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Abstract—This paper describes a resilient control system
operating in a critical infrastructure. The system is a real-time
weather responsive system that accesses weather information that
provides near-real-time atmospheric and pavement observation
data that is used to adapt traffic signal timing to increase safety.
Since the system controls part of a safety critical application
survivability and resilience considerations must be an integral
part of the system architecture. In order to provide adaptation
to system behavior as the result of faults or malicious acts
an architecture is presented that monitors itself and adapts its
behavior in real-time. The main theoretical contributions are the
combination and extension of approaches introduced in previous
work. The theory of certifying executions is extended by three
concepts: the detection of dependency violations, exceptions trig-
gers, and sensor analysis are considered; a dual-bound threshold
approach for detecting off-nominal executions is introduced;
profiling is augmented with the concept of behavior sets. Extensive
evidence of the effectiveness of the solutions based on a one-year
observation of the system in action is presented.

I. INTRODUCTION AND BACKGROUND

Advanced traffic signal systems that adapt to changing
traffic conditions in real time are at the core of most In-
telligent Transportation Systems (ITS) traffic management
applications. In this paper, we describe a resilient real-time
weather-responsive traffic signal control system that intents to
improve the efficiency and safety of traffic signal operations
during inclement weather conditions. The system receives and
analyzes road weather information from an integrated surface
transportation weather observation data management system
and adapts signal timing in response to changes in road surface
conditions and/or visibility level.

Real-time control systems, especially those governing crit-
ical infrastructures, e.g., transportation, need to be reliable and
secure under normal operating conditions and survivable under
abnormal conditions. They should be designed and operated
so that essential services will function even in the presence of
component failure or external or internal manipulations of the
system or the data it relies on. The control system described
here has to address these fault tolerance and resilience require-
ments during the execution of two tasks. The first consists
of the system accessing near real-time atmospheric, weather,
visibility, and road surface condition information from the
Federal Highway Administration (FHWA) Clarus system [1].
The second task adapts signal timing in response to inclement
weather based on this information. Since the system accesses
data on domains outside its secured local communication
networks, the data exchange architecture needs to be designed
in a way that is resilient against cyber attacks and intrusions.

The control system was designed with resilience con-
sideration in mind, utilizing two essential software design
approaches: Design for Survivability [2] and a Measurement-
Based Methodology [3], [4]. The first approach is derived from
the concept of Design for Testability, which addressed the
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impossibility of completely testing VLSI circuits by designing
them with testability in mind [2]. Now, survivability consider-
ations are similarly integrated into the design, rather than in an
add-on fashion. The second approach, i.e., Measurement-Based
Methodology, was proposed for critical applications that rely
on measurements of operational systems and on dependability
models to provide quantitative survivability with certain user-
defined confidence levels. The software design incorporates
self-monitoring techniques for fault detection and recovery to
maximize the resilience of the system.

A. Contributions

The contributions of this paper are of theoretical and practi-
cal nature. The main theoretical contribution is the combination
of the approaches introduced in [3], [5], [6] into one compre-
hensive architecture with survivability and resilience charac-
teristics. Furthermore, the subsystem that monitors the appli-
cation program is extended to three monitoring approaches:
1) detection of dependency violations, 2) identification of
anomalies through exception triggers and data sensor analysis,
and 3) detection of off-nominal, non-certified executions. The
theory of the latter is extended to allow for certification of
executions based on Behavior Sets. Furthermore, a dual-bound
threshold approach for detecting off-nominal executions is
introduced. The practical significance is in the description of
the actual system with extensive evidence to the resilience of
the architecture based on observation of the system in action
and data collected by the system during the year 2012.

B. Related Work

Run-time monitoring refers to the process of monitoring
the system’s behaviour in real-time. The goal is to determine
whether the system performs its tasks to specifications or if
there are anomalies in the execution patterns. The latter could
indicate that the system is compromised. Has the software
experienced a fault, has the system been attacked, or is it
executing correctly in a fashion that we just have not observed
before? These questions have plagued the dependability and
security communities for decades. Fault detection and treat-
ment have been researched by the dependability and software
engineering communities. Attack recognition, i.e., intrusion
detection, is a very complex problem and detecting patterns or
anomalies has been a constant hot topic in the intrusion detec-
tion community, e.g., signature-based approaches or anomaly
detection. Especially in anomaly detection the critical issue is
where one should set the threshold for deciding what is normal
and what is not [7]. It should be noted that the methods of
intrusion detection, i.e., the claim made about the mechanisms
used for detection, has not been without controversy [8].

Detection of off-nominal executions implies that one knows
what a nominal execution looks like. We do not attempt to
mimic anomaly detection, but utilize the detection of previ-
ously observed executions patterns, e.g., profiles, versus those



we have just not seen before. Instead of focusing on “what is
abnormal”, we focus on “what is normal”. Thus everything
outside of previously identified, i.e., nominal, behavior is
simply assumed off-nominal.

The research presented here is based on early work using
frequency spectra of observed system executions [9]. They
presented a real time approach to detect system behavior
deviating from normal activities, with focus on attacks on the
system software. Similar approaches were taken in [10], where
signatures related to observed frequency behaviors were con-
structed for attack signature detection. Both approaches used
profiling based on injected execution handles, an approach
that is also used in Unix systems, e.g., when compiling C
programs with the -g option. The concepts were later combined
into a measurement based methodology for embedded software
systems [4], which was the starting point for this research.

II. REAL-TIME CONTROL APPLICATION

The traffic control infrastructure is augmented with capa-
bilities driven by performance and safety improvement goals.

A. Control System Components and Operation

The real-time weather responsive system is shown in
Figure 1. The non-shaded components are the existing ITS
system whereas the shaded components are additions that
implement real-time weather response and system resilience.
The traffic lights in an intersection are controlled by a traffic
controller hosted in a cabinet located in the intersection. The
traffic controller is connected to a switch, or hub, to the ITS
control network, which is either physically totally separated or
connected to the Internet via a Firewall. It should be noted that
the separation of the ITS control network and the Internet is
critical and any access through the firewall has to be extremely
limited and under strict compliance with security policies.
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Fig. 1.

Weather data is collected by the Clarus system from a net-
work of Environmental Sensor Stations (ESS) of participating
states. The network of ESS can be viewed at [1] by the general
public. This ESS data is accessible via the Internet from
the Clarus server, after it undergoes quality and consistency
checks based on Clarus quality checking algorithms [11].
Due to this quality check, survivability considerations do not
include verification of the original Clarus data. An embedded
Rabbit!-based system located in the traffic signal system in
the intersection retrieves data from the Clarus server or a local
mirror site, analyses the relevant data, and computes changes
to the signal timing. Upon approval, signal timing changes are
made in the Traffic Controllers by the Rabbit system. Signal
timing plan adaptations include changes such as modified all-
red or yellow clearance intervals or traffic signal efficiency
parameters such as minimum green, maximum green, passage
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time as well as different coordination parameters. Suggested
changes depend on multiple factors such as approach speed,
pavement surface conditions, visibility, and the mode of signal
operations.

B. The Clarus System Weather Data Support

The data that is needed to implement real-time weather
responsiveness comes from the ESS sensors. The Clarus Sys-
tem shown in Figure 1 maintains the location of all ESS. The
ESS most suitable for the specific traffic signal system, e.g.,
the one closest to the intersection, needs to be identified and a
subscription for that ESS is generated. The subscription, which
may include data from a single or multiple specified ESSs,
is made available via the Clarus System’s subscription web
site in the format of a comma separated value (CSV) file.
It should be noted that the data is not queried from a data
base server, but simply accessed directly over the web and
is, unless password protected, publicly readable. Specifically,
a list of observations, i.e., the actual CSV files, is made
available in regular intervals typically ranging from 5 to 15
minutes. The specific observations in the list depend on the
capabilities of the ESS associated with the subscription. Within
a subscription the observation files follow the file naming
convention date_time.csv. An observation file contains data
for specific Observation Type IDs (ObsTypelD). The first line
is a header line describing the values present in each line of
data. A relevant subset of these values is used later by the
system to calculate changes to be made to the traffic controller.
Since a subscription can be specified to contain data from
multiple ESS’s sensors, e.g., including neighboring ESS, the
control algorithms of the weather responsive system can take
advantage of data fusion, thus having a “larger view”.

C. Software System Architecture

An overview of the software system that controls the
weather responsive system is shown in Figure 2, where shaded
areas refer to external hardware interfaces. The Rabbit system,
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Fig. 2. Overview of the software system architecture

which we will refer to simply as “Rabbit”, executes the appli-
cation control software, which consists of the Operational Soft-
ware System and an Operation Monitoring and Contingency
Management System. The operation software system connects
to either a Local Clarus Server (LCS), which is simply a local
mirror supplying the Clarus subscription data, or the Clarus
System, using the Network Interface to the Internet. In regular
intervals specified by the Clarus subscription the Clarus data
is read and converted by the Rabbit, the desired sensor data
is extracted, and specific algorithms compute changes to the
control parameters of interest, e.g., yellow timing adjustments.
The traffic controller is then updated. All this is monitored at



run-time via the instrumentation telemetry by the Operation
Monitoring and Contingency Management System, i.e., the
Rabbit monitors the execution of its software in real-time by
sensor points that are injected into the software.

III. FORMAL MODEL OF SYSTEMS ARCHITECTURE

The system architecture is guided by the design methodol-
ogy and general principles shown in [3], [4]. It starts with the
view of a general system as two distinct abstract machines that
define the implementation in the development of any software
system [5], [6]. The first, called Operational Machine, is the
machine that interfaces directly with the hardware interface.
The second abstract machine, called Functional Machine, is
a set of functionalities that describe exactly how each system
operation is implemented. As the system operates, operations
cause functionalities, implemented by modules, to be invoked,
or functionalities cause operations to be performed. During
system operation, i.e., while the application is running, the
operational and functional machines can be monitored in
realtime, assuming appropriate instrumentation is in place
to allow this. In our case, the execution of the application
running on the Rabbit is monitored in real-time by three
different monitoring mechanisms, shown in Figure 3. The
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Fig. 3. Using Profiling, Dependencies, and Data Sensor Monitoring

first mechanism, described by a Profiling Model, is based
on analysis of realtime execution profiles. It will be used to
describe measurement of typical behavior as the basis for what
to expect, with a certain probability of error, in the future.
The second mechanism, covered by a Dependency Model,
is monitoring for violations of state dependencies between,
and within the machines. Any violation indicates an abnormal
execution. The third mechanism, referred to as the Software
Sensor Model, is based on the analysis of data supplied
by specific data sensors within the software. These software
sensors supply information that can be used for analysis or
direct actions. All three mechanisms allow for the detection of
off-nominal, unexpected, or invalid executions, which in turn
are used by the Contingency Management System. We now
describe each of the three models in detail.

A. Profiling-based Model

If one counts the invocations of operations, functionalities
and modules over a specific period of time one can derive the
respective operational, functional and module profile. These
profiles will be used later in the analysis that may expose
off-nominal executions. To stay compatible with the notation
used in [5], [4] we will use letters u, ¢ and p for operational,
functional and module profiles respectively. The notation is
introduced using module profiling as an example. Let p; denote

the probability that the system is executing module m;. Then
P = (p1,P2, .-, p|ar) is the module profile of the system, i.e.,
it is the probability vector of the modules in M.

B. Non-synchronized Profiling

During execution of the system we are interested in observ-
ing the module profile over n epochs. Here we assume that n
is not synchronized to a particular higher level machine, e.g.,
the operational machine’s epoch.

This observed profile is denoted by p = (p1, P2, ---, D))
where p; = ¢;/n is the fraction of system activity due to
invocations of module m; and c; is the count of invocations
of m;. As the software executes, invocations of modules are
continuously monitored and module profiles are generated and
analyzed. We want to keep track of these profiles. Let p*
denote the k' module profile. Thus p* is the k" observed
module profile, observed over n epochs, which was preceded
by p*~1, observed over the previous n epochs, and so forth.

To get a feel for the expected evolving profile of the system
we want to establish the module profile equivalent to an “h-day
moving average” in financial stock movements, and derive a
centroid that will serve as reference for observed profiles. For
that, just as in [4], we consider h sequences of n epochs each
and define a centroid P = (Py, Pa; .-, Djar))> Where

pi= >0 (M

j=1

Thus p is a |M|-dimensional vector, and using the above
financial metaphor, each element represents the “h-day moving
average” of a specific stock (module), where a day is measured
as n epochs. Furthermore, just as in the stock market, we don’t
know what the future brings but find it useful to track the past
in order to establish “nominal”, i.e., expected, behavior.

C. Synchronized Profiling

In the previous discussion the profiles reflect the behavior
of the system. However, it is a single behavior. If there are
multiple behaviors that a machine may exhibit, then one has
to consider sets of behaviors, which we refer to as Behavior
Sets. Let’s consider the case where modules may exhibit
different behavior during an operational epoch. Therefore,
assume we synchronize module epochs to the operational
machine, specifically an operational epoch. Thus we make the
assumption that n is the number of module epochs expiring
during one operational epoch. In our application n is the
number of module epochs during the 15 minute operation
epoch at which the Clarus data is fetched. We now adapt the
notation of the non-synchronized case and will switch from
lower to upper case letters when considering behavior sets.

Now the observed profile is P = (f’l,f’z,...,f’|M|),
where f’i is the behavior set of module m,, i.e., it is a set
of different profiles p; = c¢;/n, which again represents the
fraction of system activity due to invocations of module m;
and c; is the count of invocations of m; during the operational
epoch of length n. Analogous to the non-synchronized case,
let P¥ denote the behavior set of the k" module profile. Thus
P is the k'" set of observed modulg profiles, observed over
n epochs, which was preceded by P¥~!, observed over the
previous n epochs, and so forth.



Considering h sequences of n_epochs each, we define a
centroid of sets P = (Py, Py, ..., P|y|), where

h
P, =P, Up;, 1<r<[M)| pi:EE i 2)
i=1

for each behavior i. Thus P is a |M|-dimensional structure
of sets, and again using the above financial metaphor, each
element represents the “h-day moving average” of a specific
set of stocks (module), where a day is measured as n epochs,
and again we want to track the past in order to establish
“nominal”, i.e., expected, behavior from a set of behaviors.

It should be noted that if each behavior set consists of only
one element, then essentially P is the same as p.

D. Dependency-based Model

The above discussion about profiles does not capture any
dependencies between operations, functionalities, and modules,
nor does it capture dependencies among them. We will refer
to the first case as inter-dependencies and the latter as intra-
dependencies.

E. Inter-dependencies

The relationship between operations, functions, and mod-
ules is defined by a graph GOF'M | where the superscript simply
indicates that the graph maps from O to F' to M. The term
inter-dependencies stems from the fact that G OF and GF'M are
bipartite graphs and GO is a tripartite graph. An example
is depicted in Figure 4, which shows three operations o1, 02
and os. The operations utilize specific functionalities, e.g., 01
uses functionalities f; and f,. Incidentally, f5 is also used by
o3. The functionalities are implemented by modules, e.g., f3
is implemented by module m,, whereas f, is realized by my,
ms, and mg. Checking inter-dependencies allows to identify
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Fig. 4. Mappings in (O x F' x M)

any violation of mappings. For example if during the service
of functionality f; module mo would be invoked, then at the
functionality level one can detect a violation, since checking
the graph one knows that mo is not used by f;. Similarly, at
the module level the violation would be detected as mso finds
out that it should not be called as part of f; services.

Violations of inter-dependencies may be the result of
scenarios where the mapping from specification to code is
different than the reverse mapping, i.e., from code back to
specification. In the latter case the code does more than it is
supposed to do.

Sometimes there is a one-to-one and onto mapping from
operations to functionalities, which is the case in our applica-
tion. Then the mapping of (O x F' x M) can be reduced to

(O x M), which is defined by GOM We will refer to this map-
ping and its implied simplification as Mapping Simplification
Assumption throughout the paper.

F. Intra-dependencies

It is not only of interest to know which functionality
is used by an operation or which modules are used by a
functionality, but also to know dependencies within opera-
tions, functionalities, or modules. Those intra-dependencies
can be defined by precedence graphs and are shown within the
shaded areas of Figure 5. Specifically, dependencies between
operations are defined by graph G = (O, <?), where <¢
defines a precedence relation on the operations in O, i.e., if
o; depends on o; then (0;,0;) is in <. Any violation of
the precedence indicates a problem in the control flow of
operations. We define similar graphs for functionalities and
modules. Thus G¥ = (F,<F) and GM = (M, <M) are the
graphs defining calling relationships between functionalities
and modules respectively. It should be noted that G is the
static call graph of modules in M created by the compiler.
The operational, functional, and module dependency graphs
are used to detect invalid or previously unobserved transitions.
In Figure 5 the intra-dependencies are shown by solid and

Fig. 5. Dependencies within operations, functionalities, and modules.
Complete model (left), Simplified model with one-to-one and onto mapping
in (O x F) (right)

inter-dependencies by dotted arrows. Figure 5 shows the com-
plete dependencies (left), and the simplified model under the
Mapping Simplification Assumption (right).

G. Sensor-based Model

Not every behavior can be extracted from profiles or
dependencies. Sometimes specific data sensors are needed to
observe specific data values or to trigger exceptions, e.g., as
the result of abnormal, missing, or unknown data items.

1) Exception Triggers: An exception trigger array has been
implemented to identify and profile exceptions. An example of
such trigger is the detection that a file that is supposed to be
accessed does not exist, that specific external sensor data is
no longer available, or any other observation that will cause
the program to adapt. In general, any error condition can be
viewed as a exception trigger.

In our application the driving motivator for exception
triggers lies in the uncertainty of the availability of data
provided by environmental sensor stations (ESS). This can
be due to ESS sensor failure, or simply a change in ESS
configuration or hardware. Recall that there are large numbers
of diverse data available from ESS and which specific data is
available depends foremost on the capability of the ESS.



2) Data Sensors: Data sensors serve primarily for obser-
vation and analysis of specific numeric values. An example in
our application is the value for the adjustment of the yellow
period as computed by the algorithm engine shown in Figure 2.
The correctness of data that is used in the computation is
not questioned as Clarus provides quality and consistency
checks based on its quality checking algorithm. However, the
computed adjustment values provided by the data sensors can
be analyzed to determine if they are feasible or make sense.
Due to the NTCIP compliance of the traffic controller no safety
violations can be forced, e.g., by selecting dangerously small
yellow periods. But it could be possible that for some benign
or malicious reason the values are constantly too large, thus
constituting a denial of service attack. Thus, no matter what
the reason for the extreme durations may be, the data sensor
makes analysis and thus contingency management possible.

IV. RUN-TIME MONITORING

Run-time monitoring refers to the process of monitoring
the system’s behavior in real-time. The goal is to determine
whether the system performs its tasks to specifications or if
there are anomalies in the execution patterns. The latter could
indicate that the system is compromised. Has the software
experienced a fault, has the system been attacked, or is it exe-
cuting correctly in a fashion that just have not observed before?
These questions have plagued the dependability and security
communities for decades. Fault detection and treatment have
been researched by the dependability and software engineering
communities. Attack recognition, i.e., intrusion detection, is a
complex problem and detecting patterns or anomalies has been
a constant hot topic in the intrusion detection community, e.g.,
signature-based approaches or anomaly detection. Especially
in anomaly detection the critical issue is where one should set
the threshold for deciding what is normal and what is not.

The run-time monitoring employs three monitoring ap-
proaches: 1) validation of dependencies, 2) detection of anoma-
lies through data sensor analysis, and 3) detection of off-
nominal executions

Validation of dependencies is quite simple. Given the inter-
and intra-dependencies discussed in subsection III-E and III-F
respectively, the system can detect any violation of m. B’plngs
from operations to functionalities to modules in GOFM | the
simplified G?M | and any violations of precedence in each QO,
G¥ and GM . For example, any call graph precedence violation,
i.e., a module call sequence that is not in the precedence
relation of GM, indicates a call sequence that is not intended.
The reason for such call sequence cannot be extracted from the
simple detection, however, possible reasons could be incorrect
function pointers or perhaps a code injection attack.

Detection of anomalies in values returned by code-
embedded data sensors is highly dependent on the sensor type.
For example, in our application one data sensor is the actual
adjustment to the yellow period of the traffic light. If the rate of
change of the period is not in character with the environment
parameters, e.g., the surface temperature, then perhaps the
value is not correct. A simple range check of parameters may
detect values that are outside of the expected range.

Detection of trigger events, coming from the second type of
sensors, is more straightforward. The trigger events are simple
signals that indicate certain events. They can be used to initiate
specific actions, or can simply serve as a tracking mechanism,

e.g., to keep track of how many times certain events have
occurred over a specific time interval.

Detection of off-nominal executions implies that observed
profiles are checked to establish if they meet an expected
certified behavior, as will be described next.

A. Certified Executions

Detection of off-nominal executions implies that one knows
what a nominal execution looks like. We do not attempt to
mimic anomaly detection, but utilize the detection of previ-
ously observed executions patterns, e.g., profiles, versus those
we have just not seen before. Instead of focusing on “what
is abnormal”, we focus on “what is normal”. Thus everything
outside of previously identified nominal behavior is simply
assumed off-nominal. Nominal behavior can be refined to a
costate level [5], [6]. A costate is a task in the nonpreemptive
multitasking model of the Rabbit’s Dynamic C. Given that
different parts of the system execute in different costates, e.g.,
the application control loop is in one costate, the granularity of
run-time monitoring is that of a costate. This is more accurate
than monitoring the system as a whole.

The specifics of the instrumentation and how simple data
structures can be used to achieve costate-based profiling is
described in [3]. Using the data from the instrumentation, i.e.,
the observed profiles, one can detect off-nominal executions.
However, rather than identifying off-nominal behavior, we
“certify” nominal executions. Here we describe a dual-bound
approach to the execution certification introduced in [5] and
expand it to consider behavior sets. For ease of presentation we
first introduce the notion without behavior sets. Furthermore,
we discuss certification using modules as an example, but the
principle can be extended to functionalities or operations.

Certifying module behavior per costate is based on module
profiles, p*[a]. The distance of the observed costate profiles
p¥[a] from P[a] can be used so that departure beyond it
indicates non-certified behavior of costate a. Specifically, we
define two threshold vectors

" la] = (" [al, ..., 377 [o]) )
€""a] = (" [al, ..., efig] [o]) @

where €"®[a] and €7"""[a] are the upper and lower threshold
values of m;, representmg a dual-bound threshold. Every
observed profile that is in the region between the two vectors
is assumed nominal. Thus we certify a profile p¥[a] to be a
nominal profile if

€""[a] < p*la ]S "ol ®)
<e

e., if €"[a] < pFla] “[a] for every 1 < i < |M].
The values of threshold vectors €™ [a] and e™™[a] are
experimentally determined while the system is in test mode.
Test mode here assumes a controlled environment in which
the system runs normal and is closely observed while no fault
occurs and no attacks on the system take place. In practice this
means that, while in normal operation, the profiles are tracked
over time to derive (or calculate) the desired threshold vectors.
In the simplest case the threshold vectors can be the minimal
and maximal observed values of each p¥[a].

If one needs to tune the sensitivity of the thresholds,
one can introduce weight functions w, defined per costate,



to be multiplied with the threshold vectors. Then a nominal
execution of module m; is defined as
we""[a] < pifa] < w'e"*"a]. ©)
An alternative representation of execution certification is
based on the deviation of the observed profile from the mean
that has to be within the threshold vectors. Then an execution
of module m; is nominal if
Bl = Bl < €"**[a] — € [a]. @

% 7
B. Certified Executions with Behavior Sets

Now we consider that there may be more than one nominal
behavior of the system. For example, if during one operational
epoch the system may exhibit one of several known behaviors,
the nominal behavior is not unique anymore. Assume we are
processing data files that have several known sizes, e.g., size
a or b. Then one would expect the observed profiles of the
executions in both cases to be different, yet both are nominal.
However, if a file is corrupted and its size deviates largely from
sizes a or b, one would like to detect this, e.g., by observing
a profile vastly different from that of nominal executions.
Thus we need to extend the notation of certified execution to
consider behavior sets, introduced in subsection III-C. Recall
the notational convention of changing lower case letters to
upper case letters when behavior sets are used.

When using behavior sets the elements of threshold vectors
are sets. Let ™" [a] and E™*[a] denote the behavior thresh-
old vectors, i.e. E™"[a] = (E""[a], E3""[a], ..., E[j1'[o])
and E"[a] = (E7"*[o], EF*"la,..., BN [a]). For a
module m; there will be at least one threshold value €]""[a] €
E7""[a] and €]'%%[a] € E7"*"[a]. The second subscript is the
element number in the behavior set, e.g., element 7 and s.

The execution of module m; is nominal if for some
pflal € PFla] and some €[] € E""[a] and €]’ [a] €
Eimar]o]

eminfa] < plyfa] < e al. ®)

V. SYSTEM OPERATION & CONTINGENCY MANAGEMENT

In this section we describe the system as it operates and
present data that was collected as part of the system mission
and its monitoring over months of operation, especially the
winter months of 2012.

A. System State Space and Transition Violations

As the system operates in the field it goes through state
transitions, which are monitored by the Operation Monitoring
and Contingency Management System (see Figure 2), using
the three monitoring approaches introduced in Section IV. The
system state space is generally complex, as it is induced by
the state space of operations, functionalities, and modules. In
our application, using the Mapping Simplification Assumption
it reduced to the operation state space and module state space.
The module state diagram was presented in [6], where a total
of 25 system states was observed, i.e., Sp, ...524.

As the system software executes in costatements the
transitions are verified to detect inter-dependency and intra-
dependency violations described in subsections III-E and III-F
respectively. Any violation of the system state transitions

indicates a serious problem. For example, an intra-dependence
violation of the module states implies that the system is calling
modules that it should not be calling or it is returning to
modules other than intended, e.g., as the result of a buffer
overflow. Another example is if a module is called under an
operation that should not utilize it, or a module returns to
another module that is not operating under the same opera-
tion. Both cases can be deducted from the inter-dependency
mappings. Upon detection of any dependence violation the
contingency management system initiates fail-safe mode and
issues a notification about the nature of the violation.

B. Application Control

The actions of the actual control sub-system, which is
running in the costatement that implements the real-time traffic
control application, was presented in [6]. The operation epoch
is 15 minutes, which is the fixed time interval at which real-
time weather condition data is available from the Clarus server
for specific subscriptions (indicated by subscription numbers).
First the Rabbit determines the time and composes the URL
that contains the comma separated values, a csv file. It then
uses a recovery block strategy to get the data from a set
of data base servers. In our current implementation this is a
Local Clarus Server (LCS) and the Clarus server shown in
Figure 1, thus implementing a dual redundant system. First
the LCS is queried and if the data cannot be retrieved within
a certain amount of retries, the Clarus server is tried. If it
fails to provide the data after a certain amount of retries,
the Contingency Management System initiates fail-safe mode,
which is a forward recovery mechanism bringing the system
into a desired default state. Once entering fail-safe mode
the system attempts to reestablish normal operation again. If
data acquisition was successful via one of the alternatives
the traffic controller computes the adjustments that reflect
the environment parameters and adjusts the signal controller
accordingly.

Certain assumptions must be made about the quality of
the data supplied by the Clarus server. Whereas we assume
that the data received is correct since Clarus uses data quality
checking algorithms [11]. On the other hand, the computed
signal adjustment values computed by the Rabbit are not
assumed to be correct, as a fault may have occurred during
computation. Therefore detection of anomalies through data
sensor analysis, the second monitoring approach in Section IV,
is implemented. It tests the computed signal changes for range
violations from what was expected. If a violation is detected
the contingency management system enters fail-safe mode.
There are many other checking mechanisms, including reaction
to network connection problems, data corruption, loss of time
synchronization, e.g., after reboot as the result of power failure,
inability of finding valid Clarus data subscriptions, changing
the LCS Internet address. Some of these issues require the
contingency management system to enter a receive mode, in
which configuration information, e.g., the IP of a new LCS or
Clarus subscription number, is communicated to the system.

C. Application Control Performance

The system is installed in Northern Idaho and has been
observed over the most interesting period, which are the winter
months, as adverse weather conditions are common. The
adjustments of the yellow time of the traffic signals has been
observed over several months. As the environment conditions
worsen the yellow time is increased to improve safety, e.g.,



during ice or snow a longer yellow period allows more time
to safely clear the intersection. The adjustment value computed
by the Rabbit is communicated to the traffic controller, which
in turn makes changes to a default value according to the
percentage given by the adjustment value.
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Fig. 7. Exception triggers

The yellow adjustment values for 53 interesting operational
epochs during November and December of 2012 are shown
in Figure 6. The figure shows the values Surface Status,
Surface Temperature, which are Clarus parameters, Weather
Conditions, and the adjustment values called Yellow. The first
observation is that value Yellow follows the weather conditions.
Next, looking at the surface temperature one can see that
Yellow is increased as the temperature decreases. An alternate
reference is the Surface Status, ST, a Clarus value shown in
the lowest graph of the figure. Larger values of ST indicate
deteriorating conditions, whereas conditions improve as ST’
become smaller. The values for ST are in the interval [1, 14].

If one carefully examines the graph, one can see that
there are five cases where ST = 0, which represents an
error condition, i.e., the Clarus file was not available. The
contingency management system recognized the fault and
adjusted it to the most recent value, as can be observed in
Figure 6.

In addition to the data sensor analysis we have exception
triggers. Figure 7 shows five trigger and the count of how often
exceptions were triggered, again based on the 53 observed op-
erational epochs. For example, only two exceptions were never
triggered. A trigger in this case implies that data needed for
the computation of the yellow adjustments were missing in the
data files. In fact, two of the five triggers were fired 47 times,
i.e., out of 53 epochs, 47 did not include the specific sensor
data, and 5 times the entire Clarus files were empty. However,
the algorithm engine computing the adjustment could adapt to
these scenarios since even in the absence of data the system
could produce reasonable adjustment values. The data in the
figure was actually observed as the consequence of changes in
the data supplied from the ESS or Clarus. Since we have no
control over what ESS sensor data may be missing, perhaps
due to defects or product changes, the algorithm computing
the adjustments to the application must be able to tolerate the
missing data, which represent an omission fault. The exception
triggers are used to verify the adjustment values, e.g., as seen
in Figure 6, and provide adaptation.

D. Certified Executions for Resilient Operation

The third monitoring approach is to check for off-nominal
executions. All but module mo3 behave consistent in that their
minimum, average, and maximum frequencies are equal. Only
mas3, a module that filters Clarus data, experienced variation.
Further examination of the behavior of ms3 over time is shown

in Figure 8, where the 52 operational epochs of Figure 6 are
used. The counts of invocations of maog is indicated, together
with the minimum and maximum counts that would typically
be used as the basis for the threshold function. However, ma3
actually has two behaviors, i.e., one for non-empty files with no
sensor data and another for standard file size. This causes the
minimum and maximum to drift, as they are monotonically
non-increasing and non-decreasing functions. As a result it
is difficult to define effective thresholds for detection of off-
nominal executions. This was solved by using a behavior set
of size two, as shown in Figure 9. One behavior threshold
reflects the small file size and another normal file size. The
figure also identifies four readings that are off-nominal, by far
overreaching the other readings. These files were abnormal
data files of much larger size and are treated as if they were
data falsification attempts.

E. Reliability Considerations

It is important to address how the addition of the real-
time weather control application affects the reliability of the
target application, i.e., the traffic control system. The reliability
of the traffic control system is not affected by the addition
of the embedded system since none of the components of
the original traffic signal control system are modified. The
embedded system implements only added value, but not basic
functionality. In fact, as mentioned before, the traffic controller
is NTCIP compliant. Thus action movie scenarios like an “all-
green intersections” or “split second yellow timing” causing
accidents are not possible (with or without the embedded
system). Any attempt to assign parameters that violated NTCP
compliance are simply ignored by the traffic controller, which
we verified during testing of the embedded system. The only
physical connection with the existing infrastructure is via the
connection to the switch, as indicated in Figure 1.

VI. CONCLUSION

This paper described the architecture of a resilient control
application operating in a critical infrastructure. The theoretical
basis for effective run-time monitoring was given and the
system has been observed over time. The experience gained
so far indicate that the three monitoring approaches allow for
adaptation of any changes we have observed so far. As the fault
and attack vector that the system is exposed to is unknown,
time and testing using fault injection will ultimately be the
judge for its effectiveness. Further operation in the field will
allow us to study the sensitivity of the certification parameters
that implement the thresholds of nominal executions. However,
it should be noted that this application, due to its NTCIP
compliance cannot compromise safety. If it enters fail-safe
mode due to off-nominal executions due to unknown origin,
it only ceases to supply the added value. If, against all
expectations, it were to completely fail and behave pathological
it could not overwrite settings to violate safety margins.
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