traditional interpretations, security policies specify the course of action in

response to many kinds of benign and malicious activities, thereby preempting normal

system operations. In response to system problems or attacks, technical response

assistance centers require technicians to frequently process several incidences at a

time, switching back and forth between them.

3.2 Model Mappings

There are countless security problems that can benefit from applying the model of Figure 1.

Below we identify some problems, but it should be noted that this is by no means an attempt

at generating a complete list of application domains.

Graph Model Many Critical Infrastructure Protection (CIP) problems have topology

maps that can be represented by directed or undirected graphs. Typical examples are

transportation networks, electrical power grids, pipelines, water lines, and the communica-

tion networks controlling these infrastructures. Below are some examples that would result

in a graph model.

1. With respect to determining emergency procedures involving the transportation in-

frastructure, identification of the number of suitable disjoint paths between two loca-

tions, e.g. cities, and the associated traffic capacities are essential.

2. The identification of prime targets, whose destruction or compromise would render

the application useless is a key task in CIP and communication networks. The 1997

report of the Presidential Commission on Critical Infrastructure Protection (PCCIP)

7

identified infrastructure elements that are essential to the national defense and eco-

nomic security of the United States.

3. Identification of the minimal infrastructure required to satisfy basic requirements.

The definition of “basic” could differ depending on the application, e.g. military vs.

civilian infrastructures.

4. After outages in the electric power infrastructure, it is very common for the mainte-

nance personnel to physically reset Supervisory Control and Data Acquisition (SCADA)

devices, rather than resetting or reactivating the devices remotely. Directing the main-

tenance crews to power substations is heavily influenced by the significant geographic

distances between substations. Solutions may be derived from solving the associated

traveling sales person problem.

Scheduling Model Many security problems can be mapped to scheduling problems.

One key observation is that security personnel can be viewed as the processor environment.

There are many ways to map the security problem examples described below to a schedul-

ing problem α|β|γ. The formulations shown are only examples. Especially in the task

and resource characteristics, i.e. β, many interpretations and formulations are possible.

This vagueness should be seen as a strength, not weakness, as it introduces flexibility in

generating a solution space.

1. Response management: P ||Cmax.

Each of the P identical processors represents a security specialist.

2. Response management: P |ri|Cmax or P |ri, di|
∑

wiDi.

These are variations of the previous case, where release times ri, due dates di, and

tardiness Di are considered. Schedule the security tasks, as they arrive (perhaps with

dynamic arrival times) under considerations of deadlines.

3. Response management: Q|ri|Cmax or Q|ri, di|
∑

wiDi.

In this variant, the realistic assumption is taken that the security personnel has dif-

ferent levels of expertise, e.g. junior versus senior security officer. Thus personnel is

represented by uniform processors Q.

8

4. Response management: J ||Cmax.

If the assumption is that different personnel has different qualifications, e.g. special-

ization with respect to specific operating systems, then processors might be considered

to be dedicated. In this case the problem might be treated as a job shop.

5. Response management: Pm|ri|Cmax or Pm|ri, di|
∑

wiDi.

Given a specific task to be performed in a time critical application, determine the

suitable number m of specialists needed for a given objective.

6. Response management: P |pmtn|Cmax or P |pmtn, ri, di|
∑

wiDi.

Preemptive scheduling (pmtn) considers context switching time and the number of

preemptions. This could include minimizing the number of preemptions. Technical

support staff of most customer response centers subject their technicians to multiple

cases at a time.

7. Physical security: P |prec, group, ri, di|
∑

wiDi or P |chain, group, ri, di|
∑

wiDi.

A facility is monitored by security cameras and observation personnel [11]. Different

locations to be observed are represented by task groups Gi, where Gi consists of ni

tasks, Ti1, Ti2, ..., Tini
. Each task Tij represents an observation window of processing

length pij. The processors are the observation monitor(s), or observation person(s).

Groups are to be scheduled with deadlines less than the times required by a skilled

adversary to infiltrate the facility. Solutions would be based on group scheduling or

scheduling with strong precedence under consideration of precedence (prec).

8. Physical security: F ||Cmax or J |di|
∑

wiDi.

The previous physical security application can also be formulated as a flow shop

problem, capturing the requirement that Tj i−1 needs to be executed before Tji, or as

a job shop problem.

9. Agent security: 1|ri|Cmax or Pm|di|
∑

wiDi.

In systems facilitating autonomous agents to perform security related operations, e.g.

version tracking, diagnostics, etc., the agent might have a set of critical tasks to be

performed on specific systems [12]. In the case of distributed denial of service attacks

(DDoS), timing might be crucial when implementing survivability measures using the

agent, as the defensive measure race in time against the increasing affects of the DDoS

9

attack. The agent is represented by a processor, the systems to be traversed are the

tasks.

10. Agent security: R|ri|Cmax or Rm|di|
∑

wiDi.

The previous case can be viewed with respect to the affects of the DDoS attack. In

this case it might be valid to consider processors are unrelated.

11. Agent security: 1|ri, pi|Cmax or Pm|di|
∑

wiDi.

Similarly, if agents are used for patch management, installing patches has to be coordi-

nated with the usage of the system in order to avoid conflicts with the tasks executing

on the system. This is very obvious in operating systems that require applications to

be terminated before installing the patches or rebooting after installation.

12. Intrusion detection systems: P |ri, pi|Cmax or Pm|pi, di|
∑

wiDi.

Many intrusion detection systems (IDS) rely on centralized computers to collect data

from log files and audit traces of different clients in order to check for coordinated

attacks. The individual log files can be large in size and need to be downloaded in

local area networks (LAN) or wide area networks (WAN).

13. Attack recognition systems: 1|pi, τ |Cmax.

Certain low-level attack recognition systems [13] need to be scheduled with end-to-

end and real-time requirements, guaranteeing that they are instantiated at regular

intervals τ . The periodic tasks are 1) sensor data collection and 2) attack signature

evaluation.

4 Case Study: Distributed Agreement

In this section we apply the model of Figure 1 to a problem that has been at the core of many

applications in the area of fault-tolerance and survivability, i.e. fault-tolerant agreement.

Reaching agreement in the presence of faults has been the subject of much research since the

formulation of the “Byzantine General Problem” [15]. The agreement problem addresses

value or event synchronization issues resulting from the use of redundancy as the preferred

mechanism to allow for recovery from the affects of faults and malicious acts. In order

to detect or mask any discrepancies among the redundant copies, voting mechanism of

10

varying complexity must be in place. Agreement algorithms are the common solution. The

algorithms considered range from simple majority voting to full Byzantine Agreement [15].

A wide pallet of agreement solutions exist, differing in the constraints put on the fault model

and the networking environment. The main issues are (1) the fault model considered,

e.g. benign, malicious, or mixed mode, (2) the network topology, e.g. fully or partially

connected graphs, (3) the networking protocol, e.g. point-to-point or multicast, and (4)

communication synchronization, e.g. synchronous or asynchronous.

One key issue is the time of the agreement, addressed by the notion of immediate and

eventual Byzantine agreement [6]. Immediate agreement implies that all processors agree

at the same time. In eventual agreement, all processors will eventually agree, but perhaps

at different times.

The fault model and the agreement algorithms used in the replication scheme define the

number of processors as well as the extent of the communication. Typically, as the number

of processors increases, there is potential for dramatic increase in communication.

The demonstration of the model utilizes and relies heavily on portions of the research

presented in [14], using the OM(t) algorithm of Lamport [15] as a basis. The traditional

OM(t) agreement algorithm is a round-based recursive algorithm that requires r = t + 1

rounds of communication and a total of N ≥ 3t + 1 processors in order to guarantee

agreement in the presence of up to t malicious nodes.

4.1 Model Generation

The agreement algorithm can be mapped into an agreement task graph GA = (V A, EA).

Task set V A consists of two kinds of tasks, i.e. real and so-called phantom tasks. In [5]

real tasks are defined as tasks in the usual sense, whereas phantom tasks are special tasks

which consume time, but unlike real tasks, they consume no resources. Phantom tasks

will be the primary mechanism for modeling communication. Therefore, we adjusted the

definition in [5] slightly to reflect that a phantom task takes time but no CPU resources.

This is motivated by a view of a network interface card as an autonomous identity that is

not CPU bound. In the figures below, real tasks will be depicted by circles and phantom

11

tasks by rectangles.

101 1 1 1

p
6

p
54

pp
2

p
1

p
6

p
5

p
3

p
2

p
1

p
6

p
4

p
3

p
2

p
1

p
5

p
4

p
32

pp
1

1 1 110 0 0 0 0 0 0 00

1

p0

1

p
6

p
1

p p
3

p
4

p
5

p
6

p
54

ppp

1 1

2

32

1 1 1

Figure 2: EIG-Tree of OM(2)

In the OM(t) algorithm, each node keeps track of values received in a so-called EIG-Tree [2],

where each level represents a round of message exchange. Figure 2 shows a sample EIG-Tree

of processor P2 for OM(2). Each processing node maintains such a tree. Edges represent

messages received, leaf vertices contain the received value. Edge labels indicate from which

processor a value has been received. For example, following the path from the root to

the right most leaf node indicates that this leaf node received a value that originated at

processor P0, was sent to P6 and lastly received from P5 with value 0. The depicted EIG-

Tree has one single leaf node at level 2, all other leaf nodes are at level 3. This stems from

the fact that the tree is stored at processor P2, which does not need confirmation about its

own value from others.

The EIG-Tree for the OM(2) example of Figure 2 can be used to generate an agreement

task graphs in a round-by-round fashion. With t = 2, a total of r = t + 1 = 3 rounds of

communication are required. Figure 3 shows the task graph for round 0 and 1. Whereas

the graphs are directed graphs, the arrows are omitted to avoid visual clutter. On the

left side, the agreement initiator P0 sends out messages, via phantom tasks, to all other

processors. Each processor receives the messages and passes them on to the processor,

which is indicated by the real task incident to the phantom task.

12

P P PP 10 2 3 P P P4 5 6

Round 0

...
...

...
...

...
...

...
...

...
...

...
...

P P PP 10 2 3 P P P4 5 6

Round 1

Figure 3: Task graph: OM(2) round 0 and 1

In round 1 each processor forwards the value received from the initiator to all other pro-

cessors. Each processor does so by acting as an “initiator” in the forwarding. Again, the

message passing is modeled by phantom tasks, one per message sent. To enhance readabil-

ity, this level of phantom tasks is represented in the figure as a group, with dots indicating

the multiplicity. The leaf nodes indicate that all values have been received by the proces-

sor. The final task graph of OM(2) can be seen in Figure 4 after the completion of the

final round, i.e. round 2. It should be noted that, in the last round of communication

in Figure 4, each edge represents N − r messages. If one needs to consider each message

separately, then each edge and the corresponding phantom task has to be replicated N − r

times. This is in consequence to the algorithm, which always sends each message received

to all other processors that have not received it yet.

4.2 Parameterization

Now that the agreement task graph GA = (V A, EA) is available, e.g. Figure 4, the appli-

cation specific parameters have to be introduced. In this example, parameterization first

implies the trivial mapping from each vertex vi ∈ V A to task Ti, i.e. each vi is a task Ti.

Next, the processing times pi of each Ti needs to be specified. If Ti is a real task, then in a

homogeneous processing environment pi is the processing time required to receive the mes-

sages and manipulate the data structures representing the EIG-Tree. The leaf nodes of the

graph also perform the final voting, with the voted-upon value constituting the agreement

13

...
...

...
...

P P PP 10 2 3 P P P4 5 6

Round 2

Figure 4: Task graph: OM(2) round 2

value. Exact values for pi can be either computation from the program segment or based

on measurement. If Ti is a phantom task, than pi represents the overhead of the protocol

stack, network interface, and data link. In this case it is more practical to use measurement

for the determination of pi.

4.3 Model Abstraction and Representation

In [14] it has been shown that the performance of agreement algorithms is linked to how

efficient certain task groups can be scheduled. Specifically, task primitives were defined

that isolated the tasks at any specific level of the graph as a task group. Thus, with respect

to Figure 4, task groups are defined by grouping together all tasks visited by each step

of a breadth-first traversal of the graph, starting from the initiator task of P0. It is the

efficient scheduling of these task groups that determine largely the performance and degree

of synchronization of the agreement algorithm.

Figure 5 illustrates the different times of interest during the process of reaching agreement.

Assume that Tinit is the initiating task of an agreement, e.g. the single task of P0 in Figure 4.

At time tsinit, the initiating processor begins to send out messages to all other processors

14

in order to start an agreement. At times ts
p1

, tsp2
, ..., tspn the replicated tasks Tp1, Tp2, ..., Tpn,

executing on different processors, receive the value from the initiating processor respectively.

Each processor starts its message exchange process and tries to reach an agreement. At

times tep1
, tep2

, ..., tepn, the processors make a decision and reach agreement. Each processor

then sends a signal back to the initiating processor to inform it that an agreement has been

reached. The initiating processor receives the last message at te
init. From the initiating

processor point of view, the whole agreement took ∆tinit time units. However, it is possible

that each processor will act immediately after it makes its decision, i.e. it does not need

to report back to the initiating processor. Under this situation, the initiating processor

does not know when exactly an agreement is reached. With respect to performance, the

t∆ p(N−1)

t∆ p1

t∆ p2

t∆ pN

initt s

p2t s

p(N−1)t s

pNt s
pNte

p1t e

p2t e

t∆
start

t∆ end
t∆ init

p(N−1)te

p1ts

initt e

Figure 5: Communication timing

intervals ∆tstart and ∆tend between the dashed lines are of special interest. Not all processors

start and reach agreement at the same time. Interval ∆tstart represents the maximum time

difference among receiving processors when they become aware of the start of an agreement.

If we assume that processors act immediately after they reach an agreement, then ∆tend

indicates the maximum time difference among processors in taking action. This difference

can be very important for many applications, since for ∆tend different processors can be in

non-agreement states. If, for example, the agreement is in the context of database entries,

then the distributed database is in an inconsistent state during this time.

The task groups of the agreement task graph GA = (V A, EA) must be scheduled on N

15

processors, together with the standard application tasks of each processor. For each Pi,

1 ≤ i ≤ N , let GP
i = V P

i , EP
i be the processor specific static workload. The final scheduling

model is a hybrid model which requires the scheduling of GA to coincide with the static

scheduling of each GP
i .

The resulting scheduling formulation is thus a variation of PN |prec, group, static|Cmax,

assuming a homogeneous processing environment, the agreement task graph with identifi-

cation of the task groups, as well as static task to processor assignments within a group.

4.4 Scheduling Algorithm

The problem Pm|prec, group, static|Cmax can be solved with any heuristic with special

focus on group or strong precedence scheduling, however, it may be necessary to relax the

Cmax requirement. Thus, an optimal or suboptimal solution could be acceptable. It should

be noted that it is not the scope of this research to identify the potential algorithms, we

merely assume the existence of suitable solutions.

4.5 Reverse Transformation

The schedule derived with the algorithm selected in the previous step and the dispatcher

satisfying the static allocation scheme need to be implemented. Thus, the reverse transfor-

mation in this application is simply the implementation of the scheduler and dispatcher.

Applying the model of Figure 1 to the distributed agreement case study resulted in a group

scheduling problem formulation. We considered that the performance of the algorithm is

directly linked to the level of synchronization of the task groups, i.e. it was affected by

how narrow the intervals ∆tstart and ∆tend of Figure 5 were. Theoretically, the optimal

solution would be found by optimizing the schedule of the agreement task graph based on

group scheduling with respect to the scheduling primitives defined in [14] for Cmax. This

was experimentally verified in [14].

16

5 Conclusion

This paper presented a model that can be used to find solutions from other areas, e.g. graph

or scheduling theory, to solve problems occurring in security and survivability applications

via problem transformation. The specific targets were applications that can be reduced to

graphs or task systems to be scheduled under specific scheduling models. The model was

demonstrated using a distributed agreement case study based on [14], which formulated the

agreement problem as a group scheduling problem.

We hope that through this contribution, researchers from the areas of scheduling theory

and operations research will realize that many problems in security and survivability could

have potential solutions in their research areas.

References

[1] J. Allen, et. al., “State of the Practice of Intrusion Detection Technologies”, Carnegie

Mellon, SEI, Technical Report, CMU/SEI-99-TR-028, ESC-99-028, January 2000.

[2] P. Berman, J. A. Garay, and K. J. Perry, “Optimal Early Stopping in Distributed

Consensus”, Proc. 6th International Workshop on Distributed Algorithms (WDAG ’92),

LNCS 647, Springer-Verlag, Nov. 1992, 221-237.

[3] Blazewicz, J., et.al., “Scheduling Computer and Manufacturing Processes”, Springer-

Verlag, 1996.

[4] CERT/CC Statistics 1988-2002, CERT Coordination Center,

http://www.cert.org/stats/cert stats.html.

[5] J. S. Deogun, R. M. Kieckhafer, and A. W. Krings, “Stability and Performance of List

Scheduling With External Process Delays”, Real-Time Systems, Vol. 15, No. 1, July

1998, 5-39.

[6] Dolev, D., et. al., “Eventual is Earlier than Immediate”, 23rd Annual Symposium on

Foundations of Computer Science, pp. 196-385, 1982.

17

[7] E. Ellison, L. Linger, and M. Longstaff, Survivable Network Systems: An Emerging

Discipline, Carnegie Mellon, SEI, Technical Report CMU/SEI-97-TR-013, 1997.

[8] E. Linger and M. Longstaff, A Case Study in Survivable Network System Analysis,

Carnegie Mellon, SEI, Technical Report CMU/SEI-98-TR-014, 1998.

[9] Keynote Speech of the Information Survivability Workshop, part of the International

Conference on Dependable Systems and Networks, DSN-2001, by Roy Maxion, CMU,

Goteborg, Sweden, 2001.

[10] K. Calvin, et. al., Detecting and Countering System Intrusions Using Software Wrap-

pers, Proc. 9th USENIX Security Symposium, 2000.

[11] Krings A.W, and M.A. McQueen, “Distributed Agreement in a Security Application,”

28th International Symposium on Fault-Tolerant Computing, Digest of FastAbstracts:

FTCS-28, IEEE Computer Society Press, Munich, Germany, June 23 - 25, 1998, pp. 37-

38.

[12] Krings A.W, W.S. Harrison, et.al., “A Two-Layer Approach to Survivability of Net-

worked Computing Systems”, Proc. International Conference on Advances in Infras-

tructure for Electronic Business, Science, and Education on the Internet, L’Aquila,

Italy, Aug 06 - Aug 12, pp. 1-12, 2001.

[13] A. Krings, W. Harrison, et. al., Attack Recognition Based on Kernel Attack Signatures,

Proc. International Symposium on Information Systems and Engineering, Las Vegas,

pp. 413-419, 2001.

[14] A. Krings, W. Harrison, M. Azadmanesh, and M. McQueen, Scheduling Issues in

Survivability Applications using Hybrid Fault Models, to appear in Parallel Processing

Letters.

[15] L. Lamport, M. Pease, R. Shostak, The Byzantine Generals Problem, ACM Transac-

tions on Programming Languages and Systems, Vol. 4, No. 3, July 1982, 382-401.

[16] P. Neumann, Practical Architectures for Survivable Systems and Networks, (Phase-Two

Final Report), Computer Science Laboratory, SRI International, June 2000.

18

[17] Critical Foundations, The President’s Commission on Critical Infrastructure Protec-

tion, Government Printing Office, Washington, DC, Oct. 1997.

19

