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Abstract

In this paper we introduce a signature-based in-
trusion detection methodology which utilizes low-
level kernel data in order to identify network at-
tacks in real time. Different types of attacks have
different behavior characteristics over time, and
thus require observation intervals of different length
to clearly identify attack data within a network
data stream. Our technique involves a pseudo-
continuous stream of network kernel data that is
processed in order to identify attacks. An additional
advantage of a pseudo-continuous system is that it
allows dynamic adjustment to account for varying
levels of network load. This allows a higher preci-
sion and lower false positive rate than in a fixed-
interval system because only the data needed for
identification is compared to the stored signature.
Further, response time is near-immediate as only
the minimum data needed in order to detect the at-
tack must be sampled.

1. Introduction

The number of reported security incidents in-
creased from six in 1988 to 82,094 in 2002 [1]. Rea-
sons for this dramatic increase in only 14 years in-
clude the fact that the majority of the computers
are now connected via the Internet. Further, there
are numerous different applications that utilize the
Internet. Thus, the exposure of vulnerable code
increased by orders of magnitude.

The ready availability of information over the
Internet makes it easy to access and download ex-
ploit scripts that take advantage of vulnerabilities
within software. The use of these scripts accounts
for a majority of attacks launched over the network.
A detailed discussion about the life cycle of system
vulnerabilities can be found in [2].

The reasons for the existence of these software
vulnerabilities are manifold. They can be due to
a fault in the source code, as in buffer overrun at-
tacks. Furthermore, vulnerabilities can be caused
by logical errors in the design of a protocol, e.g.
SYN floods or other Denial of Service attacks. Fi-
nally, there are setup errors, e.g. allowing shell-
escapes with root privileges [3].

Once these vulnerabilities are known, the next
step in their life cycle is often the publication of an
automated exploit script, that can be downloaded
and run by anyone. Since the behavior of exploit
scripts is fixed through the sequence of statements
in the script, it is possible to detect this behav-
ior on the targeted machine using pattern match-
ing approaches, e.g. monitoring strings with data
packages [4] or monitoring system call sequences [5].

Analyzing the large amounts of data that flow
constantly through a network requires that some
of the available computing power will be dedicated
to the analysis process. For performance improve-
ment and analysis precision the compared data flow
should not be distorted by filtering or other pro-
cessing tools. These will introduce changes to the
analyzed data as well as a processing slowdown. It
is therefore advantageous to look at the undistorted
data directly within the kernel.

Previous approaches to this technique have
shown that the loss in performance in using such
a technique can be very low [6]. Some kernel based
Intrusion Detection Systems (IDS) are based on
wrappers [7], kernel profiling [8] or kernel signa-
tures [9].

1.1. Kernel Data Extraction

The research results described in this paper are
based on previous work presented in [10]. This



work involves identification of ongoing attacks in
real time. The medium of the attack detection is
the kernel.

Function ID

Fr
eq

ue
nc

y

 0

 2

 4

 6

 8

 10

 0  10  20  30  40  50  60

Figure 1: Sample Profile

Currently the kernel is a modified 2.2.14 Linux
kernel. Each network-related function within the
original kernel has been instrumented with a code
sequence. This code sequence allows keeping track
of the invocation of each instrumented function. All
functions are identified through a unique identifica-
tion (ID) number. Any kernel activity results in a
increase of the count for each function that was in-
voked during this activity period. For any fixed
period of time this process creates a vector of fre-
quencies. This is called a profile. Each element in
the profile is the frequency attributed to one partic-
ular function within the kernel. Figure 1 illustrates
an example of a profile.

1.2. Kernel Data Analysis

All activity on a machine will manifest itself
as a series of profiles. Each vector corresponds to
the functions called from within the application or
operating system during the time interval of record-
ing.

Attacks take advantage of vulnerabilities
within an application. As a result, all activity trig-
gered by the attack will be recorded. If an attack
targets one specific vulnerability then the attack
can be said to be atomic. It is possible that one
exploit script targets more than one vulnerability
or that a single vulnerability is exploited in several
ways.

The activity due to an attack can be separated
from the normal behavior of the kernel. When un-
der attack, a set of functions will be called due to
the attack itself. The vector of frequencies of these
function calls is the signature of an attack. It is

then possible at run-time to compare the current
kernel profile to the stored signature of an attack.

2. Aspects of Attack Recognition

As described in detail in [11], extracted attack
patterns have to be compared to a profile in real-
time. A necessary requirement for a profile to con-
tain the signature of an attack Aj is that all func-
tions that are part of the signature vector have non-
zero frequencies within the observed profile. The
magnitude of these frequencies have to be at least
the same as the frequency in the signature to con-
clude that the attack was observed.

In practice, this can lead to problems. If a sig-
nature is recorded over a specific time interval ∆t,
the signature must be completely observed within
∆t. This means that the required attack activity
must fall within the observation interval. If, how-
ever, the attack does not completely fall within a
time interval ∆t, the frequencies of the profile will
not be sufficient to identify the attack. This is due
to the fact that, as will be seen in the next section,
the attack activity can instead be distributed over
two subsequent profiles. As a result, the frequen-
cies are lower in both profiles than is required to
detect the attack.

2.1. Signature Timing Analysis

If we wish to detect an attack within a single
∆t, the duration of Aj must be completely con-
tained within ∆t. The attack must start after the
beginning of the interval ∆t and the necessary fre-
quencies for all functions are observed before the
end of ∆t.

The activity within one ∆t can be partitioned
into three time intervals:

∆t = ∆tS + ∆tB + ∆tE

∆tS of an attack signature is the time it takes
for all functions to reach their required frequency
count for detection. ∆tB is the interval between tB,
the beginning of an observational interval and the
first invocation of a function by the attack. Finally
∆tE is the remaining time interval after the attack
has completed until the time interval is complete
at tE . This is illustrated in Figure 2. The Y-Axis
in Figure 2 represents the frequency of one specific
function during an attack.

If, however, an attack, that has started after
tB does not complete execution by tE , but instead
in a time interval subsequent to ∆t it is unlikely
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Figure 2: Signature Timing

that its signature will be detected within any of
the resulting kernel profiles. This is due to the fact
that the required function call frequencies were not
observed during any ∆t.

This can be caused by several factors. If, for
example, ∆tS is almost as long as ∆t, it is likely
that the attack activity will be distributed over two
subsequent ∆t intervals. In a system with a high
network or system load, it is possible that all calls
made by Aj will not be received or processed within
a single ∆t. As a result, ∆tS is larger than ∆t.

2.2. The Perfect Length of a Time Inter-
val

Upon analysis of several attacks, it can be
observed that these attacks will take different
amounts of time to execute (or to even be classi-
fied as an attack, in the case of Denial of Service).

Increasing ∆t is not a sufficient solution since
there will always be one attack that takes longer
than ∆t to complete execution. Additionally, the
comparison between a profile and a signature hap-
pens after tE . Thus, if ∆t is significantly longer
than ∆tS , by the time the comparison between the
attack signature and profile is completed, the sys-
tem has already been comprised. For this reason,
it is desirable to have as short a ∆t as possible.

Further, as system and network load increases,
attacks will take longer to complete, as will all net-
work processes on the loaded system. Thus, it is
undesirable to have a fixed interval of detection.
For these reasons, it is desirable to monitor the ker-
nel data as a continuous stream where the interval
of detection is variable.

2.3. Windows of Observation

It is possible to simulate continuous behavior
when extracting kernel profiles. This can be done
by increasing the measurement granularity, i.e. de-
creasing the size of ∆t. It is desirable to keep ∆t
as small as possible, however, the minimum size of
∆t will generally be limited by practical concerns,
e.g. operating system and hardware configuration.
With a small ∆t, attack activity will be most likely
spread over n time intervals of length ∆t.

This means that at least n subsequent time
slices have to be analyzed simultaneously. The
length of Wn, the window of observation, is:

Wn = (∆t1, ∆t2, ..., ∆tn−1, ∆tn)

where n is number of measurement units passed
during an observational period.

An active system is seen in terms of its profile
P(∆ti), where ∆ti is the ith time interval in which
the activity was recorded. The recording interval
starts at tB and ends at tE . The profile is composed
of the frequencies of each function Fd, where d is
an function identification number 0 ≤ d ≤ k. k
refers to the total number of functions monitored.
For any given ∆ti, there is a profile

P(∆ti) = (f1(∆ti), f2(∆ti), ..., fk(∆ti))

Note that this is a vector of length k where
fd(∆ti) is the number of times function Fd has been
invoked during ∆ti. A value of fd(∆ti) = 0 im-
plies that function Fd has not been invoked at all,
whereas fd(∆ti) = x, x a positive integer, implies
that Fd has been invoked x times during ∆ti.

From this, a window profile P (Wn) is defined
as:

P (Wn) = (
n∑

i=1

f1(∆ti), ...,
n∑

i=1

fk(∆ti))

=
n∑

i=1

(f1(∆ti), ..., fk(∆ti))

=
n∑

i=1

P(∆ti)

The value of n should be selected such that all
attack activity can be captured in P (Wn). There
are two cases to consider when selecting a value for
n. Figure 3 illustrates these cases.

Therefore, the value of number of observational
intervals should be:
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Figure 3: Cases to Consider When Setting n

1. If ∆tS is an exact multiple of ∆ti and the at-
tack starts at tB of the first measuring interval,
n = ∆tS/∆ti. However, if the attack starts
within the interval ∆ti, n must be increased
by one, to include an additional interval ∆ti.
This will be needed in order to capture all ac-
tivity.

2. If ∆tS is not an exact multiple of ∆ti, if will
take n = (∆tS/∆ti) + 1 in order to detect all
attack activity, assuming that the attack starts
at tB of the first measuring interval. If the at-
tack starts within the first interval ∆ti, then
it is possible that the attack will need an ad-
ditional ∆ti to complete.

Therefore, in order to be certain of capturing
all attack activity, n = �∆tS/∆ti� + 1.

2.4. Attack Signatures

Each attack Aj can be characterized by the fre-
quencies of the function calls that the attack in-
vokes. The signature of an attack is defined as the
number of function calls generated by that attack
within a specified time interval. If this number of
function calls is not observed within a specified time
interval, we conclude that attack Attack Aj is not
taking place.

In order to capture the distinct activity of an
attack with a signature, an attack signature is com-
posed of these frequencies over n intervals of ∆ti.

Since each attack will possibly have a different value
of n, the value of n specific to the attack Aj will
be referred to as nj . The signature of attack Aj is
defined as:

Sj = (f1(∆ti ∗ nj), f2(∆ti ∗ nj), . . . , fk(∆ti ∗ nj)).

2.5. Attack Detection

In order to detect an attack Aj in real-time,
Sj must be compared to P (Wn). This is done by
assembling a P (Wn) for Sj based on the value of
nj . Any manipulation of such vectors has to be
seen in the context of standard vector relation def-
initions: given two vectors x = (x1, ..., xm) and
y = (y1, ..., ym), x ≥ y only if xi ≥ yi for all i,
x < y only if xi < yi for all i, 1 ≤ i ≤ m, and x �= y
otherwise.

1. If P (Wn) ≥ Sj , then Aj is possible.

2. If P (Wn) < Sj , then Aj is not possible.

3. If P (Wn) �= Sj , then Aj is not possible.

In case 1, all the the required frequencies of
the function calls within Aj are present in P (Wn).
This leads to the conclusion that Aj is taking place.
In case 2, the required frequency of function calls
are not present in P (Wn), and, by the definition of
Sj , Aj cannot be taking place. In case 3, as in case
2, the required frequency of all function calls for



Network Load = 0%
F

re
qu

en
cy

Time

Network Load = 70%

F
re

qu
en

cy

Time

 0  20  40  60  80  100  120  140

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0  20  40  60  80  100  120  140

Figure 4: An Attack Under Different Network Traffic Conditions

Aj are not present, and thus. Aj cannot be taking
place.

Of importance when making this comparison
is the value of n. Recall that n must represent the
number of ∆ti time intervals needed to detect the
activity of Aj . nj represents the maximum num-
ber of intervals that the activity of Aj took while
the signature was captured. Thus, if the computer
which is being attacked has the same general char-
acteristics (e.g. hardware, system load) as the com-
puter on which the attack signature was generated,
it should be the case that n = nj .

As this is usually not the case, however, the
value of n is not necessarily going to be the same as
nj . Factors such as network traffic cause a “damp-
ening” effect on the profile. An example of this is
illustrated in Figure 4, where an attack was run un-
der differing network loads. The attack in the figure
is called “autowux” [12], and allows root access on
a remote machine via a format string vulnerability.

The figure on the left shows the attack activ-
ity with no network load. The figure on the right
shows the same attack underway when the net-
work was 70% saturated with traffic. The X-Axis
shows time, and the Y-Axis shows the maximum
frequency count for any module during that time
interval. For this figure, ∆ti = .2 seconds. As can
be seen in the figure, under high network load, the
attack takes longer to complete. While the peak
activity with a high network load was, overall, of
a smaller magnitude, the activity took place over a
longer period of time.

Under high network traffic, less packets are re-
ceived by the attacked machine per unit time, and
thus it takes more time for the attack to complete.
Therefore, the number of observational intervals n
should be adjusted to accommodate network load

in order to observe the entire attack activity and
conclude the presence of an attack.

The act of adjusting the size of an observa-
tional window according to the attack as well as
system characteristics should lead to a higher de-
tection rate than that of a fixed observational win-
dow size.

3. The Experimental Setup

This theory was tested by conducting an ex-
periment to compare the detection rate for a for-
mat string attack both fixed and variable length
signatures.

These signatures were created by observing the
system profiles while the attack was underway. Fig-
ure 5 shows both of these sets of profiles over time.
The figure on the left shows a ∆t=1 second, and
the figure on the right shows a ∆t=.2 second. In
order to create the fixed length signature, the data
captured with ∆t=1 second was used.

∆t being chosen as 1 second is based on pre-
vious work, in which this value gave very good re-
sults [10]. Since a fixed window of observation, by
definition, cannot change, we chose a value which
gave good results in prior experimentation. This
value was the one which gave the best overall re-
sults for a large number of diverse attacks. Since it
is impractical to change this value in a fixed window
system without a priori knowledge of which attack
is taking place, a value which gave good general
results was deemed best for comparison purposes.

From this, the profile which seemed to contain
the most significant attack activity was selected and
transformed into the signature. In order to create
the variable length signature, the smallest practical
∆t was chosen, in this case, ∆t = .2 seconds. From
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Figure 5: Two Sets of Profiles

a series of profiles, six subsequent profiles were se-
lected and transformed into a signature. Therefore,
it was determined that nj=6 for this attack. Again,
it is important to note that in the sliding window
system, we can adjust the nj for each individual
attack, while in a fixed window system, one must
choose a value which gives good overall results.

The attack itself is called autowux and takes
advantage of a format string vulnerability in wu-
ftpd version 2.6.0. It is possible, in this version
of the ftp daemon, to send the server a specially
formatted string which will force the execution of
arbitrary code. Thus, it is possible to gain supe-
ruser access via this vulnerability. The autowux
attack was considered a success if a root shell was
spawned on the victim machine.

Both detection approaches were tested by run-
ning the attack 100 times. The fixed length signa-
ture (∆t=1 second) approach identified the attack
51% of the time, and the variable length (nj=6,
∆t=.2 seconds) approach identified the attack 71%
of the time.

The network was then placed under load vary-
ing from 0% to 70% in 10% increments. It was
observed that the attack generally failed with net-
work traffic beyond 70%. This was due to the col-
lision rate being so high that the connection timed
out. Therefore, no further incrementing of the traf-
fic was done beyond 70%. The traffic load was
changed with a Hewlett-Packard Ethernet Advisor
Model J3444A. As the network load was increased,
the size of the variable n was changed. For each
network load level, the ideal value of n was deter-
mined by incrementing n, starting with n=nj+1.
Table 1 shows this relationship. n was increased
during each load level until the detection rate was
100%. In all, over 300 attack sessions were used to

create this table.
Figure 6 shows the relationship between net-

work load, ideal size of n, and ping time. The net-
work load is on the X-Axis, time (in seconds) is on
the Y-Axis. The signature width is the size of the
observational window required to detect the attack
100% of the time. This is equivalent to n∗∆t, where
∆t=.2 seconds. The ping rate refers to the average
round-trip time of a series of ping packets from the
victim to the attacker with no attack underway.

It appears that adding load up to 50% has lit-
tle effect on network performance (again, as can
be seen in Figure 6). Beyond this rate, however,
additional network load has a dramatic effect on
detection rate. As can be seen in the figure, the
signature width changes in roughly the same man-
ner as the variation in the round-trip time of a ping
packet. A tool like ping could therefore be used to
adjust the selection of n dynamically.

With the fixed signature size system, however,
it was not possible to attain a satisfactory rate of
detection with increasing network load. Up to 50%
network load, the system performed at around the
51% detection rate determined earlier. Beyond this
traffic load, however, it was unable to detect the
attack at all.

4. Summary and Conclusions

The experiment has shown that adjusting the
observational period for this attack results in im-
proved detection rate. This is crucial for the de-
tection of exploits that take advantage of memory
allocation flaws, such as buffer overrun[13] and for-
mat string attacks[14]. This is because there is no
repetition of an attack pattern during the attack.
This distinguishes these types of attack from flood-
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Figure 6: Ping Time and Signature Width

ing (DoS, DDos) types of attack. In a flooding type
attack, the behavior is repetitious. In an allocation
exploit, there is no repeating behavior, and there-
fore no “second chance” for detection. Once the
attack has succeeded, it is likely that the attacker
has created alternate means of future penetration
into the system.

A system with variable signature sizes allows
the system to dynamically change with various fac-
tors. If, as presented, network load is high, the ob-
servational window can be lengthened to accommo-
date this. It is reasonable to conclude that the same
dependencies are valid for increased CPU load on
the victim machine. However, one must be aware
that this can also slow the detection system itself
down, which must also be accounted for.

Another advantage of using a variable signature
size is that, since a signature is composed of several
profiles, it is possible to choose a very small ∆t.
Since the determination of an attack is made at

the end of the time interval, having a small time
interval means that the system is able to respond
faster to an intrusion.

The introduction of the adjustable observa-
tional window allows fine-tuning of attack signa-
tures which leads to an increase in detection rate,
while allowing detection of intrusions in real time
at the lowest system level - the kernel.
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