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1 Introduction

A distributed system can be described as an interconnection of autonomous nodes5. Many

critical applications make use of such systems to achieve higher reliability and performance.

However, distributed systems are more prone to failures due to higher redundancy of compo-

nents. In such a system, to make an application survivable in spite of component failure or

intrusion, the nodes must be able to co-coordinate their activities. This requires the nodes

to execute some form of “agreement” protocol, which depends on the application.

One form of agreement is called Approximate Agreement (AA) in that the nodes must

decide on final values which are different from each other by a maximum of ε [6, 8]. Some

applications of AA are in synchronizing the local clocks of a distributed system, and sensor

data management, where the sensors do not necessarily show the same value [4, 7, 10]. The

agreement problem is simple when every node behaves correctly, but it becomes notoriously

difficult when some nodes do not behave according to their specifications. AA is defined by

the following two conditions [5, 6]:

• Agreement – The voting algorithms executed by all non-faulty nodes eventually halt

with voted values that are within ε of each other.

• Validity – The voted value held by each non-faulty node is within the range of the

initial values held by the non-faulty processes.

The first condition ensures that all non-faulty nodes agree on almost the same value, and

the second condition enforces the agreed upon values to be in the range of good values held

by non-faculty nodes.

Convergent Voting Algorithms – The vast majority of voting algorithms for AA em-

ploy “rounds” of message exchange coupled with voting functions which guarantee that the

5Herein, the word “node” and “process” running on a node are used interchangeably.
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difference between the values held by non-faulty processes is reduced toward zero in each

round [3, 5, 6, 8, 10]. This property is called single-step convergence.

In each round, every correct node exchanges its local value with other nodes. Upon the

receipt of values from the other nodes, each node executes a function F , producing a new

value. This new value is used as the voted value for the current round. This process

continues until the Agreement condition is met. The Validity condition is met if in each

round, F produces a value within the range of the correct values received.

Contributions – Much work has been conducted for solving the AA problem for Fully

Connected Networks (FCN). However, as the number of nodes increases, FCN becomes very

expensive in terms of communication resources. On the other hand, although most systems

are partially connected, there has been little focus on Partially Connected Networks (PCN).

Therefore, the primary objectives of this research are:

• Design a network model, which is not fully connected, is homogeneous, regular, and

easily scalable.

• Devise a methodology that can easily take advantage of currently available results for

FCN.

• Employ limited amount of message relays.

• Determine the performance and Fault Tolerance under single mode and hybrid fault

models.

• Compare the results with those of fully connected networks. Since there has been no

solution for any partially connected network, the results can not be compared to other

partially connected networks.

Organization – Section 2 provides background information on communication system

protocols, different fault types, and the relevant studies of the AA problem. Section 3
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explains a network model called Partially Fully Connected Network (PFCN), and obtains

the performance and fault tolerance of the network under the worst-case single fault mode

(Byzantine). It also compares the results with fully connected networks. Section 4 studies

the same network model under a hybrid fault model consisting of three fault modes. Section

5 obtains the optimal structure of the PFCN model for a given number of nodes. Section 6

considers the communication cost of the PFCN model and compares it with fully connected

networks. Section 7 deals with variations of PFCN under the Ethernet network protocol.

This section will show that performance, fault tolerance, and communication cost are further

improved. Finally, Section 8 gives a summary and some remarks on future studies of AA.

2 Background

2.1 Synchronous vs. Asynchronous Systems

Distributed systems can be partitioned into two classes: synchronous systems and asyn-

chronous systems. In a synchronous system, there are finite bounds on the processing and

communication delays of non-faulty nodes [5], in that there exists a point in time by which

any node executing a voting algorithm knows that it has received all data from all non-faulty

nodes. Therefore, any data arriving after that time must have come from a faulty node.

By contrast, an asynchronous system imposes no finite bounds on node operations [5]. Thus,

there is no fixed time by which a node is guaranteed to have received a value from all non-

faulty nodes. Each node must decide for itself when to stop waiting for messages and begin

the voting algorithm for the current round [5]. This paper is restricted to the study of

synchronous systems only .

2.2 Fault Models

In most studies of AA, faults are assumed to behave in the worst-case Byzantine manner. A

Byzantine faulty node behaves maliciously and arbitrarily, and thus no assumption can be
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made about its behavior. For example, it can send an erroneous value to some nodes and

no value to other nodes, or transmit conflicting messages to every node. Thus, Byzantine

faults have also been called two-faced or asymmetric. In fault tolerant systems, however,

it is unlikely that all faults exhibit this worst-case behavior. Thus, the assumption that all

faults are worst-case yields overly conservative estimates of fault-tolerance and reliability.

Consequently, a more realistic approach to fault tolerant distributed systems design and

analysis is to account for the co-existence of different types of fault modes with mixed

severities. In one of the early studies, Thambidurai and Park [11] partitioned the faults into

b benign, s symmetric, and a asymmetric faults. The total number of faults in the system is

t = a+s+ b. In contrast to Byzantine (asymmetric) faults, the behavior of symmetric faults

is perceived identically by all nodes, i.e. a node transmits the same erroneous value to every

receiving node. A benign fault, also called, manifest fault, is defined as a self-incriminating or

self-evident fault to all nodes. It is a fault whose erroneous behavior is detected by all nodes,

e.g. transmitting a value outside of a timing-window. Voting algorithms using different fault

modes usually produce better fault tolerance [4, 8, 11].

Later Azadmanesh and Kieckhafer [1] extended the three fault model to a five-mode fault

model. The five-mode Omissive/Transmissive Hybrid (OTH-5) fault model distinguishes

between omissive and transmissive behavior of symmetric and asymmetric fault modes. A

transmissive fault is one which delivers erroneous value(s) to one or more receiving nodes. By

contrast, an omissive fault fails to deliver a value to one or more receiving nodes. Specifically,

these fault behaviors are:

Transmissive asymmetric A transmissive asymmetric fault can exhibit any form of ar-

bitrary asymmetric behavior, i.e. it can deliver different erroneous values to different

receivers.

Strictly omissive asymmetric Such a fault can send a single correct value to some nodes

and no value to all other nodes. However, it can not transmit an erroneous value to

any receiver.

Transmissive symmetric A transmissive symmetric fault delivers a single erroneous value
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to all receiving nodes.

Omissive symmetric An omissive symmetric fault fails to deliver any value to any receiv-

ing node.

Figure 1 summarizes the relationships between the fault models discussed.

Benign

Asymmetric Symmetric Benign

Strictly OmissiveOTH-5:
Asymmetric

Omissive
Symmetric

Transmissive
Symmetric

Malicious

All Faults

Thambidurai & Park:

Byzantine:

Transmissive
Asymmetric

Benign

Figure 1: Relationship among fault models

This study considers both single and hybrid fault models. To better understand the behavior

of networks discussed, first the analysis considers only Byzantine faults. Later, this restric-

tion is removed and the networks are analyzed under the hybrid fault model consisting of

benign, symmetric, and asymmetric faults.

2.3 Single-Step Convergence

To define single-step convergence formally, the following definitions are needed:

V = 〈v1, . . . , vV 〉, where V = |V|, is the multiset of values received and sorted in

ascending order.

ρ(V) = [ min(V), max(V) ], is the range of values spanned by V.

δ(V) = [ max(V)−min(V) ], is the diameter of V.

Uall = The multiset of all correct values received by non-faulty nodes.

During each round of voting, each non-faulty node i broadcasts its initial value to all nodes
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including itself. Then it collects all the values received into the voting multiset Vi. Node

i then applies a function F to Vi to attain its latest estimate (voted value) for the round,

which it uses as its initial value in the next round. An algorithm is single-step-convergent if

both of the following conditions are true following every round of voting:

• F (Vi) ∈ ρ(Uall), i.e. for each non-faulty node i, the voted value is within the range of

correct values, and

• |F (Vi)− F (Vj)| < δ(Uall), i.e. for each pair of non-faulty nodes, i and j, the difference

between their voted values is strictly less than the diameter of the multiset of correct

values received.

Assuming that δ(Uall) > 0, for two arbitrary non-faulty nodes i and j, the ratio:

C =
max (|F (Vi)− F (Vj )|)

δ(Uall )

called convergence rate, shows the effectiveness (performance) of a convergent voting algo-

rithm. Note that Uall is the multiset of initial correct values before voting, and F (Vi) and

F (Vj) are the values after voting. If C < 1 in each round, it is then guaranteed that after

sufficient number of rounds, the system will achieve agreement, i.e. the diameter of correct

values held by the non-faulty nodes in the system will be within ε.

2.4 Definition of MSR Algorithms

MSR voting algorithms are a particular family of voting algorithms with the following general

form [6, 8]:

F (V) = mean [Selσ (Red τ (V))]

The Reduction function Red τ removes the τ largest and τ smallest elements from multiset

V, which produces the following new multiset:

M = Red τ (V) =
〈

v(1+τ), . . . , v(V−τ)

〉
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The Selection function Selσ then selects a submultiset of σ elements from M:

S = Selσ(M) = 〈s1, . . . , sσ〉

The final voted value is the arithmetic mean of the selected multiset. Thus, the final voted

value F (V) is the Mean of a Subsequence of the Reduced (MSR) multiset. Some examples

of MSR algorithms are the Fault-Tolerant Midpoint and Fault-Tolerant Mean [5], Binary

Mean, and Binary Suboptimal algorithms [8].

MSR algorithms require that the voting multisets for non-faulty processes be of the same size

(Vi = Vj). So, if an expected value is not received, an arbitrary default value is chosen for

the missing value. All nodes then apply the same voting algorithm to equal-sized multisets.

Convergence Rate of MSR Algorithms – Each element of S corresponds to one unique

element of V. Let g be the index of any element of S, and let k(g) be the index of the

corresponding element in V, so that sg = vk(g). Now given two indices into S, g and

h ∈ {1, . . . , σ}, where g ≤ h, define ∆k(g, h) = k(h)− k(g) as the number of elements in V

spanned by (sg, . . . , sh) in S.

Finally, for any non-negative integer z, define γz as the minimum value of (h − g) which

ensures that k(h)−k(g) ≥ z, for any values g and h, g ≤ h ≤ σ. By this definition, γz exists

only if |V| > z. It has been shown [8] that the convergence rate C of any synchronous MSR

algorithm is given by the following simple expression:

C =
γz

σ
(2.1)

where z is the number of asymmetric faults.

2.5 Local and Global Convergence

The vast majority of research in convergent voting has considered only completely connected

systems [5, 6, 10, 12, 13]. Thus, any node can receive direct messages from all other nodes. If

the physical connectivity of the system is not complete, then it is assumed that messages are
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relayed by intervening nodes to achieve complete “logical” connectivity. As a system grows

large, so does the number of its communication links, or the traffic required for message

relays. Thus, the assumption of complete connectivity restricts the application of convergent

voting to relatively small systems.

There are two types of convergence without relays: local convergence over a specified sub-

graph, and global convergence over the entire network. Local convergence implies global

convergence in FCN, since every node is connected to every other node. But this is not

necessarily true in PCN. While local convergence is a prerequisite to global convergence in

PCNs, it does not guarantee single step global convergence. More specifically, two immediate

neighbors i and j may receive values from their respective neighbors that are not shared by

i and j. Since these values change with every round, nodes i and j may diverge with respect

to the previous round. Hence, during the course of global convergence a cluster of local

nodes may go through a period of convergence and divergence before they finally converge.

As a result, global convergence is asymptotic rather than monotonic [9], which makes the

proof of global convergence without message relays for any particular PCN very complex.

Some attempts have been made to show global convergence for restricted forms of PCN under

simple fault models. For instance, [2] shows global convergence for an octagonal network

torus under omission faults only. This study, however, achieves global convergence for a

PCN called PFCN (discussed in the next section). The study considers the Byzantine and

hybrid fault models. PFCN takes advantage of the benefits and the results already obtained

for FCN [8].

3 The PFCN Model

3.1 System and Communication Models

As indicated in the previous subsection, the relay of messages in a PCN becomes prohibitive

as the number of nodes increases. In addition, a PCN design must have the capability of

achieving global convergence. Consequently, our network model combines fully connected
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and partially connected subnetworks in such a way to limit relays of messages and to guar-

antee global convergence.

The network model groups the nodes into clusters. Each cluster has the same number

of nodes, which are fully connected by point-to-point intra-cluster communication links.

Each node in a cluster is connected to its corresponding node in each of the other clusters.

Inter-cluster communication is performed by the corresponding nodes in each cluster. The

motivation for partitioning nodes into clusters is to localize heavy traffic to the intra-cluster

communication6.

One way to allow clusters to communicate with each other is to elect a member of each

cluster as a “gateway” node. The gateway node will then be responsible for exchanging the

messages of its own cluster with other clusters. This however makes the design more cen-

tralized, making the gateway nodes to be points of failure for their own clusters, preventing

convergence at the global level. Therefore, every node is treated the same and has the same

function and responsibility as the other nodes.

As an example, the following figure shows a network model with 9 nodes. The nodes are

partitioned into three different clusters (groups). Each cluster contains 3 nodes.

Cluster 1

2

1

3

1 1

2

23

3

Cluster 3

Cluster 2

Figure 2: A PFCN model with 3 clusters and 3 nodes in each cluster

Based on this design, we use the following definitions:

6Note that the clusters are cliques.

9



N = Number of nodes in the entire network.

n = Number of nodes in each cluster.

g = Number of clusters (groups) in the network.

L = Number of communication links in the network.

Since each cluster is fully connected, the number of bi-directional links in each cluster is:

n(n − 1 )

2

Since there are g clusters, the total number of intra-links is:

gn(n − 1 )

2

On the other hand, since each node in a cluster is connected to (g − 1) corresponding

nodes in other clusters, the total number of inter-connections for each cluster is n(g − 1)

links. Therefore for g clusters, the total number of bidirectional inter-links is gn(g − 1)/2.

Consequently, the total number of intra- and inter-links in the system is:

L =
gn(n − 1 )

2
+

gn(g − 1 )

2
=

ng(n + g − 2 )

2
.

Note that the total number of inter-links is the same as if the corresponding nodes in each

cluster were fully connected. Both approaches give the same result.

As an example, in Figure 2, N = 9, n = 3, and g = 3. The total number of links is L = 18,

whereas the total number of links in FCN is N/(N − 1) = 36. Table 1 shows the percentage

of link savings using PFCN in comparison to FCN for different values of N , g, and n. It

shows that as the number of clusters increases, the number of links decreases. This issue

will be investigated in Section 5.

3.2 Implementation of the Voting Algorithm

We assume that the communication system is synchronous and thus all nodes execute the

same voting algorithm in lock-steps. Recall that MSR voting algorithms work in rounds.
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PFCN FCN Link Reduction

N g n L Total Links Percentage
N(N − 1)/2

24 2 12 144 276 48
3 8 108 61
4 6 96 65

50 2 25 625 1225 49
5 10 325 73

100 2 50 2500 4950 49
4 25 1350 73
5 20 1150 77
10 10 900 82

Table 1: Link comparison between FCN and PFCN.

Each round consists of one step, which is the exchange of values with all the neighbors. The

voting algorithm for the PFCN model also works in rounds but each round consists of two

steps rather than one step.

In the first step, each node in each cluster exchanges its value with all the nodes in other

clusters that it is directly connected to. Therefore each node receives g values, including

its own, which are stored in an assigned buffer. In the second step of the round, the nodes

within the same cluster exchange their buffers. A buffer is treated as a single message, so that

each node sends its entire multiset of values received during the first step in n transmissions

rather than gn transmissions.

Accordingly, at the end of the second step every node has a multiset of values, with one

value from each node in the system. This property enables the PFCN to use the available

research results for fully connected networks.
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3.3 Faults and Their Effects

In order to find the convergence rate, one needs to be concerned with the faults and their

effect on convergence. For example, for MSR voting algorithms, the total number of faults

is t = a + s + b, but the effective number of faults used in the convergence rate expression is

the total number of asymmetric faults. Thus, zeffective = a. Therefore, for MSR algorithms

[8]:

C =
γz

σ
=

γzeffective

σ
=

γa

σ
(3.1)

which is the same expression as in (2.1).

The same methodology must be applied to the PFCN model. To find the effective number

of faults zeffective, we need to find a scenario with the worst effect on the convergence rate.

Assume the maximum number of faults in a cluster is bounded by f . Consider one of the

clusters. In the worst case, during the first step, each faulty node will receive (g − 1) values

from the correct nodes in other clusters. These g values, i.e. the (g− 1) values received plus

the faulty node’s own value, are then propagated during the second step to other nodes in

the same cluster. Since no assumption can be made about the behavior of the faulty node,

these values are considered erroneous. Since there are at most f faulty nodes in a cluster,

the total number of erroneous values passed by the faulty nodes in the same cluster during

the second step is fg.

Furthermore, in the worst case, each good node can receive a bad value from a faulty node

in each of the other clusters for a total of (g − 1) erroneous values during the first step of

a round. In addition, each cluster contains at most f faulty nodes. Thus, the total number

of erroneous values received from other clusters by all non-faulty nodes in the same cluster

is f(g − 1). However, it is possible for the number of non-faulty nodes in a cluster to be

less than the number of the faulty nodes, i.e. (n− f) < f . As a result, the total number of

erroneous values in a cluster is bounded by r(g − 1), where r = min(n − f, f). Therefore,

the effective number of erroneous values received by a non-faulty node in the worst case is:

zeffective = fg + r(g − 1) (3.2)
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The description given above considering the worst scenario for one cluster does not imply a

best case scenario in a different cluster. But interestingly, considering a worst case scenario

for one cluster indeed generates the exact same number of effective faults for the other

clusters.

For MSR algorithms, τ = a + s represents the total number of malicious faults. In this

section, since no distinction is made between symmetric and asymmetric faults, every fault

is considered Byzantine, so that τ = fg + r(g − 1). Next section considers PFCN under

hybrid fault models.

3.4 PFCN Fault Tolerance

Fault tolerance shows the robustness of a voting algorithm, i.e. fault tolerance is the mini-

mum number of nodes N required to guarantee that the voting algorithm is convergent in

the presence of a given number of faulty nodes. In [8], it is shown that a voting algorithm

can be convergent if N ≥ 3τ + 1. Therefore, a PFCN voting algorithm can be convergent if:

N ≥ 3τ + 1

= 3 [fg + r(g − 1)] + 1 (3.3)

The following lemma shows that if n − f = min(n − f, f), then global convergence is not

possible. This is because the number of faulty nodes in a cluster would otherwise be greater

than the number of the non-faulty nodes in the cluster.

LEMMA 1 : If f = min(n− f, f), then a PFCN can be globally convergent.

PROOF : The proof is by contradiction. If r = n− f = min(n− f, f), then using (3.3):

N ≥ 3 [fg + r(g − 1)] + 1

= 3 [fg + (n− f)(g − 1)] + 1

= 3 [n(g − 1) + f ] + 1
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To ensure that n− f = min(n− f, f), f can not be less than n/2, i.e. f ≥ n/2. Thus,

N ≥ 3 [n(g − 1) + f ] + 1

≥ 3 [ng − n + n/2] + 1

= 3 [ng − n/2] + 1

= 3n(g − 1/2) + 1

But this value is greater than N = ng, which is a contradiction. Accordingly, f = min(n−
f, f) ensures that global convergence will be possible. 2

The previous lemma showed that if global convergence is possible then r = f = min(n−f, f).

Thus:

NPFCN ≥ 3 [fg + r(g − 1)] + 1

= 3 [fg + f(g − 1)] + 1

= 3f(2g − 1) + 1 (3.4)

To reach agreement within the entire network, all non-faulty nodes in the network must

converge. Therefore, global fault tolerance is achieved through the local fault tolerance of

each cluster. It is true that the number of local faults, i.e. faults within each cluster, might

vary from cluster to cluster, but the cluster with the maximum number of effective erroneous

values will determine the convergence possibility for the whole network. If that particular

cluster fails to converge then global convergence can not be guaranteed.

The above discussion shows that by having r = f , the effective number of faults obtained in

(3.2) becomes:

zeffective = f(2g − 1) (3.5)

3.5 Convergence Rate of PFCN

As indicated in Section 3.2, at the end of the second step in each round, every node has the

same multiset Vi, except for possibly those values transmitted by asymmetric faulty nodes.
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This is the same property as that of FCN. Therefore, we can use the same convergence rate

expression used for MSR voting algorithms. As a result, using (3.5) yields:

CPFCN =
γzeffective

σ
=

γf (2g−1 )

σ
(3.6)

Let us compare the convergence rate and fault tolerance of PFCN against those of FCN.

Since f represents the total number of faulty nodes in a cluster, the total number of faults in

FCN with the same given N is fg. When all faults are considered Byzantine (asymmetric),

the convergence rate in (3.1) becomes:

CFCN =
γfg

σ
(3.7)

and the fault tolerance becomes:

NFCN ≥ 3fg + 1 (3.8)

Accordingly, by comparing (3.4) and (3.8), PFCN needs almost twice as many nodes to have

the same fault tolerance of FCN. Also, the rate of convergence for PFCN is slower than that

of FCN for the same value of N . Assuming that the same selection function is used, this is

because γf(2g−1) ≥ γfg, causing CPFCN ≥ CFCN .

It must be noted that: 1) this comparison is between a fully connected network and a

partially connected network. Partially connected networks are inherently less fault tolerant

with slower convergence rate, 2) to date, no results are available for any form of partially

connected network that can be compared to PFCN.

4 Hybrid Fault Mode Analysis of PFCN

Section 3.4 showed the fault tolerance of PFCN under Byzantine faults. In this section we

show the fault tolerance of PFCN under simultaneous presence of asymmetric, symmetric,

and benign faults. Since every node is capable of having a complete view of the entire network

at the end of second step, and benign faulty nodes, by definition, are self-incriminating, it is
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assumed that their values are discarded before the voting process executes, so that for node

i, Vi = N − b.

Assume that each cluster contains at most a asymmetric and s symmetric faults. Similar

to the discussion in Section 3.3, the worst case occurs when faulty nodes attempt to relay

the values from non-faulty nodes during the second step of each round. Therefore, each

asymmetric faulty node will relay (g − 1) values during the second step of each round.

Hence, the total number of values transmitted during the second step by asymmetric faults,

including their own values will be ag. Similarly for symmetric faults, the total number of

values transmitted during the second step is sg. Also, the r′ = min [n− (a + s), a + s] good

nodes will transmit r′(g− 1) values during the second step. Thus the total number of faults

t in the system is:

t = (ag + sg) + r′(g − 1) + b (4.1)

Similar to the single mode Byzantine behavior, for convergence to occur, r′ = a + s must be

true. As a result:

t = (ag + sg) + (a + s)(g − 1) + b = a(2g − 1) + s(2g − 1) + b (4.2)

Equation (4.2) shows that the effect of ag asymmetric faults in FCN is equivalent to a(2g−1)

asymmetric faults in PFCN. The same is true for symmetric faults.

In our discussion above, it is assumed that symmetric faults are not as malicious as asym-

metric faults. More specifically, it is assumed that a symmetric faulty node will relay (in

the second round) the same values received in the first step. Otherwise, symmetric faculty

nodes must be treated as asymmetric nodes.

Fault Tolerance – In FCN, [8] has shown that a voting algorithm is convergent when

V ≥ 3a + 2s + 1 (4.3)

Thus, V ≥ 3a(2g− 1)+2s(2g− 1)+1 ensures convergence in PFCN. Since V = N − b, fault

tolerance of PFCN under the hybrid fault model is:

NPFCN ≥ 3a(2g − 1) + 2s(2g − 1) + b + 1 = (3a + 2s)(2g − 1) + b + 1 (4.4)

16



Note that fault tolerance of PFCN in (4.4) reduces to fault tolerance of FCN in (4.3) when

g = 1.

Convergence Rate – By observing (4.2), the effective number of asymmetric faults is:

zeffective = a(2g − 1)

Thus, convergence rate of PFCN under the hybrid fault model is:

CPFCN =
γzeffective

σ
=

γa(2g−1 )

σ

5 Optimality of PFCN Link Structure

For a given PFCN with N nodes, the least value for L is when the number of clusters g and

the number of nodes n in each cluster are as close as possible to each other. Intuitively, this

makes sense by observing the formula for the number of links:

L =
gn(g + n − 2 )

2

To minimize L, gn and (g + n) must be minimized. Obviously, one must find values for g

and n such that (g + n) is minimized keeping N = gn. This occurs when g and n are very

close to each other, if they can not be equal. The following lemma proves this formally.

LEMMA 2 : Given a PFCN model, with the total number of nodes N = ng, the minimum

number of links L occurs when g ≈ n ≈
√

N .

PROOF : Assume the number of groups is x, so that g = x and n = N/x. Hence the

number of links is:

L =
gn(g + n − 2 )

2
=

N (x + N
x
− 2 )

2
=

N

2
(
x 2 − 2x + N

x
)

Since N
2

is a constant, to minimize the expression, ( x2−2x+N
x

) must be minimized. Therefore,

let us find the derivative of this expression and set the result to zero to find the value for x:
[

x 2 − 2x + N

x

]′

=
x (2x − 2 )− (x 2 − 2x + N )

x 2
=

x 2 − N

x 2
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Now let us set the result to zero and find the value for x, i.e.

x 2 − N

x 2
= 0 ⇒ x2 −N = 0 ⇒ x = ±

√
N

Since x can not be negative, x must be +
√

N . As a result g =
√

N , and n = N
x

= N√
N

=
√

N .

2

6 Communication Complexity

Communication cost can be measured in terms of the number of messages sent or received,

which is called message complexity. It can also be measured in terms of the number of bits

transmitted, which is called bit complexity.

If we consider message complexity, each node in the PFCN sends (g − 1) messages during

the first step and sends (n− 1) messages to the intra-nodes during the second step of each

round. Since there are n nodes in each cluster and there are g clusters, the total message

complexity in each round will be:

MCPFCN = ng [(g − 1) + (n− 1)]

= ng(g + n− 2)

In comparison, the message complexity in FCN with N = ng nodes will be ng(ng − 1).

Therefore, the PFCN model reduces the number of message transmissions significantly. Fig-

ure 3 finds the percentage of messages sent by PFCN with respect to a FCN when n = 5.

For example, when g = 5, the number of messages sent by the PFCN is 33% of the messages

transmitted by a FCN with N = ng = 25. The figure shows higher percentage of message

saving as the number of clusters increases. Similar to the issue of link optimality discussed

in Section 5, the best message complexity is achieved when g and n are as close as possible

to each other.

In terms of bit complexity, assume the overhead of sending a value is o bits, and on average

the number of bits in a value is v. During the first step, each process sends its value to g− 1
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Figure 3: Percentage of messages sent by PFCN as g changes when n = 5, in comparison to
the number of messages sent by FCN.

nodes in the other clusters. Since each message contains a value and some overhead, the bit

complexity in the first step for a single node is (g − 1)(o + v). Similarly, during the second

step, the bit complexity for a node is (n− 1)(o + vg). As a result, the total bit complexity

for each round is ng [(n− 1)(o + vg) + (g − 1)(o + v)]. In comparison, the bit complexity

for FCN is ng(ng− 1)(o + v). It is seen that the bit complexity of the PFCN model is again

improved mainly because of the saving in the bit overhead during the second step. The bit

complexity depends on the protocol because the message size may vary depending on the

network protocol. For example, the message size for Ethernet is at most 1.5 KB and for

ATM is 53 bytes.

7 Variations of PFCN Using Ethernet

This section considers different forms of PFCN using a shared bus medium. One prime

implementation of shared bus medium is the Ethernet technology. Ethernet has the following

advantages:

• It is physically a broadcast network, rather than point-to-point. This allows a single

message transmission to be received by every node.

• Ethernet is restrictive in fault behavior. It is extremely difficult for a node to behave
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asymmetrically in a transmissive or omissive mode of failure. This is because to send

the same message to every node, a “single” transmission is needed. More specifically:

a. If the transmitting node sends no message, then nobody will receive the message

and thus the fault mode is omissively symmetric. Every node will use the same

default value to replace the omission, thus transforming the fault behavior into a

transmissive symmetric fault.

b. If the transmitting node sends an erroneous message, every node will receive the

same value. The fault behavior will again be transmissively symmetric.

With these points in mind, let us look at some variations of PFCN using the Ethernet

topology:

1. If g = 1, PFCN reduces to FCN. Figure 4 shows the new PFCN model:

N 12

Figure 4: A PFCN, using Ethernet, with g = 1.

Fault Tolerance – As indicated in (4.4) of Section 4, for a convergent voting algo-

rithm to exist, the following must hold:

NPFCN ≥ (3a + 2s)(2g − 1) + b + 1 (7.1)

With a = 0 and g = 1, (7.1) reduces to:

NPFCN ≥ 2s + b + 1

Convergence Rate – As indicated, the convergence rate of FCN is:

C =
γa

σ
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Since a = 0, γa = 0. This fact indicates that after one round of broadcast, every node

will receive the exact same multiset of values. As a result, every node will end up with

the same voted value, which implies perfect convergence, i.e. C = 0.

2. If g = N , then each group will contain one node. This scenario will reduce the PFCN

model to the traditional point-to-point FCN. Thus, the fault tolerance and convergence

rate will be:

NPFCN ≥ 3a + 2s + b + 1

C =
γa

σ

3. If N > g > 1, then the groups are point-to-point fully connected, and each group is an

Ethernet network. For example, Figure 5 shows the PFCN model when N = 9, g = 3,

and n = 3. We observe that whether a node is faulty or not, the values received by

the node in the first step will be broadcast symmetrically to other nodes in its own

cluster. As a result, no asymmetric behavior takes place in the same cluster.

Cluster 1

123

123123

Cluster 2

Cluster 3

Figure 5: A PFCN model in an Ethernet form, with n = 3 and g = 3.

Fault Tolerance – Although asymmetric values can not propagate in individual

clusters, asymmetric behavior is still possible at the inter-link communication level.

For example, in Figure 5, assume node 1 of cluster 2 is asymmetrically faulty. In the
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first step, node 1 may send conflicting values to nodes 1 in cluster 1 and 3, causing

each of the three clusters to have a different value to be used in the second step.

Consequently, since the effect of asymmetric behavior can not be removed, fault tol-

erance and convergence rate for this form of Ethernet organization stay the same,

i.e.:

NPFCN ≥ (3a + 2s)(2g − 1) + b + 1

CPFCN =
γa(2g−1 )

σ

7.1 Message Complexity (MC)

During the first step, each node sends (g − 1) values. During the second step, each node

will broadcast one message. Thus, the total number of messages transmitted by one node

is [(g − 1) + 1] = g. Since there are ng nodes, the total number of messages transmitted by

the entire network, using Ethernet is:

MCEPFCN = ng2

Recall that the message complexity of the PFCN, not using Ethernet, is:

MCPFCN = ng(g + n− 2)

This is a large saving of ng(n− 2) messages, that is:

MCPFCN −MCEPFCN = ng(g + n− 2)− ng2

= ng(n− 2)

Hence, Ethernet topology shows better message complexity if g > 1 and n ≥ 3. Given these

lower bounds, the message complexity improves as n, g, or both increase.

8 Summary and Future Research

The problem of AA in partially connected networks is a difficult task to solve and is still

open ended. There are a few reasons that make this task difficult. One is that the link
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density is less than in a FCN with the same number of nodes, and thus relaying of messages

becomes prohibitive. Another reason is that, without message relays, the nodes do not

receive values from all other nodes, as in a FCN. Therefore, it is possible for cliques of nodes

to be formed, with each clique to converge within its own nodes but show no convergence

with other cliques. Finally, having more than one form of PCN makes it very difficult, if not

impossible, to devise a general solution that fits all forms of PCN, e.g. irregular networks.

This research has concentrated on a homogeneous, regular, partially connected network,

which can take advantage of the results already available for fully connected networks. This

network, which is called Partially Fully Connected Network (PFCN), combines fully con-

nected subnets to form a specialized partially connected network. Basically, the nodes are

partitioned into clusters, where the nodes within each cluster are connected to the nodes

within the same cluster and other clusters in a fully connected fashion. The design of PFCN

in such a way has the following advantages:

• The properties of convergence rate and fault tolerance of FCN can easily be extrapo-

lated to PFCN. Thus, fault tolerance and convergence rate can be obtained easily. As

a matter of fact, local and global convergence in PFCN are the same.

• The communication complexity is manageable. As shown, the message complexity is

improved greatly; specially if Ethernet is used.

• The network is scalable, i.e. as the network grows, nodes and clusters can be easily

added, still resulting in a feasible network in terms of fault tolerance, communication

complexity, and convergence rate.

Partially connected networks are inherently less fault tolerant than FCNs, due to intermedi-

ate faulty nodes for relaying messages. Thus, it is natural for PFCN to be less fault tolerant.

Furthermore, this is the first time fault tolerance and global convergence have been shown

for a partially connected network under single mode and hybrid fault modes, and thus no

comparison can be made to other partially connected network. Consequently, Table 2 below

shows the results of PFCN analysis in comparison to fully connected networks.
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PFCN FCN

Single Mode Hybrid Mode Single Mode Hybrid Mode

CPFCN =
γf (2g−1)

σ
CPFCN =

γa(2g−1)

σ
CFCN =

γfg

σ
CFCN =

γag

σ

NPFCN ≥ 3f(2g − 1) + 1 NPFCN ≥ (3a + 2s)(2g − 1) + b + 1 NFCN ≥ 3fg + 1 NFCN ≥ (3a + 2s)g + b + 1

MCPFCN = ng(g + n− 2) MCFCN = ng(ng − 1)

MCEPFCN = ng2

g = Number of clusters
n = Number of nodes in each cluster
N = ng, number of nodes in the system
f = Number of faults in each cluster
a = Number of asymmetric faults in one cluster
s = Number of symmetric faults in one cluster
b = Number of benign faults in the system

Table 2: Summary of PFCN and FCN

One major future study is to investigate the AA problem under a more general partially

connected network. As indicated, this is an open problem. Another avenue of study is to

analyze the AA problem for PFCN under simple modes of failure such as omission faults,

without using defaults to replace the omissions.
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