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Summary and Conclusions — An important problem in distributed systems is distributed
agreement. One form of distributed agreement is Approzimate Agreement in which non-faulty
processes need to agree on values within a predefined tolerance. In this paper, Approximate
Agreement voting algorithms are partitioned into three broad categories called Anonymous,
Egophobic, and Egocentric. Each category is further subdivided into families of algorithms.
One such family of voting algorithms which belongs to the Egocentric category will be
examined. Ad-hoc analyses of some members of this family of algorithms have been studied
individually under an overly conservative fault-model in which all faults are presumed to
behave in the worst case Byzantine manner. This paper develops a methodology to quickly
determine the fault-tolerance and the convergence rate of any member of this family under
a hybrid fault-model consisting of asymmetric, symmetric, and benign faults. The results
will be weighted against those of several known voting algorithms. Finally, a sub-family of

Egocentric algorithms with optimal performance will be identified.

1 Introduction

In distributed systems, it is often necessary for non-faulty processes to reach agreement on

data values in the presence of faulty processes. The agreement is ezact if the processes
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must arrive at a single consensus value. In many applications, however, the agreement is
approzimate [12, 18, 20]. The processes need to agree on values which are within a predefined
tolerance of each other. The problem of agreement becomes considerably complex when

faulty processes are capable of sending erroneous values to non-faulty processes.

Recently, a family of voting algorithms have been developed for the Approximate Agreement
problem. These algorithms, called Mean-Subsequence-Reduced (MSR) [9], employ the hy-
brid fault model of Thambidurai and Park [19], which partitions faults into three modes:

asymmetric (Byzantine), symmetric (single-valued) and benign (self-incriminating).

This paper employs the same hybrid fault-model but for a new family of voting algorithms
called Mean-Subsequence-Egocentric (MSE). MSE algorithms in addition to the conditions
required to satisfy the Approximate Agreement problem, require that the interval spanned
between any pair of the initial correct values be within a prespecified positive value, say
. Some members of this family of algorithms have been used in clock synchronization
[11, 12, 16]. MSE algorithms can also be used in applications where a certain amount
of discrepancy among processes, for instance, due to round-off errors, must be tolerated
[1, 4, 5, 7, 15]. However, no general analysis exists in literature that can easily determine

the performance of any of these algorithms under Byzantine or hybrid fault-models.

Section 2 presents some background material to understand the convergent voting process.
Section 3 introduces some general categories of voting algorithms, where each category may
contain more than one family of algorithms. Section 4 develops simple expressions to de-
termine the fault-tolerance and to easily measure the performance of any MSE algorithm.
Section 5 derives the optimal performance for MSE algorithms. In addition, it will present
the criteria for a sub-family of algorithms that will produce optimal performance. Section 6
compares the performance of MSE algorithms with that of some known convergent voting
algorithms. Finally, Section 7 concludes the paper with a summary and some remarks on

future research.



1.1 Notation
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the Egocentric voting multiset; V = |V

[min(V), max(V)] = [vi, vy |: range of V

max(V) — min(V) = vy — v;: diameter of V

Sel,(V): selected multiset containing o elements from V

size of selected multiset S

mean [Sel, (V)]: Egocentric Approximation Function

Wry(a e /o : convergence rate of Egocentric algorithms (section 4.1)
multiset of correct values received by both non-faulty processes i and j
total number of physically independent processes in the system
number of asymmetric, symmetric, and benign faults in the system respectively
N — b: number of elements in V after the removal of benign errors
current voted value of non-faculty processes 7 and j respectively

| — B|: maximum discrepancy amount between the current values of two ar-

bitrary non-faulty processes ¢ and j

index position of the ¢g'" selected element in V
k(h) — k(g): number of elements in V spanned by elements (sg,...,s;) in S
effective number of asymmetric errors in a voting multiset V

minimum value which ensures that k(h) — k(g) > z for any values g and h,
g<h<oandz >0 (section 4.1)

weight of the g'" element in S; for non-faulty process i (section 4.1)
(€i1,---,€,): Enumerated Selected List for non-faulty process i (section 4.1)

Z;’;l [€io—g+1 — €j¢]: maximum weight-difference between the last v, elements

of S; and the first 7, elements of S; (section 4.1)



2 Background and Definitions

The objective of reaching Approximate Agreement is to guarantee that, at the termination
of a voting algorithm, the voted value for each non-faulty process is within the range of
the initial correct values and that the difference between any pair of voted values for non-
faulty processes is strictly within a prespecified small positive real value e. The final voted
value, at the end of the voting algorithm, is obtained by employing multiple rounds of
message exchange. In each round, each process sends its value to all receiving processes.
Upon receipt of a collection of values, each process executes a function F', to obtain its
latest voted value, which is used in the next round of message exchange. The objective
of Approximate Agreement can be achieved by ensuring that each round is convergent, i.e.
the range of the correct values is reduced in each round [6, 12, 21]. This property, called
single-step convergence, guarantees that the range of values will eventually be less than e,
given enough rounds. A voting algorithm with this property is called single-step convergent

voting algorithm. All voting algorithms considered herein have this property.

Systems can be synchronous or asynchronous [6]. In a synchronous distributed system, the
processing and the communication delays of non-faulty processes are bounded. There is
thus a point in time by which any process executing a convergent voting algorithm will
have received all data from all non-faulty processes. Any data arriving after that time is
considered to be from a faulty process. By contrast, asynchronous systems impose no bounds
on process operation. The analysis of Approximate Agreement in this research is restricted

to synchronous systems with complete connectivity.
2.1 Real-Valued Multisets

Approximate Agreement requires the manipulation of multisets of real values. A multiset
is a collection of objects similar in concept to a set. However, it differs from a set in that
all elements of a multiset are not necessarily distinct. A multiset of real numbers can be
represented as a monotonically increasing sequence of the real values of its elements, i.e.
V = (v1,...,vy) is ordered such that: v; < vy Vi € {1,...,V —1}. The size of V is

V = |V|. Some of the useful operations on multisets are:



p(V) = [min(V),max(V)] = [v1,vy]; the real interval spanned by V. p(V) is called
the range of V.
(V) = max(V) — min(V) = vy — vy; the difference between the maximum and

minimum values of V. §(V) is called the diameter of V.

mean (V) = The arithmetic mean of the real values of all elements of V.

Subsequences — Consider two non-empty multisets U and V, where U C V. U is a
subsequence of V if there is an order-preserving one-to-one mapping k, from the indices of
U to the indices of V, ie. wu; = vy Vj € {1,...,U} and k(j) < k(j+1)Vj €
{1,...,U -1}

2.2 Single-Step Convergence

The property of single-step convergence is formally defined in terms of the following:

V,; = The multiset of values received in a given round by process %.

Uin; = The multiset of correct values received by both non-faulty processes 7 and j, i.e.

those values generated by non-faulty processes.

Each non-faulty process i executes a voting algorithm, producing a voted value F(V;). The
property of single-step convergence is guaranteed if both of the following conditions are true

following every round of voting:

Validity — For each non-faulty process i, the voted value is within the range of correct

values, i.e. F(V;) € p(Ujnj).

Convergence — For each pair of non-faulty processes, ¢ and j, the difference between
their voted values is strictly less than the diameter of the multiset of correct values

received, i.e. |F(V,;) — F(V;)| < §(Uyn;).

Performance of a convergent voting algorithm is measured by its convergence rate. Assuming



that 6(U;n;) > 0, the convergence rate C is the maximum possible value of the ratio:

_ F(V) = F(V))|
C = 50 (2.1)

Fault-tolerance is the minimum number of processes N required to tolerate ¢ faults. Under the
Byzantine fault-model, it has been shown [6] that single-step convergence can be guaranteed

for synchronous systems only if: N > 3t + 1.

2.3 Fault Classification

In many applications true Byzantine faults occur rarely and under complex conditions. This
limitation leads to system designs which are more complex and require a greater number of
processes than necessary to guarantee convergence. A more realistic approach to designing
fault-tolerant distributed systems is to incorporate different types of faults and place a
limit on the maximum number of faults in each class. Accordingly, Thambidurai and Park
[19] partitioned faults into three types: Benign, Symmetric, and Asymmetric (Byzantine)
faults. Benign faults, also called manifest faults [14], are defined as those which are self-
incriminating or self-evident to all processes. A symmetric fault is defined as a fault whose
value is perceived identically by all receiving non-faulty processes. An asymmetric fault
is one which is capable of sending conflicting (arbitrary) messages to different non-faulty
processes. If the number of asymmetric, symmetric, and benign faults are indicated by a, s,
and b, respectively, then the total number of faults in the system is ¢ = a4s+b. Thambidurai
and Park used this partitioning to derive tighter bounds on the fault-tolerance of Byzantine
Agreement algorithms [19]'. By employing the same model, we will achieve a tighter bound

on fault-tolerance and show that convergence can be determined more accurately and easily.

3 Categories of Voting Algorithms

A variety of convergent voting algorithms have been published which employ the iterative

approach of successively receiving data elements and voting on the elements received [6, 9,

1The Interactive Consistency algorithm proposed by these authors is flawed. Lincoln and Rushby pre-
sented a correct algorithm under the same fault model [13].



12, 21]. Each iteration (round) follows a number of phases:

1. Broadcast — Each process broadcasts its current value to every process including itself.
2. Collect — Each process collects the values broadcast by other processes including itself.

3. Sample — Each process filters the values to produce the voting multiset V. The mech-

anism for the production of the multiset depends on the fault-model employed.

4. Ezecute — The approximation-function (V) is applied to generate a single voted value.

Generally, voting algorithms fall into several broad categories, depending on the sampling
method used. The sampling phase may perform tasks such as filtering out the recognized
benign errors, substituting default values for missing values, etc. Within each category, the
voting algorithms are grouped into families of algorithms. Each family is defined based on
the format of the approximation-function. This function normally contains parameters that
can vary from one voting algorithm to another, and hence produces different performance
results for voting algorithms within the same family. Voting algorithms may fall into the

following categories:

1. Anonymous — This category is so named because the value of the originating node has
no bearing on how it is processed during the sampling phase. Therefore, no attempt
is made to determine as to whether the value originated from a faulty or a non-faulty

process [6, 9].

2. Egophobic — This category is so named because during the sampling phase, the voting
algorithm favors values which most differ from its own value or even disregards its own

value entirely [8, 10, 17].

3. Egocentric — In contrast to Egophobic, algorithms in this category tend to favor values
closest to a process’s own value. For example, a process may discard values which

differ from its own value by more than a specified tolerance [11, 12, 16, 17].



One family of algorithms that belongs to the anonymous category is called Mean-Subsequence-

Reduced or MSR. MSR algorithms use the approximation-function [9]:
F(V) = mean [Sel, (Red" (V))]. (3.1)

The “Reduction” function Red™ removes the 7 largest and 7 smallest elements from multiset
V. The “Selection” function Sel, then produces the subsequence S containing o elements of

the reduced multiset. The final voted value is the arithmetic mean of the selected multiset.

4 MSE Voting Algorithms

The focus of this paper is on a particular family of Egocentric algorithms with the property,
that for any two arbitrary non-faulty processes i and j with values a and 3, |a — 3| < ¢,
where ¢ is a positive real value. The rationale for ¢ is that, in some applications, processes
may not all produce exactly the same value. Thus, a certain amount of discrepancy among
processes must be tolerated. This discrepancy amount depends on the application, and the
upper bound on ¢ is known. The discrepancy might be, for instance, due to sensors reading
the same input, clocks which must stay within a predefined known bound of each other, or
multiple software or hardware versions where decision-algorithms are employed to determine

the final vote from similar but not identical results [1, 4, 5, 12, 18, 20].

During the sampling phase, each process discards the globally diagnosed errors, and uses its
own value as a default for each missing data item, or any value that differs from its own
by an amount greater than the threshold ¢. Specifically, we distinguish between globally
diagnosed (benign) and locally diagnosed errors. When an error is recognized globally, all
non-faulty processes can delete them from V and vote with a smaller sized multiset [9]. For
instance, when a faulty process sends a value that, with respect to the value of all non-faulty
processes, exceeds the threshold ¢. Whereas, a locally diagnosed error is detected by a subset
of non-faulty processes. For instance, when a process receives a value which differs from its
own by more than ¢, when a process misses a correct value that was received by some other
processes, or when a process detects a value that was corrupted during transmission. For
such errors, the non-faulty process replaces the missing values or the erroneous values with

its own value.



Consequently, for two arbitrary non-faulty processes i and j, |V;| = |V,|. Let N be the total
number of processes in the system, and let n = (N — b) be the number of data elements
after the globally diagnosed benign errors are removed, so that |V;| = n for any arbitrary
non-faulty process 7. The multiset produced by the end of the sampling phase is named
the Egocentric voting-multiset V. During the execution phase, each process executes the

following approximation-function, reducing the multiset V to a single voted value F(V):
F(V) = mean [Sel, (V)] (4.1)

F(V) is the Mean of a Subsequence of an Egocentric (MSE) voting multiset. The varying
parameters of F(V) are the number of selected elements o, and the distribution of these

elements in V. Thus, MSE algorithms differ from each other only in their definition of Sel,.
4.1 Convergence Rate of MSE Voting Algorithms

The following theorem shows that the convergence rate C of an MSE algorithm depends
on parameters o, v, and w,,. The first parameter, o, is the size of the selected multiset
S = Sel, (V). The second parameter, ,, is a measure of how uniformly the elements of S
are distributed within the Egocentric voting-multiset. The third parameter, w,,, shows the
effect of v, on C. Specifically, it will be shown that a voting algorithm with a lower value of

7. produces a smaller value for w,, which results into a better convergence rate.

For the remainder of this subsection, v, and w,, will be defined followed by the theorem
showing the convergence rate for any member of MSE algorithms. The proof of the theorem
is omitted for brevity and can be found in [3]. The subsection is concluded with a working
example which demonstrates how to obtain the convergence rate for a particular voting

algorithm, using the parameters v, and w,,.

Definition of 7 — The selected multiset S = Sel,(V) = (s1,...,5,) is a subsequence of
the Egocentric voting-multiset V. = (vy,...,v,). Thus, each element of S corresponds to
one unique element of V. Now, let g be the index of any element of S, and let k(g) be the
index of the corresponding element in V. Then, for each g € {1,...,0} there exists exactly

one k(g) € {1,...,V}. This guarantees that s, = vk for all possible V.
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Given two indices into S, g and h € {1,...,0}, where g < h, define Ak(g,h) = k(h) — k(g)
as the number of elements in V spanned by elements (sg, ..., sp) in S. Thus, Ak(g, h) is the
number of elements of V in the submultiset (Uk(g)+1, cen, vk(h)). Finally, for any non-negative
integer z, 7y, is defined as the minimum value of (h — g) which ensures that z elements of V
are spanned, independent of g and h, i.e. 7y, is the minimum value of (h — g) which ensures
that k(h) — k(g) > z, for any values g and h, g < h < o. By this definition, 7, exists only if

|V| > z. The following pseudo-code shows how +, is obtained:

v, =1, I+ 0
WHILE (I <o0—-1 AND ~,=-1){
IF ( for every g€ {1,...,0 =1}, Ak(g,9+1)>z)
Yy =1
I+—T1+1

By definition, v, can not be negative. Thus, 7, does not exist if it is negative at the end of

the pseudo-code.

The parameter z is the effective number of asymmetric errors. Specifically, z is the number
of asymmetrically faulty processes, a, plus the number of symmetrically faulty processes,
s, whose values in the worst case error-scenario are processed differently by the two non-
faulty processes ¢ and j. This occurs, for instance, when each symmetrically faulty process
generates a value £ = (a+ ¢). Process i will accept this value because |z — ¢| = ¢ is within
the acceptable range [0, ¢]. Process j, however, will replace z with § when its own value is
less than «, because |x — 3| > ¢. The pair (z, ) will then behave like an asymmetrically
faulty process, as if a faulty process generated conflicting values to processes 7 and j. Hence,

the effective number of asymmetric errors z is (a + s) not a.

Definition of w, — By referring to the definition of convergence rate, to obtain C, the
maximum of |F(V;) — F(V,)| must be determined. Ultimately, one needs to find the sum-
difference of the selected elements in S; and S;, because F'(V) is defined in terms of Sel, (V).

10



Let w, be a weight function that uses two lists that show the weight of each element in V; and
V;. The maximum difference in these weights will determine the value of w.,. These lists are
called Enumerated Selected Lists F;_Sel and E;_Sel, and are associated with the processes %
and j respectively. The ¢g'® element of E; Sel represents the weight of the k(g)™ element in
V, if it is in Sel,(V;). The same is true for E;_Sel. The justification for determining these

weights are explained in the proof of Theorem 1 [3].

Define two Enumerated Selected Lists F;_Sel, and E;_Sel, with the following weights:

E; Sel, = (€i1,.--,€iz)

where
1 : k(z)=1
iz = 2 :2<k(z)<(n—a-s) (4.2)
3 : otherwise
and
E'j_SelU = <€j,1, ey ej,(,>
where

] 0 s 1<k(y)<a
iy = { 1 : otherwise (4.3)

Now define the weight function w,, to be:

Yz
Wy, = Z [ei,tffgﬂ - ej,g] (4.4)
g=1

THEOREM 1 : Given an MSE voting-algorithm F(V),

C="" s=(a+s) O (4.5)
g

Theorem 1 shows the convergence rate for one round of voting when the diameter of values
of non-faulty processes is ¢. However, to guarantee the property of single-step convergence,

¢ must be reduced in each round to ensure that the diameter of non-erroneous values will
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be reduced in each round. Since 6(U,n;) = ¢, it can be seen from (2.1) that the diameter of
non-erroneous values in the first round in the worst case is ¢C'. This is the new value of ¢
that must be used in the second round of voting. In general, the new value of ¢ in the "
round is ¢C®. In addition, the number of rounds k& needed to ensure that the diameter of
non-erroneous values will be within € of each other can be found by solving for k in ¢C* < ¢,

which is £ > [log. €/¢].

A Working Example — This example shows how to use the definition of w, in (4.4)
to arrive at the convergence rate for a particular selection function. Assume the selection
function selects all odd-numbered elements from V. Furthermore, assume N = 10, a = 1,

s =2, and b= 0. Thus:

A% = V1, Y2, V3, V4, Us, Vs, U7, Ug Vg V1o
{ { { { {

S = 8 So S3 S4 S5

g = 1 2 3 4 5
) ! ) ) )

k(g) = 1 3 5 7 9

h = 1 2 3 4 5
{ { { { {

k(h) = 1 3 5 7 9

The first two rows show the voting multiset V with 10 elements followed by its corresponding
selected multiset S. Between the two rows, the arrows show which elements of V are selected.
Thus, 0 = 5. The next two rows show the index values of the elements in S and their mapped
index values in V, respectively. Thus, s, = vy(). For example, if g = 3, then s3 = vy3) = vs.
The last two rows, which are the same as g and k(g), are given due to the definition of

Ak(g, h).

By referring to the expression in (4.5), z = (a+s) = 3. To obtain +,, based on its definition,
we need to find the smallest value Ak(g,h) such that Ak(g,h) = k(h) — k(g) > z = 3, for

all valid values of g and h. By inspecting the last four rows, it can be seen that the smallest

12



value is 2. In other words, if h = g + 2, then Ak(g,h) > 2z V g€ {1,...,0 —2}. Therefore,
v, = 73 = 2. The same minimum value of 73 could have also been obtained by following the

pseudo-code given in the definition of v,.

On the other hand, the expressions in (4.2) and (4.3) along with using either k(g) or k(h)

yield:
€i1 = 1 €j1= 0
€i2 = 2 €j2 = 1
€i3 = 2 €53 = 1
€ia4 = 2 €j4 = 1
ei,5 =3 6]”5 =1
Therefore, the convergence rate is:
8 . — e 2 . — e
O = Y _ Zug=t l€ig—g+1 — €]  2g=i [€i6-9 — €,q] _ 4
o o 5 5

For the rest of the paper, when there is no room for ambiguity, the subscript of (444 will

not be shown.

4.2 Fault-Tolerance

Recall that N = n + b. To determine the lower bound of N for which a voting algorithm

exists, consider the case when all elements from V are selected, so that ¢ = n. Then:

The selection of every element implies k(g) = g, g < n. Therefore, using (4.2), €;n—g+1 = 3
for 1 < g < (a+s), and using (4.3),e;,=0for 1 < g<a,andej,=1fora < g<(a+s).

Consequently,
e, e = 3:1<g<a
Cin—gt1 =%l T 2. g < g< (a+s)

In addition, since Ak(g,g+ (a+s)) = (a+s), Vg <o—(a+s), it follows that v = (a+s).
Therefore, (4.6) becomes:

(a+s)
Zg:] [ei,n—g+1 - ej,g]
n

C =

13



+
3:1 [ei,nfﬁl - ej,g] + E(ga:as—al [ei,nfgﬂ - ej,y]

n

3a + 2s
n

Accordingly, n > (3a+2s+ 1) ensures that C' < 1. As a result, by incorporating the impact
of benign faults, a convergent voting algorithm exists only if: N > 3a + 2s + b+ 1. This is
the same fault-tolerance obtained by the MSR fault-model [9].

5 The Optimal Convergence Rate

The effectiveness of an MSE algorithm depends on the selection function. The selection
function affects the tightness of voted values. Hence, it affects the number of rounds needed
to converge to within e. Therefore, in this section, the property that a selection function
must hold in order for a voting algorithm to generate the optimal convergence rate will be

derived. A voting algorithm with the minimum value of C' has the optimal convergence rate.

The following lemma will filter out those algorithms which are shown not to be optimal. The
next theorem will then use the lemma to derive the optimal convergence rate. Finally, the
corollary following the theorem will show the property that a selection function must have
in order for an algorithm to yield the optimal convergence rate. The proofs, omitted due to

space limitation, can be found in [3].

LEMMA 1 : Consider the voting multiset V.= (v, ..., Va;Vas1, - - -, Un—(ats)s - - - » Un)- Also
consider the three submultisets of V: (v1,...,%a), (Vat1,-- -+ VUn—(ats)) ONd (Vp_(q4541)5 - - - > Un)
with their associated selected multisets Sy, Sy, and Ss, respectively. If S = Sel,(V) =
(S1,S2,83), and [S1|+|S3| # 0, then an MSE wvoting algorithm with selected multiset So will

have a better convergence rate than any algorithm with selected multiset S. 0

Lemma 1 shows that algorithms which do not select elements from the extreme ends of the
voting multiset, i.e. no elements are selected from the extreme right (a+ s) and the extreme

left a elements, have better convergence rate than algorithms which select elements from

14



either or both extremes of their voting multisets. The worst convergence rate occurs when
the elements are selected only from the first and last a elements of the voting multiset,

because then [e; ;411 — €4 = 3.

THEOREM 2 : The optimal convergence rate for any Egocentric voting algorithm is:

1
C = a
N—(2a+s5)—b—1
[+
Corollary 2.1 : Let a selection function select only from (vgi1,...,Vn_a_s). The selection

function then yields optimal convergence rate if the following constraints are satisfied:

{N—(2a+s)—b—1J+1 -
a+s

vy=1 and o=

6 Comparison to Some Known Algorithms

Several known voting algorithms have been analyzed under both single-mode, where all faults
are treated as asymmetric, and mixed-mode fault-models [6, 9, 12, 21]. This section applies

the same voting algorithms to the Egocentric fault-model.

Fault-Tolerant Midpoint — The Fault-Tolerant Midpoint selects only the two extreme
values of its multiset values, i.e. v; and v,. Thus, 0 = 2 and v = 1. Also, the selection of v,

and v,, implies that k(o) = k(2) = n and k(1) =1, so that e;, = 3 and e;; = 0. As a result:

Z i gt1 — €jg] = —ej1=3

Since 0 < w,, we have C' > 1. Hence, the Fault-Tolerant Midpoint is not convergent under
the MSE model. But, instead of selecting v; and wv,, let us remove the largest and the
smallest (a4 s) elements and then select the extreme values, i.e. V(q4s41) and vp_(a4s). Since
k(o) = k(2) = n — (a + s), according to (4.2), when g = 1, €; ;411 = €;2 = 2. Similarly,
since k(1) = (a + s + 1), according to (4.3), when g =1, e; , = 1. Therefore,

Z [€iocg+1 — €jg] = —€1=1
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As a result, C = w,/o = 1/2. This is the convergence rate of Fault-Tolerant Midpoint
previously obtained under Dolev’s single-mode and Kieckhafer’s MSR fault-models [6, 9].

Fault-Tolerant Mean — This algorithm selects all elements of V. Thus, 0 = N —b.
Furthermore, since Ak(g,g+1)=1,forg < (c—1), v=(a+s). Thus:

a+s +
o= Wy _ Egzt : [€i0—g+1 — €] _ Z;:I l€ig—gt1 — €j,q] + ES’I:ZL [€io—g+1 — €j.g]
o N-1b N-=b

According to (4.2) and (4.3), [€io—g+1 — €j4] = 3 and [e;o—g+1 —€j¢] = 2. Recall that

t =a + s+ b. Therefore:
_ 3a+25s  3t—(s+3b)
~ N—-b  N-b

The single-mode fault model has the convergence rate [6]:

C

t
C =
N — 2t

(6.1)

It is observed that the MSE convergence rate is worse than the single-mode fault-model if
benigns are not the dominant mode of failure. However, if the extreme right (a+ s) elements

and the extreme left a elements are not selected, then [e; ,_¢11 —€j4] = 1. Thus:

(at+s)
Wy _ 2=t [eio—gt1 — €jg] a+s — t=b (6.2)

v=5 o  (N—b)—(2a+s) (N—2t+b)+s

which shows much faster convergence than (6.1). For example, ifa =1, s =1, b = 2, and
N = 13, the convergence is more than three times faster than the rate predicted by the

single-mode fault model.

The Fault-Tolerant Mean under the MSR fault model discards the extreme (a + s) elements
from both sides of the voting multiset. It has the convergence rate [9]:

a t—b—s

C=N_"ais  N_2+b

(6.3)

By comparing (6.2) and (6.3), unless s = 0, MSR fault-model has better convergence rate.

Single-Mode Optimal — The optimal single-mode algorithm selects the first element of
the voting multiset, and every #*® element thereafter. It has the convergence rate [6]:

1
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Under MSE, Ak(g,g +1) = t. Thus, 7, = 1. In addition, since the first and every ¢

elements are selected, e;, = 3 and e;; = 0. Thus:

"t

Wy, = Z [ei,U—g-I-l - ej,g] =€, — €1 =3
g=1

Therefore,
Wy, 3

which shows much slower convergence than the optimal single-mode algorithm. However, if

C =

the extreme (¢ — b) elements are not used in the selection process, then v, =1, ¢, , = 2 and
ej1 = 1. Thus:
Wy, 1 1

C=—= [n—?(t;b)—IJ ny - [Nfgttjuqu Iy

which shows much faster convergence. This is also the same convergence rate predicted

under the MSR fault-model [9].

Mixed-Mode Optimal — The optimal value of C' = w,/o requires that w, and o be
minimized and maximized respectively. According to Corollary 2.1, satisfying the constraint
on o when the selected elements are from within (vgy1,...,v, o s) guarantees the existence
of a selection function with v = 1. This value of v is obtained when the first element and
every (a + s)*™ element thereafter are selected. The number of elements selected in this

manner is consistent with the value of o in the Corollary.

The selection of the first element gives e;; = 1. The selection of every (a + s)™ element

implies that e; , = 2, because the o™ element selected is within the last (a + s) elements of

(Vat1y- -+ Un q s)- As a result:
v
O W _ Xt l€io—g+1 — €] €io — €j,1 _ 1
- - T | N—(2a+s)—b—1 o N—2t—|—s+b—1J
o o N—(2a+s)-b-1 N—2t+stb-1
[ a+s J + 1 [ a+s + 1

The optimal algorithm under MSR has the following convergence [9]:

1

C= [N—2t+b—1J +1

a

Therefore, MSE convergence rate is lower than MSR but close to it. Doing a similar analysis,
however, it can be easily shown that the MSE convergence rate becomes three time worse

than MSR algorithms when the extreme elements of V are included in the selection function.
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Table 1 shows the convergence rates under different fault-models and voting algorithms. De-
pending on the span of the selected elements, three forms of MSE algorithms, differentiated
by numeral subscripts, are considered. In the fourth column, the label N — b indicates that
MSE; algorithms select elements which expand over the entire voting multiset. In the fifth
column, N — 2(a + s) — b indicates that MSE, algorithms do not select elements from the
extreme (a+ s) elements of the voting multiset. Similarly, N —(2a+s) — b in the last column
denotes that the rightmost (a + s) and the leftmost a elements are not considered in the

selection process. The following are observed from this table:

e The MSE voting algorithms which select elements from either extremes of the voting
multiset are either non-convergent or their convergence rates are worse than that of
the traditionally known voting algorithms. This is because, as Lemma 1 shows, in the
worst case, the symmetric and asymmetric errors are at the extreme ends of the voting
multiset. The traditional voting algorithms [6, 9, 12|, before selecting elements, use
a “reduction” function to discard the erroneous values from both ends of the voting
multiset. This ensures the remaining errors after the reduction to be within the range
of the correct values. Hence, (a +s) + 1 < k(g9) < n — (a + s), which implies that
[€i,o—g+1 — €j,g] = 1. As a result, C = w,/o = vy/o. Whereas, when MSE algorithms
select elements from both ends, [e; ,—g+1 — €;,4] > 2, which indicates that v < w, < 3.

Hence, v/o0 < C < 3v/o.

e The convergence rate under MSE; is better than MSE; and MSE;. When comparing
MSE; to MSE,, the increase in convergence is due to the fact that MSE3 has s more
elements to select from. When MSE; is compared to MSE3;, MSE; has (2a + s) more
elements to select from, which suggests that convergence ought to be better. But MSE;

selects from the extreme ends which worsens its convergence rate severely.

e Under any given selection function that can be applied to both MSE and MSR fault-
models, MSR reveals either the same or better convergence rate than MSE (except the
Optimal Single-Mode algorithm under MSE3). In MSR, symmetric faults are treated
as symmetric. Whereas, in MSE, symmetric faults, as described in Subsection 4.1, are

treated like asymmetric faults. Consequently, MSR and MSE algorithms obtain v with
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respect to a and (a + s) respectively. When the subscript of v increases, i.e. (a + s)
versus a, 7 might increase, but it never decreases. This is because more elements need
to be skipped to ensure that Ak(g, g + Y(a+s)) > (a + s). Hence, the numerator of C
might increase, which is an implication of worse convergence. Therefore, as the table

shows, MSR and MSE3 have the same convergence rate when s = 0.

7 Summary and Future Research

This paper has examined the problem of reaching Approximate Agreement for a new family
of convergent voting algorithms (MSE) that belongs to the Egocentric category of algorithms.
Traditionally, the study of these algorithms has been presented with ad-hoc proofs of their
fault-tolerance and convergence rates. The analysis herein revealed simple expressions that
can be used to easily determine the fault-tolerance and the convergence rate of any MSE
algorithm. By knowing the facts that o and -, and in turn w,, can be determined easily, the

system designer can quickly devise a new MSE algorithm customized to a specific application.

Traditionally, Egocentric algorithms used the entire voting multiset, as in Fault-Tolerant
Mean, to reach a single voted value. It was not known how the distribution of selected
elements would affect the convergence rate. Here, it is shown that convergence is improved
significantly if no elements of the largest (a+ s) and the smallest a data items are included in
Sel,. In addition, it was not previously known how Egocentric algorithms would behave in a

hybrid fault environment, or how they would perform against other known voting algorithms.

There are some directions to expand upon this work. This paper has addressed only Ego-
centric algorithms. Due to the egophobism during the sampling phase, it is not clear how
Egophobic algorithms would perform under different constraints, but it appears that the

same methodology can be applied to those algorithms.

Another avenue of study is that MSE along with other traditional voting algorithms [6, 9,
12, 19] can not exploit the presence of omission faults. As a result omission faults must be
transformed to a more severe fault mode such as asymmetric. The exploitation of omission

faults, although is inherently more complex, has shown significantly higher fault-tolerance,
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and reducing the need to globally diagnose the benign faults [2]. It is conjectured that the

same methodology used in [2] can be extrapolated to MSE.
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Fault-Model

Voting Algorithm || Byzantine MSR MSE; MSE, MSE;
N —b N —-2(a+s)—b N—(2a+s)—b
: s 1 1 1 1
Mld—POlnt 2 2 NC 7 7
t a 30+ 2s t—b t—b
FT-Mean N—-21 N—2t+b N—b N—2t+b N—2t+s+b
. 1 1 3 1 1
Single-Mode Opt. LN—it—1J+1 LN—Qt;}-b—lJ+1 LN—tb—1J+1 LN—Zt:—b—lJ+1 LN—2t+t5+b—1J+1
: 1 1 3 1 1
Mixed-Mode Opt. LN—ztt—zJ_H LN—Zt;—b—lJ+1 Nt—_bb—IJ+1 LN—ftj)qu_H LN—Qtj—_si—b—]J_FI
Mixed-Mode 2% 2 Pats) Hats) Hats)

g

Table 1: Comparison of Convergence Rates. (NC = Not Convergent)
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