
Agent Survivability: An Application for
Strong and Weak Chain Constrained Scheduling

Axel W. Krings
Computer Science Department

University of Idaho
Moscow, ID 83844–1010

krings@cs.uidaho.edu

Abstract

In a recent two-layer approach to survivability of
networked computing systems migratory autonomous
agents have been used as a reactionary mechanism aug-
menting a low-level attack recognition scheme. This
paper investigates the theoretical implications of de-
termining the agent traversal route as specified by
such survivability architecture. It introduces a five-step
model that transforms survivability applications into a
parameterized graph model that, together with model
abstraction and representations, can be the basis for so-
lutions derived from scheduling algorithms. The deriva-
tion of agent traversal paths will be transformed into
the problem of scheduling jobs with linear precedence
order in machine scheduling utilizing weak and strong
modes of scheduling.

1. Introduction

Cyber attacks on computers and networks have
reached epidemic proportions. Although much research
has addressed the issue of increasing security of net-
worked computer systems, problems and malicious acts
are on the rise, rather than getting less [4]. One
common approach to increasing the level of resistance
to attacks is to minimize the functionalities accessi-
ble from the outside. Examples range from disabling
macros within word processors to disabling scripting,
e.g. JavaScript. However, the general philosophy of re-
ducing accessible functionalities limits the effectiveness
of technologies that rely on giving access to local func-
tionalities through external mechanisms. Typical ex-
amples of such mechanisms are migratory autonomous
agents.

Dealing with malicious act in cyber space has been
the topic of much research in the security, survivabil-
ity and fault-tolerance community. Security is often

viewed as addressing issues of confidentiality, integrity,
availability, as well as accountability and correctness.
Survivability, on the other hand, goes beyond security
and has been formulated with respect to Resistance to,
Recognition of, and Recovery from attacks, with a fi-
nal iteration considering Adaptation [9]. Whereas re-
sistance and recognition are typically associated with
security, the main consideration of survivability is re-
covery. Recovery is one of the prime objectives of much
research in the area of fault-tolerance. However, mali-
cious human act has traditionally not been the concern
in the field. Malicious faults have been addressed in the
context of fault models considering hardware that may
fail in a pathological scenario, but such malicious faults
have traditionally been considered orders of magnitude
less likely than benign or symmetric faults [19]. As-
pects of security and fault-tolerance can be implicitly
seen in the common definition stating that “survivabil-
ity is the capability of a system to fulfill its mission, in
a timely manner, in the presence of attacks, failures, or
accidents” [9].

The lack of success in securing networked com-
puter systems may be attributable to the missing the-
oretical groundwork and mathematical models [10].
Most approaches to security and survivability are ad
hoc. Thus, in the absence of standardized security test
procedures, claims can in general not be verified. Fur-
thermore, it is not possible to compare relative results,
as such comparisons would require a general common
basis.

In an attempt to increase rigor in certain critical cy-
ber problems, we are investigating transformation of se-
curity and survivability problems to other disciplines.
Problem transformations in order to solve hard prob-
lems have been used extensively in mathematics and
engineering. Well known examples include exponenti-
ation or Laplace transformation. The general strategy is
to transform the original problem into a different prob-
lem space in which known solutions exist, or solutions

can be found at lesser cost. After a solution has been
derived in the new problem space, a reverse transforma-
tion is used to translate the solution found back to the
original problem space.

This approach will be taken in this paper where
problem transformation will be applied to agent-based
systems that, due to their very nature, have been the
source of many security concerns. Security problems
compound in migratory agent systems where malicious
agents could impact computer survivability and mali-
cious computers could compromise agent security and
survivability. The concept of resistance, recognition
and recovery can therefore be seen from a computer
system’s or agent’s point of view. This paper considers
the first case, i.e. we consider survivability aspect due
to potential malicious agents. The examples discussed
focus on applications where response to malicious act
may have high real-time sensitivity. It is desired to per-
form survivability actions as timely as possible.

This research is motivated by an agent based ap-
proach to survivability introduced in [14], where agents
were the principal means of reacting to network based
attacks. Specifically, migratory agents were the re-
sponse mechanism of low-level real-time attack recog-
nition at the kernel level. However, in [14] it was as-
sumed that the agents responding to attacks were non-
malicious.

In order to address security concerns and sys-
tem survivability we assume that agent systems uti-
lize redundancy. Redundancy in agent system is not
a new concept and has been the focus of recent re-
search [12, 13, 16, 17, 18]. The approaches discussed
in this research focus on secret sharing [20, 17] rather
than pure spatial or information redundancy. However,
it should be noted that secret sharing using k shares can
be easily extended to achieve survivability by extend-
ing it to a m-of-k scheme, in which the information of
m out of k uncorrupted agents is needed to perform an
action [17].

The research presented below uses the transforma-
tion model introduced in [15] to formalize aspects of
agent survivability. Section 2 gives a model overview,
describing the transformation steps. Section 3 dis-
cusses the scheduling model that will facilitate the solu-
tion space of the model. Several examples of schedul-
ing models representing agent related applications are
shown. Section 4 presents a case study in which a trans-
formation from an agent survivability problem to the
strong and weak chain constraint scheduling problem is
motivated. Finally, Section 5 concludes the paper.

2. Model Overview

The survivability application, i.e. agent surviv-
ability, will be addressed utilizing the five-stage trans-
formation model introduced in [15]. Before addressing
agent survivability, the basic philosophy of the model,
shown in Figure 1, will be explained using a simple ex-
ample of a general computer network.

Parameterization

Model Abstraction and

Representation

Model Generation

Graph Algorithms

Scheduling Algorithms
Optimization

Reverse Transformation

Application A Application X...

Figure 1: Model Overview

2.1. Application

Assume the application is a general computer net-
work. One can envision the network as a collection of
local area and wide area networks, consisting of typ-
ical components like workstations, switches, routers,
bridges or gateways. The components themselves are
connected via diverse technologies and protocols.

2.2. Model Generation

The application, i.e. the network, is transformed
into a task graph together with the task model specifi-
cation, if applicable. The general model is based on a
directed graph G = (V, E), where V is a finite set of
vertices vi and E is a set of edges eij , i 6= j, represent-
ing precedence relations between vi, vj ∈ V . In our
example vertices could be the network components and
edges the interconnections.

2.3. Parameterization

Now that the network is mapped to vertices and
edges of G, a mapping of application specific parame-
ters to generic parameters is needed. Examples of pa-
rameters are quality of service (QoS) parameters such
as network throughput, propagation delay, communica-
tion cost, or priority. The vertices and/or edges of the

2

graph generated need to be assigned weights represent-
ing their characteristics. The results can be generalized
by integer or real valued weights. Thus, for each vertex
in V and edge in E, vertex and edge weights are de-
fined respectively. Let wv

i denote the vertex weight of
vi. Furthermore, let we

ij denote the weight of edge eij ,
where vi, vj ∈ V and i 6= j.

2.4. Model Abstraction and Presentation

The weighted graph G can now be considered in
the context of graph or scheduling problems. A graph
theoretical formulation could follow directly from G to-
gether with a manipulative objective, e.g. finding the
least cost path between two vertices. A scheduling
theoretical formulation requires the specification of the
scheduling model S, specifying the task and processing
environment as well as the optimization criteria. The
scheduling model will be described in detail in Subsec-
tion 3.

2.5. Algorithmic Solutions

Since a transformation to a scheduling problem
is the focus of this paper, graph problems will not be
discussed in the remainder of this paper. The schedul-
ing model S is now subjected to scheduling theoretical
algorithms. The goal is to find optimal or suboptimal
solutions for the specific survivability criteria, applying
the best suitable algorithm(s). A wealth of algorithms
and heuristics of varying space and time complexity ex-
ist. Appropriate algorithms need to be identified that
suit the optimization criteria. In addition, useful infor-
mation about the time or space complexity may be in-
herited from the algorithms. This may provide valuable
information about the solution space. After the applica-
tion of the scheduling algorithms or heuristics, optimal
or sub-optimal solutions will be available.

It should be pointed out that the focus of this re-
search is not on scheduling algorithms, but on the iden-
tification of an appropriate scheduling model. Once
the model is specified, a literature review for poten-
tial algorithms is required. However, given the semi-
standardized formulations of scheduling models, this
process can be efficient.

2.6. Reverse Transformation

The solutions of the graph or scheduling algo-
rithms must now be translated back to the application.
This requires a reverse transformation analogous to the
transformation used in the Model Generation. This step

represents the transformation from the solution space
back to the application space.

3. Scheduling Models

The key to the model transformation is an un-
derstanding of how to derive an appropriate schedul-
ing model S and its interpretation in the context of
the specific application. In order to avoid lengthy de-
scriptions of scheduling models S, a compact classifica-
tion description of the form S = (α|β|γ) is commonly
used [3]. The fields α, β, and γ indicate the processor
environment, the task and resource characteristics, and
the optimization criteria respectively. Each field will be
briefly introduced, together with some standard notation
indicated in parenthesis. Whereas the notation might
seem non-intuitive to researchers outside the field of
scheduling theory, it is semi-standard and well known
in the scheduling community. For general information
on the notation, the interested reader is referred to [3].

3.1. Processors

The first field of S, i.e. α, specifies the as-
sumptions placed on the processor environment. There
are many different attributes associated with processors
[3]. For example, processors may be identical, uniform,
unrelated or dedicated. Identical processors (P) refer to
a homogeneous processor environment. Uniform pro-
cessors (Q) assume different speeds bi for each pro-
cessor Qi. In classical scheduling theory, uniformity
implies that processor speeds differ but individual pro-
cessor speeds are considered constant over time. If the
speed is dependent on the task performed, processors
are called unrelated [3]. In the transformation model
unrelated processors, denoted by (R), can be a con-
venient model to describe computers subjected to De-
nial of Service (DoS) attack, which may be distributed
(DDoS). Lastly, dedicated processors are assumed to be
specialized for the execution of certain tasks and are de-
scribed in open shop, flow shop and job shop systems.

3.2. Tasks

The second field of S, i.e. β, specifies the task and
resource characteristics. Tasks may be non-preemptive
(φ) or preemptive (pmtn). Once a non-preemptive task
is started, its execution can not be interrupted. If pre-
emption is allowed, task execution can be interrupted.
If the tasks are subjected to precedence constraints, the
specific constraints are indicated, e.g. (φ) indicates in-
dependent tasks, (chain) indicates task chains.

3

3.3. Optimization

The last field of S, i.e. γ, indicates the optimiza-
tion criteria. Optimization is often defined based on
task completions times, flow times, lateness, tardiness
or earliness. The completion time Cj of the last task
Tj of the schedule is called the makespan. Thus, the
makespan indicates the overall length of the schedule.
Makespan optimization is denoted by (Cmax).

Another interesting criteria is the flow time, which
is the sum of waiting time and processing time of a task.
Alternatively, flow time is the completion time minus
the release time, i.e. Fj = Cj − rj . Mean flow time
optimization is expressed by

F̄ =
1

n

n∑

j=1

Fj

and is denoted by (ΣCj) in the model notation. Vari-
ations of this criteria include optimization of weighted
mean flow time denoted by (ΣwjCj).

Often the execution of a task Tj is under consider-
ation of due date dj , which specifies the time by which
Tj should be completed. The consequences of failure
are usually measured using a penalty function. Whereas
a due date is considered a soft deadline, a task deadline,
denoted by d̃j , constitutes a hard deadline. Missing the
deadline may render the application useless. The terms
lateness, tardiness and earliness capture issues of due
dates. Lateness is defined as

Lj = Cj − dj .

However, if a task finishes before its due date, negative
values for Lj arise. This is avoided in the definition of
tardiness

Dj = max{Cj − dj , 0},

and earliness

Ej = max{dj − Cj , 0}.

Recall that the notation in parenthesis does not rep-
resent formulas but a notation within the scheduling
classification model. A common optimization crite-
ria is (Lmax) defined as the maximum task lateness,
i.e. max{Lj}, or mean weighted tardiness (ΣwjDj),
which is defined as

D̄w =

∑n

j=1
wjDj∑n

j=1
wj

.

3.4. Transformations

In order to further the understanding of the
transformations, several simple examples of scheduling

models representing agent related applications are given
below.

1. Problem 1|ri|Cmax

In systems facilitating autonomous agents to per-
form security related operations, e.g. version
tracking or diagnostics, the agent might have a
set of critical tasks to perform on specific sys-
tems [14]. This can be transformed to the schedul-
ing problem 1|ri|Cmax, which indicates a single
processor (α = 1) representing the agent. The
computers that the agent is traversing is repre-
sented in S by tasks Ti with release times ri (β =
ri). Note that in this example the meaning of “pro-
cessor” and “task” is reversed from the application
to the transformation into S. In the application, the
agent, i.e. the software task, visits the processors,
e.g. the computer. In the corresponding transfor-
mation, the tasks of S represent the computers vis-
ited by the agent, and the processor is representing
the agent. The optimization criteria (γ = Cmax)
indicates that an agent traversal path is sought af-
ter that minimizes the overall time to perform the
tasks.

2. Problem Pm|di|
∑

wiDi

Whereas the previous problem considered a sin-
gle software agent, this problem relates to an ap-
plication where a group of agents are tasked to
counter the affects of a wide spread attack. The m

identical agents are represented in S by processor
(α = Pm), and the computer systems to be tra-
versed are the tasks. Deadlines di are considered
for each task indicating time sensitivity. The opti-
mization criteria is

∑
wiDi, which is the weighted

tardiness Di = max{Ci − di, 0}, attempting to
patch the maximal number of systems before they
are victimized. Recall that Ci denotes the task
completion time.

3. Problems R|ri|Cmax or Rm|di|
∑

wiDi.
The previous two cases can be viewed in the con-
text of DoS or DDoS attacks, which usually tar-
get resources, e.g. CPU, network bandwidth, or
connectivity. For example, consider a DDoS at-
tack that floods a transaction server of an enterprise
with bogus requests. The transaction server, un-
able to distinguish between legitimate and unlegit-
imate requests, experiences high resource utiliza-
tion. To the legitimate user it appears that the sys-
tem slows down. This can be modeled using un-
related processors (R) in S. Recall that the speed
of unrelated processors is dependent on the task
performed. Fast response to the DoS is crucial
when implementing survivability measures using

4

agents [14], as the defensive measures race in time
against the increasing affects of the attack.

4. Problems 1|ri, pi|Cmax or Pm|ri, pi|
∑

wiCi.
If agents are used for patch management, installing
patches has to be coordinated with the usage of the
system in order to avoid conflicts with programs
executing on the system. This is very obvious in
operating systems that require programs to be ter-
minated before installing the patches or rebooting
after installation. This kind of agent application
can be transformed to scheduling problems such
as 1|ri, pi|Cmax or Pm|ri, pi|

∑
wiCi. Note that

release time ri indicates the time after which it is
feasible to install the patch and pi indicates the
processing time, i.e. the patch installation time.

4. Agent Survivability

Section 3 presented some agent related applica-
tions and suggested scheduling models that could be
applied in the transformation model of Figure 1. This
section addresses a multi-agent application in which
agent redundancy is the assumed survivability mecha-
nism [12, 13, 16, 17, 18]. Specifically, we assume that
secret sharing requires that a certain number of agents
need to be present at a processor in order to fulfill the
security and survivability requirement. With respect to
security, confidentiality may be achieved using simple
secret sharing. In order to achieve survivability secret
sharing may be extended to a m-of-k scheme, in which
the information of m out of k uncorrupted agents is
needed.

4.1. Application

Assume an application uses a multi-agent sys-
tem to implement survivability functionalities on a set
of networked computer systems. The relative impor-
tance of each computer to the organization or overall
mission is prioritized, e.g. indicated by an integer num-
bered priority index scheme. Next, assume that a se-
cret sharing scheme is implemented requiring ki shares
for a specific processing element, i.e. computer, PEi.
Thus, the multi-agent systems requires that all ki agents
must be present at computer PEi to perform its spe-
cific function. Such a system could facilitate an agent
based survivability approach analogous to the (p, m, k)
system for survivable storage [20], where data is en-
coded into k shares, any m shares can reconstruct the
data, and less than p shares reveal no information about
the encoded data. Given this secret sharing agent sur-
vivability scheme, it is important to find efficient agent

traversal paths, e.g. paths that maximize the efficiency
of an agent system charged with reactionary response to
malicious act.

4.2. Strong-Weak Scheduling

The application above will be transformed to a
scheduling problem considering strong and weak chain
precedence. Before stating the transformation we want
to introduce strong-weak chain constrained scheduling,
partially restating the notation and formulation of [8].
Assume there are K job chains C = {Ck}

K
k=1

, where
Ck = {Jk,i}

mk

i=1
, and the jobs in each chain Ck are lin-

early ordered by precedence relation <. Thus in each
chain

Jk,1 < Jk,2 < ... < Jk,mk

with
K∑

k=1

mk = n.

Each job Jk,i has processing time pk,i, release time rk,i

indicating the time the job becomes ready for execu-
tion, due date dk,i specifying its deadline, and weight
wk,i. The K chains are to be scheduled on m parallel
processors P1, ..., Pm to optimize a specified objective
function. It is assumed that each processor can handle
at most one job at a time.

The job chains can be scheduled according to two
modes, strong and weak chain mode. Given any two
jobs Ja and Jb, strong chain mode implies that if Ja

immediately precedes Jb in a chain, then no other job
can be scheduled between the completion of Ja and the
starting of Jb. Thus, this mode strictly enforces the ex-
clusive scheduling of the entire chain once the first job
in the chain is selected. In weak chain mode the pre-
vious scheduling condition is allowed to be violated, as
long as the schedule still conforms to the < relation.
This means that other jobs may be scheduled between
the jobs of a chain, as long as the chain precedence still
holds.

4.3. Scheduling Problem

The multi-agent application of Subsection 4.1 uti-
lizing secret sharing with up to m shares will be trans-
formed to the problem denoted as

Pm|fixj , chain, pj = 1|Cmax

from [8]. Similar to [8], we will omit the chain sub-
scripts for jobs in the discussion below to simplify the
notation.

5

For ease of discussion assume that m = 3, result-
ing in

P3|fixj , chain, pj = 1|Cmax.

This formulation reflects a system where three agents,
each carrying a share of the secret sharing scheme,
are traversing a set of computers to perform tasks that
take the same amount of time. In the formulation of
a scheduling problem this translates to a system that
assumes 3 identical processors (P3), representing the
agents. Each job Jj , representing a computer, occupies
a given set of processors at any moment of its process-
ing. This set is specified by fixj . If the number of
shares in the secret sharing scheme is always 3, then
fixj = 3 for all Jj . If the degree of secret sharing
is dependent on the computer that the agents visit, rep-
resented by Jj in the model, then fixj represents this
degree. It is assumed in the problem statement that the
precedence constraint is a chain, reflecting the priority
of jobs. Since each task performed by the agent takes
the same amount of time, unit execution times for each
Jj can be used, i.e. pi = 1.

4.4. Problem Transformation

4.4.1 Model Generation:

The application of Subsection 4.1 is translated into
a task graph G = (V, E) consisting of K job chains Ck,
each representing a group of computers. Each computer
to be traversed by the agents is shown as a vertex, i.e.
job, Jk,i ∈ Ck, for 1 ≤ k ≤ K. The position of Jk,i in
Ck, i.e. the chain position, indicates the relative com-
puter priority. Thus, if Pr(PEi) and Pr(PEj) denotes
the priority of PEi and PEj respectively with priority
values in the range 1 ≤ i, j ≤ mk, then edge ei,j is in-
troduced in E if Pr(PEi) = Pr(PEj) − 1. Edge ei,j

represents job precedence Jk,i < Jk,j .

4.4.2 Parameterization:

The parameters reflecting the functionality exe-
cuted by the agents during job Jk,i need to be specified.
Parameterization follows directly from the definitions
associated with jobs in Subsection 4.2. Hence, the job
priorities are implicitly defined by the position of Jk,i

in Ck, and the processing and release times of Jk,i are
determined by pk,i and rk,i respectively. Potential cost
or liabilities due to malicious act can be modeled by
weight wk,i.

4.4.3 Model Abstraction:

One possible scheduling model is [8]

Pm|fixj , chain, pj = 1|Cmax,

where m is the number of machines, represented by
agents, in the system. Let J denote a partition of all
jobs Jk,j . Furthermore, let Jexpr denote the set of jobs
that require all machines with indices indicated in expr

for execution. Now jobs can be partitioned by their re-
source requirements.

If, for example, one assumes m = 3, then jobs can
be partitioned as

J = {J123, J12, J13, J23, J1, J2, J3}. (1)

The superscript indicates the machines required, e.g.
J123 comprises all jobs that need machines M1, M2

and M3 to execute, whereas jobs in J12 only require
M1 and M2. The number of indices listed in the su-
perscripts indicate the degree of secret sharing required
by each of the jobs of the associated set. For exam-
ple, each job in J123 requires that three agents need to
present before their respective functionality can be exe-
cuted. Similarly, each job in J12, J13, and J23 require
two agents, however, each set has its specific set of as-
sociated agents. The problem

P3|fixj , chain, pj = 1|Cmax

captures the notion of scheduling the tasks in J .
It should be pointed out that the problem formu-

lation is extremely flexible. Whereas secret sharing is
usually assume constant for a given application, this
problem abstraction allows for the parameters of the se-
cret sharing scheme to be specified for each individual
computer.

4.4.4 Algorithmic Solution:

Solutions for several scheduling problems involv-
ing chains exist. Next solutions for weak and strong
constrained scheduling will be discussed.

If all jobs of a chain k belong to the same partition
in equation (1) then they obey the so-called agreeable
machine configuration. This also implies that the degree
of secret sharing of the entire chain is the same. The
problem

Pm|fixj , weakchain, pj = 1|Cmax (2)

with agreeable machine configurations can be solved in
O(n) time [8]. They also provide a way to obtain Cmax.

On the other hand, the problem in (2) without
the agreeable machine configurations is NP-hard in the

6

strong sense for m > 1. A reduction from the 3-
PARTITION problem is given in [8].

For strong chain constraints, the problem

P3|fixj , strongchain, pj = 1|Cmax

has been shown to be NP-hard in the strong sense, even
with agreeable machine configurations [1, 2]. Table 1
gives a summary scheduling problems and their com-
plexities. Note that amc in the table indicates that the
problem assumes the agreeable machine configuration.

If the requirement for secret sharing is dropped, a
wider range of research results exist. With the elim-
ination of secret sharing, i.e. fixj is omitted in the
scheduling problem formulation, this problem elimi-
nates redundant agent traversal paths. Table 2, modi-
fied from [8], gives a overview of diverse problems and
indicates the respective complexities. For more detail
about the individual scheduling problems the reader is
referred to the references identified. Note that b in the
second problem of the table is the maximum number of
jobs in a chain. The scheduling problems are sorted by
the optimization criteria. The optimization criteria of
the different problems identified are makespan Cmax,
mean flow time ΣCj , and maximal lateness Lmax.

4.4.5 Reverse Transformation:

The schedule produced by any scheduling algo-
rithm directly reflects the agent traversal path leading to
optimal behavior as defined by the optimization criteria
of the scheduling algorithm.

5. Conclusion

This paper presented a transformation to deter-
mine agent paths in multi-agent systems using secret
sharing. In an attempt to increase rigor in an area that
traditionally has been criticized for its lack of formal-
ism, a transformation model was introduced and applied
to transform the agent problem into a scheduling prob-
lem.

The specific agent problem transformed assumed
secret sharing as an approach to increasing agent secu-
rity. Thus, a certain number of agents, each carrying a
share of the secret sharing scheme, have to be present
at a computer in order to execute the agent’s function-
ality. Whereas using secret sharing to increase agent
security is not new, the transformation to a scheduling
problem is. By transforming the agent security prob-
lem to strong and weak chain constrained scheduling,
new insight and a deeper understanding of the solution
space with respect to run-time complexities of deter-
mining agent traversal paths has been achieved.

We hope that through this contribution researchers
from the areas of security and survivability will realize
that many problems can be mapped to well established
research areas facilitating a wealth of inside and poten-
tial solutions.

References

[1] J. Blazewicz, P.W. Dell’Olmo, M. Drozdowski, and
M.G. Speranza, “Scheduling Multiprocessor Tasks
on Three Dedicated Processors”, Information Pro-
cessing Letters 41, pp. 275-280, 1992.

[2] J. Blazewicz, J., P.W. Dell’Olmo, M. Drozdowski,
and M.G. Speranza, “Scheduling Multiprocessor
Tasks on Three Dedicated Processors: Corrigen-
dum”, Information Processing Letters 49, pp. 269-
270, 1994.

[3] J. Blazewicz, K.H. Ecker, E. Pesch, G. Schmidt,
and J. Weglarz, “Scheduling Computer and Man-
ufacturing Processes”, Springer-Verlag, 1996.

[4] CERT/CC Statistics 1988-2002,
CERT Coordination Center,
http://www.cert.org/stats/cert stats.html.

[5] E.G. Jr. Coffman, and R.L. Graham, “Optimal
Scheduling for Two Processors”, Acta Informatica,
1(3), pp. 200-213, 1972.

[6] M. Dror, J.Y-T., Leung, and C-H. Lin, “Uniform
and Identical Machines with Unit Jobs and Chain
Precedence”, MIS Department, University of Ari-
zona, 1996.

[7] M. Dror, Kubiak, W., and Dell’Olmo, P., “ Schedul-
ing chains to minimize mean flow time” Informa-
tion Processing Letters, Vol. 61, 1997, pp. 297-301.

[8] M. Dror, Kubiak, W., and Dell’Olmo, P., “ ’Strong’
- ’Weak’ chain constrained scheduling,” Ricerca
Operativa, Vol. 27, 1998, pp. 35-49.

[9] E. Ellison, L. Linger, and M. Longstaff, Surviv-
able Network Systems: An Emerging Discipline,
Carnegie Mellon, SEI, Technical Report CMU/SEI-
97-TR-013, 1997.

[10] Keynote Speech of the Information Survivability
Workshop, part of the International Conference on
Dependable Systems and Networks, DSN-2001, by
Roy Maxion, CMU, Goteborg, Sweden, 2001.

7

Scheduling Problem Complexity
Pm|fixj , weak chain, pj = 1|Cmax with amc O(n) [8]
Pm|fixk, strong chain, pj = 1|Cmax, m > 1 NP-hard in the strong sense [8]
P3|fixj , weak chain, pj = 1|Cmax with amc NP-hard in the strong sense [1, 2]

Table 1: Summary of Scheduling Problems (implying secret sharing)

Scheduling Problem Complexity
P |weak chain, pj = 1|Cmax O(K) [8]
Pm|strong chain, pj = 1|Cmax O(mnbm) [8]
P |strong chain, pj = 1|Cmax NP-hard in the strong sense [8]
P2|strong chain|ΣCj O(nK) [6]
P2|weak chain|ΣCj NP-hard in the strong sense [6]
P |weak chain, pi = 1|ΣCj polynomial time [8]
P |strong chain|ΣCj NP-hard in the strong sense[8]
P |rj , weak chain, pj = 1|Lmax polynomial time[8]
P |rj , strong chain, pj = 1|Lmax NP-hard in the strong sense [8]
P2|weak chain, pj = 1|Lmax O(n2) [8, 11]
P2|strong chain, pj = 1|Lmax O(nK) [8]
P2|weak chain, pi = 1|ΣCj O(n2) [5]

Table 2: Summary of Scheduling Problems (not implying secret sharing)

[11] M.R. Garey, and D.S. Johnson, “ Scheduling
Tasks with Nonuniform Deadlines on Two Proces-
sors”, Journal of the ACM, 23(3), pp. 416-426,
1976.

[12] D.Johansen, R.van Renesse, and F.B.Schneider,
Operating System Support for Mobile Agents,
Proc. 5th IEEE Workshop on Hot Topics in Oper-
ating Systems, 1995.

[13] D.Johansen, K.Marzullo, F.B.Schneider,
K.Jacobsen, and D.Zagorodnov, NAP: Practi-
cal Fault-Tolerance for Itinerant Computations,
Technical Report TR98-1716, Department of
Computer Science, Cornell University, USA,
November, 1998.

[14] Krings A.W, W.S. Harrison, et.al., “A Two-Layer
Approach to Survivability of Networked Comput-
ing Systems”, Proc. International Conference on
Advances in Infrastructure for Electronic Business,
Science, and Education on the Internet, L’Aquila,
Italy, Aug 06 - Aug 12, pp. 1-12, 2001.

[15] Krings A.W, and M.H. Azadmanesh, “A Graph
Based Model for Survivability Analysis,” Report
Series UI-CS-TR-02-024, Computer Science De-
partment, University of Idaho, August, 2002.

[16] K.Rothermel, and M.Strasser, A Fault-Tolerant
Protocol for Providing the Exactly-Once Prop-

erty of Mobile Agents, Proc. IEEE Symposium
on Reliable Distributed Systems (SRDS’98), West
Lafayette, USA, October, 1998, pp. 100-108.

[17] F.B.Schneider, Towards Fault-tolerant and Secure
Agentry, Proc. of the 11th International Workshop
on Distributed Algorithms Saarbrucken, Germany.
September, 1997.

[18] F.M.Assis Silva, A Transaction Model based on
Mobile Agents, PhD Thesis, Technical University
Berlin, 1999.

[19] P. Thambidurai, and You-Keun Park, Interactive
Consistency with Multiple Failure Modes, 7th Re-
liable Distributed Systems Symposium, Columbus,
OH, pp. 93-100, October 1988.

[20] Jay J. Wylie, et.al., Selecting the Right Data Dis-
tribution Scheme for a Survivable Storage System,
Technical Report, CMU-CS-01-120, Carnegie Mel-
lon University, May 2001.

8

