
Run-Time Feasibility of Hard Real-Time Systems Containing Coupled

Tasks∗

A.W. Krings M.H. Azadmanesh

Computer Science Dept. Computer Science Dept.

University of Idaho University of Nebraska at Omaha

krings@cs.uidaho.edu azad@cmit.unomaha.edu

Abstract

This paper investigates the problem of guarantee-

ing stability and run-time feasibility in real-time sys-

tems containing coupled tasks, in the context of non-

preemptive priority scheduling. Instability is the re-

sult of so-called multiprocessor timing anomalies, where

deadlines can be missed due to the reduction in task

durations. Such reductions can also result in run-time

infeasibility of coupled task pairs due to the inherent

inter-task timing constraints. A scheduling environ-

ment, feasibility conditions and a general algorithm are

presented that avoid both phenomena at run-time.

1 Introduction

Many real-time control applications are operating
in multiprocessor environments to take advantage of
parallelism of the workload, or as a redundancy issue
for fault-tolerant reasons. In hard real-time systems,
computations of individual tasks are marked by task
deadlines and inter-task timing constraints. In safety
critical environments, violation of deadlines or timing
constraints could have catastrophic results, i.e. loss
of human lives, environmental damage or unacceptable
cost. The algorithms scheduling the workload, typi-
cally represented by a task graph, must be provably
correct and free of side effects.

Most real-time applications only include a small
number of tasks with critical inter-task timing depen-
dencies [3]. In the context of this paper such tasks
are referred to as coupled tasks, since the execution of
one task is coupled to the execution of another task by
a fixed coupling delay. Other frequently used termi-
nologies to describe coupled tasks are end-to-end and
temporal distance constraint tasks. Examples of cou-
pled tasks are: a delay of an actuator movement to

∗This work has been supported in part by the UI Microelec-
tronic Research Center (MRC).

compensate for mechanical movement of target objects,
two messages that must be send within fixed intervals
from each other, or navigation coordinates that must
be updated at a fixed time after a course correction.

Different aspects of coupled events have been stud-
ied. Some research focused on scheduling based on
the pinwheel problem [2, 6, 7]. Most work, includ-
ing [3, 4, 23], address end-to-end constraints in the
context of periodic processes. One way of dealing with
coupled events has been to adopt automated design
methods using reconstructing tools [4], or letting the
scheduler adapt itself to varying execution times [21].
Methods of validating timing constraints for different
scheduling environments are discussed in [5, 15, 16].
Real-world applications considering inter-task timing
constraints are described in the context of projects such
as the Spring Kernel [19] or the GMD-Snake robot [20].

This paper considers dispatching in systems con-
taining coupled task-pairs which are embedded in a
normal workload. Section 2 describes the scheduling
environment and the problem of instability and infea-
sibility. The basics of run-time stabilization to avoid
instability is discussed in Section 3. Section 4 speci-
fies feasibility conditions and a general stable run-time
dispatching algorithm. Finally, Section 5 concludes the
paper with a summary.

2 The Scheduling Environment

2.1 Task Model

In general, a task T is the basic unit of computation,
consisting of a set of sequentially executed instructions.
Associated with each task Ti is a maximum and mini-
mum computation time cmax

i and cmin
i , release time ri

at which the task becomes ready for execution, start-
ing time si, and finishing time fi. Dependencies among
tasks are defined by a partial order, resulting in a di-
rected acyclic precedence graph. Tasks are assumed to
be executed on M homogeneous processors.



Coupled tasks are considered in pairs of tasks as
shown in Figure 1. The first task, T

p
i , is the parent,

coupled by a coupling delay dij to the child task, T c
j .

Thus, the coupling delay constitutes an implicit prece-
dence constraint between T

p
i and T c

j . The coupling
is considered to be “simple” in that the child task T c

j

has an in-degree of 1. Thus, T c
j has only one prede-

cessor, namely the mechanism (called “enforcer phan-
tom”) that constitutes the coupling to parent T

p
i , as

will be described in Section 4. This constraint reflects
considerations of applicability of the concept of cou-
pled events. Furthermore, each parent is assumed to
have only one coupled child. This second constraint
serves only as a simplification of the material presented
here. However, the solutions presented can be modi-
fied to overcome this constraint. Given a coupled task
pair (T p

i , T c
j ), several types of couplings can be defined,

based on whether task starting times, task finishing
times, or combinations thereof are considered. This
research focuses on coupling of task starting times, i.e.
dij = sj−si, since task durations may vary at run-time.
However, the approaches described here can be modi-
fied to reflect other couplings, i.e. starting-to-finishing
times or finishing to finishing times. Coupled tasks are
differentiated from regular tasks, i.e. task in the regular
sense, because they have special properties inherent to
their coupling as will be described later.

i

d
Tp...

Tc
j

...i j

Figure 1: Coupled Task Pair

Special tasks called phantom tasks have been used
to model events external to a processor, such as de-
layed task release, non-transparent overhead or task
synchronization [9, 12, 14]. These tasks are fully in-
corporated into the precedence graph. Although they
consume time, unlike regular tasks, they consume no
resources. As a result, phantom tasks may always be
started upon becoming released. Phantom tasks will
be the basic mechanism for controlling coupled tasks
at run-time, enforcing the coupling delay.

2.2 Definitions

The algorithms described in this paper are based
on a variation of priority list scheduling, where when-
ever a processor becomes available, the run-time dis-

patcher scans the task list from left to right, and the
first unexecuted ready task encountered in the scan is
assigned to the processor. The dispatcher is distinct

from the scheduling algorithm. Whereas the scheduler
is executed only once at design time, the dispatcher
arbitrates tasks during run-time.

A Standard Scenario describes the schedule ob-
tained by using a particular set of task durations. It
denotes a schedule in which each Ti uses the maximum
computation time cmax

i [17]. The Gantt chart depict-
ing the standard scenario is called the Standard Gantt

Chart (SGC).
In a Non-Standard Scenario, tasks Ti execute with

cmin
i ≤ ci ≤ cmax

i . However, at least one Tj has dura-
tion cj less than its maximum computation time cmax

j ,
i.e. cj < cmax

j . The resulting Gantt chart is called
Non-Standard Gantt Chart (NGC).

The dispatcher selects tasks from a list called pro-

jective list. This list is in one-to-one correspondence
with the SGC, i.e. its tasks are ordered according to
the time each task is picked up on the SGC [17].

A scenario is stable if there exists no scenario in
which the finishing time of any Ti in the NGC exceeds
its completion time on the SGC. With non-standard
computation times not known apriori, i.e. cmin

i ≤ ci ≤
cmax
i , given any task Ti, the “deadline” for si is sstd

i ,
the starting time on the SGC as denoted by superscript
std. Thus, if si ≤ sstd

i , then fi ≤ fstd
i .

Several task sets will be used throughout the paper.
Let T<i denote the set of all tasks which started before
Ti on the SGC, i.e. T<i is the set of tasks with indices
less than i. T≤i is defined as T<i ∪ {Ti}. Sets T>i

and T≥i are symmetric to T<i and T≤i respectively.
Let Tp and Tc denote the set of all coupled parent and
child tasks T

p
i and T c

j respectively. Then Tpc = Tp∪Tc

represents the set of all coupled task pairs.
In a given scenario, a task Tv is unstable if and

only if it is the lowest numbered task to start late, i.e.
sv > sstd

v , and si ≤ sstd
i ∀ Ti ∈ T<v . Task Tv is

vulnerable to instability if there exists any scenario in
which Tv is unstable.

2.3 Instability and Infeasibility

Instability and infeasibility will be demonstrated us-
ing the example in Figure 2. The precedence graph
contains eight tasks with maximum durations listed
next to each vertex. To show instability, the edge be-
tween T4 and T7 is to be interpreted as a precedence
constraint. Task priorities are defined in order of in-
creasing starting times on the dual-processor SGC in
Figure 2b. During execution, the dispatcher scans the
projective list and selects the first ready task for execu-
tion. Scheduling instability can be observed on NGC1,
where T4 is shortened by an arbitrarily small value ε.
The shortened T4 finished before T3, and T7 was then
able to “usurp” processor P1. The results are missed



deadlines and an increase in total makespan, i.e. both
T6 and T8 started later on NGC1 than they did on the
SGC and the makespan increased by 2− ε.

2

2

2

21

d

1 2

2T7 T8

T6T5T4

T2 3T

T1

a) Precedence Graph

T

2T1T 4T 7T

5T

6T 8T

2

P1

P2

84- 6-ε ε ε ε- 10-

NGC1

3T

2T 4T1T 5T

6T 8T

7T

3

min

2

P1

P2

4 6 8

SGC

3T

4T1T 5T

6T 8T

7T

NGC2

2

P1

P2

4 6 8

2

+c2

b) Gantt Charts

Figure 2: Example of Instability

In order to demonstrate infeasibility, assume the
edge between T4 and T7 indicates a coupling delay with
d4,7 = sstd

7 − sstd
4 = 3. Now, assume that T2 finished at

f2 = sstd
2 +cmin

2 , as shown in NGC2 of Figure 2b. At f2

task T4 becomes ready, but dispatching T4 implies that
T7 has to be shifted as well due to the coupling delay.
However, such shift of T7 is infeasible, since both pro-
cessors are occupied by T5 and T6. As a consequence,
the coupling delay would be violated. Thus, although
T4 is ready, it cannot be dispatched in order to avoid
infeasibility of T7. Infeasibility of course results in in-
stability. For instance, dispatching T4 in NGC2 would
have caused T7 to start late.

A dispatching algorithm must avoid both run-time
instabilities and infeasibilities. To avoid instabilities,
two stabilization methods have been proposed that can
be partitioned into apriori and run-time stabilization.

1. In Apriori Stabilization methods, stabilization is
achieved by (1) restricting the dispatcher, i.e.
fixing the task starting sequence or task start-
ing times, or by (2) modifying the task graph
by introducing additional precedence constraints
[8, 17, 18, 22].

2. Run-Time Stabilization is a less restrictive stabi-
lization method, where the dispatcher limits the
depth of its scan into the task list in order to avoid
instabilities. This approach takes advantage of in-
formation available at run-time [12, 13, 14].

Apriori stabilization is not equipped to deal with in-
feasibilities efficiently. However, it will be shown that
a new variation of run-time stabilization can prevent
both instability and infeasibility.

3 Basic Run-Time Stabilization

This section addresses issues of run-time stabiliza-
tion in the absence of coupled task pairs, i.e. Tpc = φ.
Thus, the task systems consists of non-coupled real
tasks and phantom tasks. Stable solutions for such
task model have been presented in [10, 11, 12, 13, 14].
The main concept will be repeated here, as it builds
the basis for avoidance of infeasibility, as described in
Section 4. The first step in the chain of events possibly
leading to instability is a priority inversion by some
task Tx, such that sx < si for some Ti with i < x [10].
Task Tx is said to usurp. It is the responsibility of the
run-time stabilization algorithm to only allow dispatch-
ing of such usurper tasks that cannot induce instability.

3.1 The Scan Window

When a processor finishes its current task, the tra-
ditional priority list dispatcher starts at the head of the
list, scanning the list until it finds a ready task, if one
exists. The scan window approach restricts the scan by
limiting the scan depth to the size of a window. The
scan window Σ is this subset of unstarted real tasks
scanned by the dispatcher, i.e. Σ = {Tu, ..., Tl} where
Tu and Tl are the first and last real tasks visible to
the dispatcher. If the number of tasks scanned is lim-
ited such that no usurper task is ever started before a
vulnerable task, stability can be enforced at run-time.



3.2 Fan-out

A fan-out occurs when a phantom task releases a
real task, or when a real task causes the release of a
second real task executing in parallel. The initiating
release is called a logical fork, since either case causes
the occupancy of one more processor, i.e. from 0 to
1 and from 1 to 2 processors for phantom and real
forks respectively. Fan-out, caused by logical forks, is
a necessary condition for instability to occur. It will be
shown later that this is not generally true if Tpc 6= φ

as can be seen in NGC2 of Figure 2b.

A fan-out task is defined as a real task with at least

one of the following properties: (1) it is descendent
from an unfinished forking task, and it started execut-
ing on the SGC while another descendent of the same
forking task was executing on another processor, (2) it
is a descendent of an unfinished phantom task.

The second property deserves some explanation. To
show the effect of a fan-out caused by a phantom task
consider the scenario in Figure 3a, where the phantom
task Tp has real descendent Tα. Figure 3b shows that
a phantom task can be thought of as a phantom Tp

running on a phantom processor P p, i.e. an imaginary
processor. Upon finishing, Tp releases a phantom child
Tp′ and real task Tα, which are dispatched on phan-
tom processor P p and real processor P1 respectively.
Thus, property (2) of the fan-out definition above is
essentially the same as property (1), except that the
existence of the phantom child Tp′ causing the fan-out
of Tα might not be obvious.

p

Tp’ Tα

Tp

Tα

Tα

Tp Tp’

T

phantom

P
p

a) b)

P1

Figure 3: Phantom Task Model

Let Tw be the first fan-out task and Tu the first
task in the scan-window. On the SGC, Tw was the task
that occupied an additional processor, i.e. Tw caused
a fan-out of 1. It can be shown that one can safely
scan up to Tw [11]. This defines a scan window Σ =
{Tu, ..., Tw−1}. Assume that Tw is the only fan-out
task in the workload. If one wants to scan past Tw,
stability is guaranteed1 only provided there is at least
one idle processor that can be reserved to absorb the
possible fan-out of Tw. In general, to scan past Tw, one

1At this point we ignore issues of slack-time reclaiming and
fan-in.

needs to identify additional fan-out tasks in T>w. Let
Tw1 = Tw, and define Twi as the ith fan-out task. All
Twi are called basic fan-out tasks, in that each Twi can
cause a fan-out of 1.

3.2.1 Effective Fan-out

Let F(Tw) be a function that indicates how many ba-
sic fan-out tasks with indices less than or equal w are
overlapping on the SGC at standard starting time sstd

w .
Thus F(Tw) is the cardinality of set {Ti : Ti ∈ T≤w, Ti

is a fan-out task, and sstd
i ≤ sstd

w < fstd
i }. A task Tw

is said to have an effective fan-out of F(Tw).
Not every basic fan-out task contributes to an in-

crease in the effective fan-out. Assume that several
basic fan-out tasks exist such that their executions do
not overlap on the SGC, i.e. f std

wi < sstd
wj for any Twi

and Twj , with i < j. It can be shown [12, 13] that
these non-overlapping basic fan-out tasks can collec-
tively contribute only to an effective fan-out of 1. Let
Tei denote the lowest numbered basic fan-out task with
F(Tw) = i. Then Tei is called an effective fan-out

task. Tei is thus the first task executing in parallel

with i−1 other fan-out tasks from T<i. Te1 is the first
effective fan-out task (F(Te1) = 1), Te2 is the second
(F(Te2) = 2), and so forth. Every effective fan-out
task is also a basic fan-out task, but the reverse is not
necessarily true. It should be noted that Tei is not nec-
essarily the only fan-out task with a fan-out of i, but
it is the first. As a convention, task subscripts starting
with letter e will be reserved for effective fan-out tasks.

3.2.2 Scan Frames

The priority list can be partitioned starting with the
first unstarted task. The general priority list at the
time of the scan is (Te0, ..., Te1, ..., Te2, ..., Tek, ...). Task
Te0 = Tu if 2 F(Tu) = 0, otherwise Te0 does not exist
and the list starts with Te1. Tek is the last effective fan-
out task. Positioned between Tei and Te(i+1) are any
number of tasks Tj with effective fan-outs 0 ≤ F(Tj) ≤
i. These tasks, including Tei, are called the Scan-Frame

of Tei and are denoted by ∆ei. Thus frame ∆ei is the
set {Tei, ..., Te(i+1)−1}. The definition of scan-frames
is with respect to the current scan. In general, scan-
frames have to be newly defined whenever a fan-out
task is released that causes a decrease in the effective
fan-out of some Tei, the task defining ∆ei.

3.2.3 Dispatching Philosophy

With the knowledge of idle processors at the time of the
scan, the safe scan window can now be expressed as a

2F(Tu) 6= 0 if and only if Tu is descended from a phantom
task.



sequence of frames. Let Ir ≤ I − 1 be the number of
idle processors reserved at the time of the scan, leaving
one processor to start the ready task being searched
for. Then it can be shown [12, 14] that the safe scan
window is Σ = ∆e0 ∪ ∆e1 ∪ ... ∪ ∆eIr

. If ∆eIr
does

not exist, then Σ extends over the entire task list.

4 Dispatching with Coupled Tasks

Task couplings imply temporal bindings of tasks T
p
i

and T c
j that are defined according to the starting times

of the SGC. Returning to NGC2 of Figure 2b, one can
observe that, if the dispatcher does not prevent early
starting of parent T

p
4 , infeasibility results, i.e. child

task T c
7 misses its deadline. Early starting of coupled

tasks in the absence of stable dispatching algorithms
may result in the following problems: (1) parent task
T

p
i may induce instability, and (2) corresponding child

T c
j may be subject to infeasibility, and may cause in-

stability.

4.1 Trivial Solution

One way of preventing infeasibility is to simply pre-
vent any tasks in Tpc from starting early. This can be
modeled by defining an enforcer phantom task Tpi as a
predecessor for each Ti ∈ Tpc as can be seen in Figure 4,
setting spi = 0 and cmax

pi = cmin
pi = sstd

i . Any scan win-
dow algorithm, e.g. those presented in [12, 13, 14],
can now be applied to this modified task system. How-
ever, this approach is very inefficient because the actual
task durations of many real-time applications are much
smaller than their maximum, standard durations, e.g.
up to an order of magnitude shorter [1]. As a result,
the response time of coupled tasks is always worst case,
i.e. fixed as defined in the SGC, whereas response to
non-coupled tasks improves drastically as the schedule
compacts.

jDelay Enforcer Task for T

Delay Enforcer Task for T
p
i

c

i

iTp...
Tc

j

...i jd

Tp

Tp

j

Figure 4: Delay Enforcer Phantom Tasks

4.2 General Solution

In the general approach only the starting of tasks
in Tc is enforced by phantom tasks. However, a task
T

p
i ∈ Tp can be started early only if its correspond-

ing T c
j can be guaranteed the same shift in the future,

without causing instability. This actually constitutes a
“promotion”, i.e. a left shift of T c

j on the SGC, together
with the appropriate adjustment of the corresponding
enforcer phantom’s duration. This is fundamentally
different from earlier run-time stabilization methods,
as now task priorities generally will not be static any-
more, i.e. the priority list order may change. In the
following, appropriate adjustment of enforcer phantom
task durations for tasks in Tc to reflect a promotion
is implied and will not be explicitly mentioned. In the
outline of the general run-time stabilization algorithm
below, the term standard algorithm denotes any sta-
ble run-time stabilization algorithm used for workloads
without coupled tasks. Scheduling workloads contain-
ing coupled tasks involves the following steps:

1. Non-coupled tasks and tasks from Tc are sched-
uled using standard stabilization algorithms.

2. Tasks T
p
i ∈ Tp are scheduled using standard run-

time stabilization algorithms if the following is
true for the corresponding T c

j :

C1: T c
j can be promoted into a vacant slot on the

SGC.

C2: The promotion of T c
j does not take over a

processor that was reserved to compensate
for fan-out in scan frames overlapping with
the execution of currently executing usurper
tasks.

Some explanations are needed for the two conditions.
With respect to C1, as tasks finish, their correspond-
ing SGC slots become vacant. Promotion into a vacant
slot provides the basis for feasibility with respect to
guaranteeing the coupling delay, but does not guaran-
tee stability. Condition C2 indicates that just because
the time slot on the SGC was vacant does not eliminate
the possibility that this processor is reserved. The pro-
cessor could be mortgaged to compensate for fan-outs
due to previous usurpion.

4.2.1 Standard Frame Based Dispatching Al-

gorithm

Recall that “standard” implies the absence of coupled
tasks. As indicated before, the scan window Σ can be
expressed in terms of scan frames. Scan frame ∆ei is
the set {Tei, ..., Te(i+1)−1}, and Σ = ∆e0 ∪∆e1 ∪ ... ∪



∆eIr
, where Ir indicates the number of reserved pro-

cessors. When scanning the priority list, assume that
standard task Tx is the next ready task checked for safe
starting. Checking for tasks vulnerable to instability,
it can be shown that the only scan frames that need to
be investigated are those which contain tasks Tv whose
SGC starting time sstd

v overlap time-wise with the ex-
ecution of usurper task Tx on the NGC, assuming Tx

were started [12]. This means that scan frames ∆ej

with sstd
ej greater than the maximal finishing time of Tx

cannot be vulnerable to instability caused by starting
Tx. Thus, a scan window algorithm has to reserve pro-
cessors only for the frames whose associated Tei starts
at or before the maximum finishing time of Tx, since
safety of the succeeding frames follows.

E-Algorithm The following standard algorithm
called E-Algorithm, restated from [12, 13], will be the
basis for general frame based dispatching with coupled
tasks.

1. Find the first ready task Tx and determine its scan-
frame k′.

2. Find the last task Tv with index v < x whose
standard starting time overlaps the hypothetical
execution of Tx and find its scan frame k.

3. Then, Tx can be safely started if k idle processors
can be reserved for tasks from {∆e0 ∪ . . . ∪∆ek}.

4.2.2 General Frame Based Dispatching Algo-

rithm

To include coupled tasks, the E-Algorithm needs to be
modified in order to identify tasks from Tp and to ac-
count for conditions C1 and C2. Let T c

j be the coupled
child corresponding to parent T p

x . Furthermore, let tn
denote the time of the scan, and let s̃std

j denote the
standard time T c

j would have to be promoted to in or-

der to satisfy the coupling, i.e. s̃std
j = sstd

j − (sstd
x − tn).

Next, assume that all tasks that have been started are
marked on the SGC. This includes tasks already fin-
ished. Let U(t) indicate the number of unmarked tasks
on the SGC at time t. Furthermore, let E(t) be the
number of tasks Ti that are currently executing on a
processor for which fmax

i > t. Now, the following Fea-

sibility Conditions can be formulated:

FC1: T c
j can be promoted into a vacant slot on the SGC

for the entire Feasibility Interval FIj = [s̃std
j , s̃std

j +
cmax
j ].

FC2: For each fan-out task Tw whose standard start-
ing time is in FIj , the number of processors as-
signed to unmarked tasks plus the number of pro-
cessors occupied by currently executing tasks Ti

with fmax
i in FIj is less than or equal to M − 1 at

sstd
w . Formally, for every fan-out task Tw with sstd

w

in FIj :

U(sstd
w ) + E(sstd

w ) ≤ M − 1. (1)

GE-Algorithm Now the General E-Algorithm, as an
extension of the E-Algorithm utilizing the Feasibility
Conditions, can be stated:

1. Find the first ready task Tx and determine its scan-
frame k′.

2. Find the last task Tv with index v < x whose SGC
starting time overlaps the hypothetical execution
of Tx and find its scan frame k.

3. If Tx ∈ Tp then Tx can be safely started if k

idle processors can be reserved for tasks from
{∆e0 ∪ . . . ∪∆ek} and feasibility conditions FC1
and FC2 are met.

4. Else, Tx can be safely started if k idle processors
can be reserved for tasks from {∆e0 ∪ . . . ∪∆ek}.

It should be noted that in order to allow multiple
child tasks to be coupled to a single parent task one
only has to change the algorithm to account for the
additional child’s promotion. This will require a mod-
ification of the Feasibility Conditions to reflect the ad-
ditional promotions and the number of processors in
inequality (1).

4.3 Proof of Stability

The E-Algorithms has been proven stable for stan-
dard workloads in [12]. In order to prove stability of
the GE-Algorithms in the presence of coupled tasks, it
needs to be shown that the inclusion of the Feasibility
Conditions avoids instability. First we restate a lemma
from [14] that shows that only tasks whose standard
starting times overlap with the execution of usurper
task Tx on the NGC, need to be considered as poten-
tially vulnerable tasks in order to guarantee stability.

Lemma 1 Assume that a usurper task Tx has started

at time sx, and define fmax
x = sx + cstd

x . No task Tv

with sstd
v > fmax

x can become unstable as a result of

starting Tx.

Proof: See [14, Lemma 3]. 2

Theorem 1 A task Tx can be safely promoted on the

SGC from sstd
x to some s̃std

x with s̃std
x < sstd

x , if Feasi-

bility Conditions FC1 and FC2 hold.



Proof: If FC1 does not hold, then at some time in
the Feasibility Interval FIx = [s̃std

x , s̃std
x +cmax

x ] proces-
sor contention can occur. This will lead to instability,
unless fan-in can be guaranteed. However, the cost
of guaranteeing fan-in is exponential in the number of
tasks [12] and thus not real-time feasible. Therefore
assume that FC1 holds.

In order to prove the necessity of FC2 we first show
that only tasks in FIx need to be considered. For a
given real task Tv, three General Instability Conditions
(GIC1 - GIC3) have been derived that are both neces-
sary and sufficient for Tv to be unstable [9]. GIC1 in-
dicates that priority inversion is a necessary condition
for instability to occur (see also [17]). However, for Tv

with sstd
v < s̃std

x the promotion of Tx does not consti-
tute a priority inversion. This implies invulnerability
of Tv from GIC1.

For tasks in T<x with starting times after FIx, i.e.
for Tv with sstd

v > s̃std
x + cmax

x , promotion of Tx does
constitute a priority inversion. However, the effect of a
usurper task is limited to those tasks overlapping on the
SGC with the execution of the usurper. Invulnerability
of tasks Tv with standard starting times beyond FIx

follows from Lemma 1.

Next it will be shown that tasks Tv with starting
times in FIx are invulnerable if FC2 holds. Let TFIx

denote the set of tasks Tv with sstd
v in FIx. Now assume

that FC2 is true. Let fφ be the time of the last fork
into T≤v to occur at or before ready time rv. General
Instability Condition GIC3 states that for Tv to be un-
stable, there must exist no time in the interval [fφ, sstd

v ]
at which all ready real tasks in T≤v are running. Fin-
ishing of Tφi

causes the fan-out for fan-out tasks Twi.
However, according to inequality (1) in FC2, at each
sstd

wi there is a processor available for each unstarted
task, independent of currently executing tasks. Thus
at time sstd

w latest, a processor is available for each
task in T<w and GIC3 cannot hold. Tasks Tv′ with
sstd

v′ 6= sstd
wi , for some Twi with sstd

wi in FIx, need not
be considered, since no new fan-out is introduced, and
tasks in T<v′ are safe by assumption. 2

Theorem 2 The GE-Algorithm is stable.

Proof: In the absence of coupled tasks, the GE-
Algorithm degenerates into the E-Algorithm which has
been proven stable [12, Theorem 5]. Including coupled
tasks adds the child task promotion issue. However,
from Theorem 1 instability can not result from a pro-
motion if the Feasibility Conditions FC1 and FC2 hold.
2

5 Summary

This paper addressed the problem of instability and
infeasibility of coupled tasks in non-preemptive priority
list scheduling. Task couplings are assumed to consist
of task pairs, where parent tasks are coupled to child
tasks by fixed coupling delays. The task system allows
for regular tasks, coupled tasks and phantom tasks.
Task coupling is implemented using mechanisms of the
latter type, so-called delay enforcement phantom tasks.

When task durations are specified with minimum
and maximum run-times, early starting of parent tasks
in a coupled pair can result in scheduling infeasibility
and thus instability at run-time. A trivial method is
presented that prevents run-time infeasibility. How-
ever, this method makes the response time to coupled
tasks always maximal, whereas the rest of the workload
compresses as typical actual task durations are much
smaller than their standard durations. In order to al-
low the early starting of coupled tasks, child tasks in
the coupled pair have to be promoted, i.e. shifted left
on the Standard Gantt Chart (SGC). General Feasibil-
ity Conditions have been defined that are sufficient for
promoting a task on the SGC.

A general run-time stabilization algorithm is pre-
sented that implements scan-window dispatching in the
presence of coupled tasks. The algorithm is based on
scan-frames and uses the General Feasibility Condi-
tions to allow stable early dispatching of coupled tasks.

References

[1] Carpenter, K., et al., “ARINC 659 Scheduling:
Problem Definition”, Proc. IEEE Real-Time Sys-

tems Symposium, pp. 165-169, 1994.

[2] Chan, Mee Yee, and Francis Y.L. Chin, “Gen-
eral Schedulers for the Pinwheel Problem Based
on Double-Integer Reduction”, IEEE Transac-

tions on Computers., Vol. 41, No. 6, pp. 755-768,
June 1992.

[3] Gerber, Richard, S. Hong, and M. Saksena,
“Guaranteeing Real-Time Requirements With
Resource-Based Calibration of Periodic Pro-
cesses”, IEEE Transactions on Software Engineer-

ing , Vol. 21, No. 7, pp. 579-592, July 1995.

[4] Gerber, Richard, D. Kang, S. Hong, and M. Sak-
sena, “End-to-End Design of Real-Time Systems”,
UMD Technical Report CS-TR-3476, UMIACS

TR 95-61 , May 1995.



[5] Ha, Rhan, and Jane .W.S. Liu, “Validating Tim-
ing Constraints in Multiprocessor and Distributed
Real-Time Systems”, Proc. IEEE 14th Interna-

tional Conference on Distributed Computing Sys-

tems , 1994.

[6] Han Ching-Chih, and K.J., Lin, “Scheduling
Distance-Constrained Real-Time Tasks”, IEEE

Real-Time Systems Symposium, pp. 300-308,
1992.

[7] Hsueh, Chih-wen, Kwei-Jay Lin, and Nong Fan,
“Distributed Pinwheel Scheduling with End-to-
End Timing Constraints”, Proc. 16th IEEE Real-

Time Systems Symposium, pp. 172-181, 1995.

[8] Kieckhafer, R.M., et al, “The MAFT Archi-
tecture for Distributed Fault-Tolerance”, IEEE

Trans. Computers , V. C-37, No. 4, pp. 398-405,
April, 1988.

[9] Kieckhafer, R.M., and J.S. Deogun, “ On the Sta-
bility of List Scheduling in Real-Time Multipro-
cessor Systems”, UNL, Dept. of Comp. Sci., Re-
port #99, Feb 1990.

[10] Kieckhafer R.M, J.S. Deogun and A.W. Krings,
“The Performance of Inherently Stable Multipro-
cessor List Schedulers”, UNL, Dept. of Comp. Sci.,
Report Series UNL–CSE–92–009, May 1992.

[11] Krings, A.W., and R.M. Kieckhafer, “Inherently
Stable Priority List Scheduling in Systems with
External Delays ”, Proc. Twenty-Sixth Annual

Hawaii International Conference on System Sci-

ences , Vol. 2, pp. 622-631, 1993.

[12] Krings, A.W., “Inherently Stable Priority List
Scheduling in an Extended Scheduling Environ-
ment”, PhD Thesis , Dept. of Comp. Sci., Univ. of
Nebraska, Lincoln, 1993.

[13] Krings, A.W., R. Kieckhafer, and J. Deogun,
“Inherently Stable Real-Time Priority List Dis-
patchers”, IEEE Parallel & Distributed Technol-

ogy , pp. 49-59, Winter 1994.

[14] Krings, A.W., and M.H. Azadmanesh, Resource

Reclaiming in Hard Real-Time Systems with Static

and Dynamic Workloads , Proc. 30th Hawaii In-
ternational Conference on System Science, IEEE
Computer Society Press, Vol I, pp. 616-625, 1997.

[15] Liu, Jane W.S., and Rhan Ha, “Efficient Meth-
ods for Validating Timing Constraints in Multi-
processor and Distributed Systems”, Proc. Proc.

4th Systems Reengineering Technology Workshop,
1994.

[16] Liu, J.W.S., and Rhan Ha, “Efficient Methods
for Validating Timing Constraints”, Advances in

Real-Time Systems , Prentice Hall, 1995.

[17] Manacher, G.K., “Production and Stabilization
of Real-Time Task Schedules,” JACM , Vol. 14,
No. 3, July 1967.

[18] McElvaney, M.C., et. al., “Guaranteeing Task
Deadlines for Fault-Tolerant Workloads with Con-
ditional Branches”, Journal of Real-Time Sys-

tems , Vol. 3, No. 3, Sep 1991.

[19] Natale, Marco Di, and J.A. Stankovic, “Dynamic
End-to-end Guarantees in Distributed Real Time
Systems”, Proc. IEEE Real-Time Systems Sympo-

sium, pp. 216-227, 1994.

[20] K.L. Paap, M. Dehlwisch, B. Klaassen, “GMD-
Snake: A Semi-Autonomous Snake-like Robot”,
Distributed Autonomous Robotic Systems 2,
Springer-Verlag, Tokio, 1996.

[21] Saksena, Manas Chandra, “Parametric Schedul-
ing for Hard Real-Time Systems”, PhD Thesis ,
Department of Computer Science, University of
Maryland, 1993.

[22] Shen, C., et al, “Resource Reclaiming in Real-
Time”, Proc. Sixth Real-Time Systems Sympo-

sium, pp. 41-50, Dec 1990.

[23] Sun, Jun, and Jane W.S. Liu, “Bounding the End-
to-End Response Times of Tasks in a Distributed
Real-Time System Using the Direct Synchroniza-
tion Protocol”, Tech. Report UIUCDCS-R-96-

1949 , University of Illinois at Urbana-Champaign,
1996.


