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Abstract { The problem of guaranteeing stability
and run-time feasibility in real-time systems contain-
ing coupled tasks is addressed in the context of non-
preemptive priority list scheduling. Task couplings rep-
resent strict timing constraints between a parent task
and one or more child tasks with respective coupling de-
lays. Whereas a reduction of task durations can cause
instabilities called timing anomalies for non-coupled
workloads, the introduction of task couplings can cause
additional run-time infeasibility due to the inherent
inter-task timing constraints. This paper describes a
scheduling environment and presents feasibility condi-
tions for task couplings as well as a general algorithm
that avoid instability and infeasibility at run-time.

Index Terms { task scheduling, coupled tasks, hard
real-time systems, non-preemptive scheduling

1 INTRODUCTION

The use of multiprocessor systems in real-time
applications is motivated by increasing computational
workloads or the need for higher reliability by means of
redundancy. In hard real-time systems, deadlines are
associated with individual tasks, and inter-task timing
constraints may further restrict the workload. Failure
to meet deadlines or timing constraints may render the
applications useless. In the case of safety critical ap-
plications violations of timing constraints can lead to
catastrophe, e.g. loss of live, environmental damage or
unacceptable cost. As a result, the scheduling environ-
ment must be reliable and the algorithms scheduling
the workload, which is typically represented by a task
graph, must be predictable and free of side e�ects.

Most real-time applications only include a small
number of tasks with critical inter-task timing depen-
dencies [5]. In the context of this paper such tasks are
referred to as coupled tasks, since the execution of one
task is coupled to the execution of one or more tasks
by �xed coupling delays. Examples of single task cou-
plings are the delay of an actuator movement to com-
pensate for mechanical movement of target objects, or

two messages that must be sent within �xed intervals
from each other. An example of multiple task cou-
plings is the 
ow control of multiple chemicals once a
reaction has been initiated.

This research is based on the theoretical founda-
tion of single task couplings presented in [12]. It gener-
alizes task couplings by considering multiple couplings.
Other research on coupled events has been mainly fo-
cused on the problem of scheduling or validating work-
load with coupled tasks. Scheduling of coupled tasks
has been related to the pinwheel problem as well [2, 8].
Most work, including [5, 6, 21], address end-to-end con-
straints in the context of periodic processes. One way
of dealing with coupled events has been to adopt auto-
mated design methods using reconstructing tools [6],
or letting the scheduler adapt itself to varying exe-
cution times [19]. End-to-end constraints considering
tasks with imprecise computation are presented in [4].
Methods of validating timing constraints for di�erent
scheduling environments are discussed in [7, 14]. More
practical implications of real-world applications con-
sidering inter-task timing constraints are described in
the context of projects such as the Spring Kernel [17]
or the GMD-Snake robot [18].

We consider issues of dispatching, rather than the
generation of e�cient initial schedules. It is assumed
that at system design time a feasible, not necessarily
optimal, schedule is available. Section 2 describes the
scheduling environment and the problem of instability
and infeasibility. The basics of run-time stabilization
to avoid instability is discussed in Section 3. Section 4
addresses multiple task couplings and speci�es feasibil-
ity conditions and a general stable run-time dispatch-
ing algorithm. Finally, Section 5 concludes the paper
with a summary.

2 SCHEDULING ENVIRONMENT

2.1 Task Model

In general, a task T is the basic unit of compu-
tation, consisting of a set of sequentially executed in-
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Figure 1: Task Couplings

structions. Associated with each task Ti is a maximum
and minimumcomputation time cmax

i and cmin
i , release

time ri at which the task becomes ready for execution,
starting time si, and �nishing time fi. Dependencies
among tasks are de�ned by a partial order, resulting
in a directed acyclic precedence graph. Tasks are as-
sumed to be executed on M homogeneous processors.

We �rst consider the special case of a single task
coupling as shown in Figure 1a. The �rst task, T p

i ,
is the parent, coupled by a coupling delay di;j to the
child task, T c

j . A child task T c
j has an in-degree of 1,

i.e. T c
j has only one predecessor.

The general case, i.e. multiple task couplings, is
shown in Figure 1b. Again T p

i is the parent, coupled to
multiple child tasks T c

j1 to T c
jf by respective coupling

delays di;j1 to di;jf . Furthermore, each child task T c
jl,

1 � l � f , has T
p
i as its sole predecessor. Multiple

child tasks may execute on the same processor and
there are no restrictions on f , e.g. f may be greater
than M . It is assumed that the set of coupled parent
and child tasks are disjoint. This restriction serves
only as a simpli�cation of the material presented here.
Let Tp and T

c denote the set of all coupled parent
and child tasks T p

i and T c
j respectively. Then, Tpc =

T
p[Tc represents the set of all coupled task pairs. By

de�nition, Tp \Tc = �.

Given a coupled task pair (T p
i ; T

c
j ), we de�ne cou-

pling with respect to task starting times, rather than
considering couplings related to �nishing times. The
reason for this is the fact that for each task T durations
are only known to be between cmax and cmin. The ac-
tual durations are determined at run-time. Coupled
tasks are di�erentiated from regular tasks, i.e. tasks in
the regular sense, because they have special properties
inherent to their coupling as will be described later.
Regular and coupled tasks are collectively called real
tasks.

The basic mechanisms for enforcing the coupling
delay at run-time are special tasks called phantom
tasks [3]. These are tasks which consume time, but un-
like real tasks, they consume no resources. As a result,

phantom tasks may always be started upon becoming
released.

2.2 De�nitions

Our scheduling model is based on a variation of
priority list scheduling, where whenever a processor be-
comes available, the run-time dispatcher scans the task
list from left to right, and the �rst unexecuted ready
task encountered in the scan is assigned to the pro-
cessor. Traditionally, in list scheduling the dispatcher
is distinct from the scheduling algorithm. Whereas
the scheduler is executed only once at design time,
the dispatcher arbitrates tasks during run-time. How-
ever, in our paper dispatching may change the sched-
ule. Thus, in general, dispatching and scheduling can
not be treated as di�erent operations. The following
de�nitions are restated from [12].

A Standard Scenario describes the schedule ob-
tained by using a particular set of task durations. It
denotes a schedule in which each Ti uses the maximum
computation time cmax

i [15]. The Gantt chart depict-
ing the standard scenario is called a Standard Gantt
Chart (SGC). Task deadlines of tasks are the respec-
tive �nishing times in the SGC.

In a Non-Standard Scenario, tasks Ti execute with
cmin
i � ci � cmax

i . However, at least one Tj has dura-
tion cj less than its maximumcomputation time cmax

j ,
i.e. cj < cmax

j . The resulting Gantt chart is called
Non-Standard Gantt Chart (NGC).

The dispatcher selects tasks from a list called pro-
jective list. This list is in one-to-one correspondence
with the SGC, i.e. its tasks are ordered according to
the time each task is picked up on the SGC [15]. Fur-
thermore, without loss of generality, tasks are assumed
to be ordered by increasing indices.

A schedule is stable if there exists no scenario in
which the �nishing time of any Ti in the NGC exceeds
its completion time on the SGC. With non-standard
computation times not known apriori, i.e. cmin

i � ci �



cmax
i , given any task Ti, the \deadline" for si is s

std
i ,

the starting time on the SGC as denoted by superscript
std. Thus, if si � sstdi , then fi � fstdi . Similarly,
task couplings are also de�ned with respect to their
standard starting times, i.e. a task coupling from T

p
i

to T c
j is given by di;j = sstdj � sstdi .

Several task sets will be used throughout the pa-
per. Let T<i denote the set of all tasks which started
before Ti on the SGC, i.e. T<i is the set of tasks with
indices less than i. T�i is de�ned as T<i [fTig. Sets
T>i and T�i are symmetric to T<i and T�i respec-
tively.

In a given scenario, a task Tv is unstable if and
only if it is the lowest numbered task to start late, i.e.
sv > sstdv , and si � sstdi 8 Ti 2 T<v. Task Tv is
vulnerable to instability if there exists any scenario in
which Tv is unstable.

2.3 Instability and Infeasibility

Instability and infeasibility will be demonstrated
using the example in Figure 2 [12]. The precedence
graph contains eight tasks with maximum durations
listed next to each vertex. To show instability, the
edge between T4 and T7 is to be interpreted as a prece-
dence constraint. Task priorities are de�ned in order
of increasing starting times on the dual-processor SGC
in Figure 2b. During execution, the dispatcher scans
the projective list and selects the �rst ready task for
execution. Scheduling instability can be observed on
NGC1, where T4 is shortened by an arbitrarily small
value �. The shortened T4 �nishes before T3, and T7 is
able to \usurp" processor P1. The results are missed
deadlines and an increase in total makespan, i.e. both
T6 and T8 start later on NGC1 than they did on the
SGC and the makespan increases by 2� �.

In order to demonstrate infeasibility, assume the
edge between T4 and T7 indicates a coupling delay with
d4;7 = sstd7 � sstd4 = 6 � 3 = 3. Now, assume that T2
�nishes at f2 = sstd2 + cmin

2 , as shown in NGC2 of Fig-
ure 2b. At f2 task T4 becomes ready, but dispatching
T4 implies that T7 has to be shifted as well due to the
coupling delay. However, such shift of T7 is infeasible,
since both processors are occupied by T5 and T6. As a
consequence, the coupling delay is violated. Thus, al-
though T4 is ready, it should not be dispatched in order
to avoid infeasibility of T7. Infeasibility of course re-
sults in instability. For instance, dispatching T4 early
in NGC2 causes T7 to start late.

A dispatching algorithm must avoid both run-
time instabilities and infeasibilities. To avoid insta-
bilities, two stabilization methods have been proposed
that can be partitioned into apriori and run-time sta-
bilization [12]. Apriori stabilization is not equipped to

deal with infeasibilities e�ciently. However, it will be
shown that a new variation of run-time stabilization
can prevent both instability and infeasibility.

3 STABILIZATION ISSUES

Stable solutions for task models without coupled
tasks, i.e. Tpc = �, have been presented in [10, 11].
These concepts will be the basis for avoidance of infea-
sibility.

The �rst step in the chain of events possibly lead-
ing to instability is a priority inversion by some task
Tx, such that sx < si for some Ti with i < x [3].
Task Tx is said to usurp. It is the responsibility of
the run-time stabilization algorithm to only allow the
dispatching of those usurper tasks that cannot induce
instability.

When a processor �nishes its current task, the tra-
ditional priority list dispatcher starts at the head of the
list, scanning the list until it �nds a ready task, if one
exists. The scan window approach restricts the scan by
limiting the scan depth to the size of a so-called scan
window. The scan window � = fTu; :::; Tlg is this sub-
set of unstarted real tasks scanned by the dispatcher,
where Tu and Tl are the �rst and last real tasks vis-
ible to the dispatcher respectively. If the number of
tasks scanned is limited such that no usurper task is
ever started before a vulnerable task, stability can be
enforced at run-time [10].

At the heart of possible processor contention is
so-called fan-out. A fan-out occurs when a phantom
task releases a real task, or when a real task causes the
release of a second real task executing in parallel with
the �rst real task [12]. The releasing task is called a
forking task and the initiating release is called a logical
fork, since either case causes the occupancy of one more
processor, i.e. from 0 to 1 and from 1 to 2 processors
for phantom and real forks respectively. An example
of a forking task is T3 in Figure 2. Fan-out, caused by
logical forks, is a necessary condition for instability to
occur [15].

A fan-out task is de�ned as a real task with at least
one of the following properties: (1) it is descendent
from an un�nished forking task, and it started execut-
ing on the SGC while another descendent of the same
forking task was executing on another processor, (2)
it is a descendent of an un�nished phantom task [12].
An example of a fan-out task is T6 in Figure 2.

Let Tw be the �rst fan-out task in the scan-
window. It can be shown that one can safely scan up
to Tw [10]. If one wants to scan past Tw, a processor
needs to be reserved to absorb the possible fan-out of
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Figure 2: Example of Instability and Infeasibility

Tw. In general, one needs to identify additional fan-out
tasks in T>w. Let Tw1 = Tw, and de�ne Twi as the ith

fan-out task. All Twi are called basic fan-out tasks, in
that each Twi can cause a fan-out of 1.

In [12] the concept of fan-out task is extended to
e�ective fan-out tasks. Let F(Tw) be a function that
indicates how many basic fan-out tasks with indices
less than or equal w are overlapping on the SGC at
standard starting time sstdw . Thus F(Tw) is the car-
dinality of set fTi : Ti 2 T�w; Ti is a fan-out task,
and sstdi � sstdw < fstdi g. A task Tw is said to have an
e�ective fan-out of F(Tw). Let Tei denote the lowest
numbered basic fan-out task with F(Tw) = i. Then
Tei is called an e�ective fan-out task. Tei is thus the
�rst task executing in parallel with i� 1 other fan-out
tasks from T<i. Te1 is the �rst e�ective fan-out task
(F(Te1) = 1), Te2 is the second (F(Te2) = 2), and
so forth. Every e�ective fan-out task is also a basic
fan-out task, but the reverse is not necessarily true.
It should be noted that Tei is not necessarily the only
fan-out task with a fan-out of i, but it is the �rst. As
a convention, task subscripts starting with letter e will
be reserved for e�ective fan-out tasks.

The priority list can now be partitioned start-
ing with the �rst unstarted task. The gen-
eral priority list at the time of the scan is
(Te0; :::; Te1; :::; Te2; :::; Tek; :::). Task Te0 = Tu if 1

F(Tu) = 0, otherwise Te0 does not exist and the list
starts with Te1. Tek is the last e�ective fan-out task.
Positioned between Tei and Te(i+1) are any number of
tasks Tj with e�ective fan-outs 0 � F(Tj) � i. These

1F(Tu) 6= 0 if and only if Tu is descended from a phantom
task.

tasks, including Tei, are called the Scan-Frame of Tei
and are denoted by �ei. Thus frame �ei is the set
fTei; :::; Te(i+1)�1g. The de�nition of scan-frames is
with respect to the current scan. In general, scan-
frames have to be newly de�ned whenever a fan-out
task is released that causes a decrease in the e�ective
fan-out of some Tei, the task de�ning �ei.

4 DISPATCHING WITH MULTIPLE

TASK COUPLINGS

Task couplings imply pair-wise temporal bindings
of parent and child tasks that are de�ned according to
the starting times of the SGC. Returning to NGC2 of
Figure 2, recall that T p

4 and T c
7 are coupled by d4;7 =

3 time units. One can observe in NGC2 that, if the
dispatcher does not prevent early starting of parent T p

4 ,
infeasibility results. Here, child task T c

7 cannot satisfy
its coupling delay and misses its deadline by cmax

2 �
cmin
2 time units. Early starting of coupled tasks in the
absence of stable dispatching algorithms may result in
the following problems: (1) the parent task may induce
instability, (2) the corresponding child tasks may be
subject to infeasibility, and thus may cause instability.

Recall that Tp and Tc are the sets of parent and
child tasks respectively. Starting a task in T

c can
be controlled by inserting a phantom task into the
workload that enforces the coupling delay. This has
been demonstrated for single couplings in [12], where
a so-called enforcer phantom task Tpq was de�ned as
a predecessor for each Tq 2 T

c, setting spq = 0 and



cmax
pq = cmin

pq = sstdq .

A task T
p
i 2 T

p can be started early only if all
corresponding T c

j can be guaranteed the same shift in
the future, without causing instability. This actually
constitutes a \promotion", i.e. a left shift of T c

j on
the SGC, together with the appropriate adjustment of
the corresponding enforcer phantom's duration. This
is fundamentally di�erent from earlier run-time stabi-
lization methods, as now task priorities generally will
not be static anymore, i.e. the priority list order may
change. Thus our method describes a scheduler rather
than a pure dispatcher. In the following, appropri-
ate adjustment of enforcer phantom task durations for
tasks in Tc to re
ect a promotion is implied and will
not be explicitly mentioned. Also, it is assumed that
the index of the promoted task is adjusted to re
ect
the task's new position in the projective list.

Let T c
j be a coupled child corresponding to parent

T p
x . Furthermore, let tn denote the time of the scan

(the time \now"), and let ~sstdj denote the standard time
T c
j would have to be promoted to in order to satisfy the

coupling, i.e. ~sstdj = sstdj � (sstdx � tn). Next, assume
that all tasks that have been started are marked on the
SGC. This includes tasks already �nished.

Assume that parent task T
p
i is coupled to child

tasks T c
jl with 1 � l � f . Two feasibility conditions

can now be stated.

C1: Each T c
jl, 1 � l � f , can be promoted into a

vacant slot on the SGC for the entire respective
Feasibility Interval �jl = [~sstdjl ; ~s

std
jl + cmax

jl ].

�jl speci�es the time interval needed for feasibility of
child task T c

jl. For the second condition some notation

is needed. Let U(sstdw ) be the number of unmarked
tasks on the SGC at sstdw , E(sstdw ) the number of tasks Ti
that are currently executing (on a processor) for which
the maximal �nishing times fmax

i > sstdw , and O(sstdw )
the number of feasibility intervals �jl, 1 � l � f , which
are overlapping at standard time sstdw .

C2: For every fan-out task Tw with sstdw in any �jl,
1 � l � f , we have U(sstdw )+E(sstdw ) �M�O(sstdw )

Thus, for each fan-out task Tw whose standard
starting time overlaps with any �jl, at s

std
w , the num-

ber of processors assigned to unmarked tasks plus the
number of processors occupied by currently executing
tasks Ti with fmax

i beyond sstdw is less than or equal to
M minus the number of feasibility intervals �jl over-
lapping at sstdw .

Now the Multiple-Coupling Algorithm, a gener-
alization of a single-coupling algorithm [12], can be
stated:

1. Find the �rst ready task Tx.

2. Find the last task Tv with index v < x whose
SGC starting time overlaps with the hypothetical
execution of Tx and �nd its scan frame �ek.

3. If Tx 2 T
p, then Tx can be safely started if

k idle processors can be reserved for tasks from
f�e0 [ : : :[�ekg and feasibility conditions C1
and C2 are met.

4. Else, Tx can be safely started if k idle processors
can be reserved for tasks from f�e0 [ : : :[�ekg.

Due to space restrictions the proof of correctness
for the Multiple-Coupling Algorithm is not presented.
The interested reader is referred to [13].

Next, we want to address the run-time complexity
of the Multiple-Coupling Algorithm. Feasibility condi-
tion C1 has a cost of O(f), where f is the maximum
coupling degree. The highest complexity is contributed
by condition C2. With f feasibility intervals and pos-
sibly long task durations C2 has time complexity of
O(fMN ). This is also the complexity of the algorithm.

5 SUMMARY

This paper has presented a 
exible dispatching ap-
proach that introduces general Feasibility Conditions
to allow coupled tasks, i.e. parent tasks with one or
more coupled child tasks, to start early. The condi-
tions address the problem that, when a parent task
is started early, all child tasks have to be guaranteed
a processor by their individual deadlines induced by
their respective coupling delays. This guarantee re-
quires coupled child tasks to be promoted when a par-
ent task starts early, i.e. the standard starting times
of child tasks change to re
ect the original coupling
delay in the presence of the parent's shift on the Gantt
chart. However, task promotions can modify a task's
priority, which is fundamentally di�erent from static
priority list scheduling algorithms. Thus, the solu-
tions described address not only dispatching but also
scheduling.

The Feasibility Conditions can be used with many
dispatching algorithms. They are presented in the con-
text of a general frame-based scan window approach.
The result is a multiple-coupling dispatching algorithm
that uses run-time information in order to avoid insta-
bility and infeasibility, allowing for early dispatching
of coupled tasks.
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