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Abstract— This research focusses on the performance and
timing behavior of a two level survivability architecture.
The lower level of the architecture involves attack analysis
based on kernel attack signatures and survivability handlers.
Higher level survivability mechanisms are implemented us-
ing migratory autonomous agents. The potential for fast re-
sponse to, and recovery from, malicious attacks is the main
motivation to implement attack detection and survivability
mechanisms at the kernel level. A timing analysis is pre-
sented that suggests the real-time feasibility of the two level
approach. The limits to real-timme response are identified
from the host and network point of view. The experimental
data derived is important for risk management and analysis
in the presence of malicious network and computer attacks.

I. INTRODUCTION

The number of networked computers on the Internet, as
well as the number of applications involving the Internet,
has increased constantly over the last few years. Unfortu-
nately, the number of incidents involving malicious attacks
on computer systems has increased dramatically as well [5].
These attacks on computers and networks have resulted in
huge financial losses, time, and exposure of confidential
data [8].

One does not have to be an expert in order to attack
systems. A typical attack sequence consists of probing
a system for vulnerabilities using vulnerability analyzers,
e.g. nmap, satan or saint, and finding the software that at-
tacks the exposed vulnerabilities. Attack software is readily
available from countless web sites and can be downloaded
with minimal effort even by novices. Furthermore, many
books have been published on how hackers break into sys-
tems [18], [38]. In general, the effects of attacks range from
benign activity, e.g. port sweeps, to harmful Denial of Ser-
vice (DoS), which may be coordinated to create Distributed
Denial of Service (DDoS) attacks [1], [5]. The latter is of-
ten started from computers that have been compromised
by malicious hackers.

In order to detect when a system has been compromised,
various intrusion detection systems (IDS) have been cre-
ated as the result of extensive research in intrusion detec-
tion (ID) [37]. Examples of IDSs are EMERALD [34] or
NetStat, a successor of NSTAT [33].

The objective of an IDS is usually recognition and not
reactionary measures, for recovery or survivability. Surviv-
ability, on the other hand, is the capability of a system to
fulfill its mission, in a timely manner, in the presence of at-
tacks, failures, or accidents [10]. It is usually not the entire
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system that is considered when addressing survivability,
but certain critical functionalities or critical requirements
for security, reliability, real-time responsiveness, and cor-
rectness [35].

Survivability has recently been recognized as an area of
immense importance and criticality, due to the possibly
staggering cost and consequences of malicious attacks on
the nations resources and infrastructure [8]. It has also
received national attention though documents such as the
1997 report of the President’s Commission on Critical In-
frastructure Protection (PCCIP) [30]. General network
information system survivability at a high level has been
studied extensively, e.g. in [3], [10], [12], [15], [24], [28],
[31], [32]. Conceptually, however, survivability covers a
wide spectrum of issues at many different levels of abstrac-
tion [35] and applications [25].

Survivability is strongly related to the topic of ultra-
reliable system design. However, the main focus of ultra-
reliable systems design is usually not malicious faults. In-
stead, hybrid fault models are employed to account for dif-
ferent fault behavior, e.g. benign, symmetric or asymmet-
ric behavior [41]. Here benign faults are globally verifiable
faults, symmetric faults indicate that everybody receives
the same faulty result, whereas asymmetric faults have no
restriction on the behavior. Malicious attacks can therefore
be categorized as asymmetric faults, in that they usually
exercise pathological behavior. It should be noted that
in fault-tolerant system design it is usually assumed that
asymmetric failure of components is statistically unlikely,
or it may be attempted to eliminate these fault types al-
together [45]. Contrary to the statistical assumptions of
fault-tolerant system design, in computer and network se-
curity and survivability it is fair to assume that the most
likely scenarios caused by malicious hacker will exhibit
pathological behavior, e.g. asymmetric behavior.

Unfortunately, achieving tolerance to diverse faults
comes at a high cost. For example, special purpose ultra
reliable system architectures such as SIFT or MAFT [20]
exhibit runtime overhead costs of up to 80%. However,
today’s commercial applications cannot tolerate such over-
head to achieve tolerance to failure or malicious attacks.

Besides run-time overhead, issues of fault propagation,
containment and recovery time are of concern. In gen-
eral, one can assert that solutions that are implemented
at higher levels of abstraction may have inverse effects on
fault propagation, containment and recovery. For example,
if an IDS indicates that an intrusion has occurred based on



the analysis of system log files, much time may have passed
since the actual intrusion. As a result, the attack may have
caused extensive damage and recovery may degress to com-
plete re-installations of system and application software.

The general awareness about the criticality of real-time
attack detection and recovery, is the main motivation for
employing survivability features at the lowest level of ab-
straction. The survivability architecture discussed here
considers the lowest level, i.e. at the kernel function level.
Kernel based attack recognition has the potential to opti-
mally address issues of fault propagation and damage con-
tainment.

The research presented here describes timing issues of
a general two-layer approach to survivability of networked
computer systems. We investigate the real-time feasibil-
ity and analyze the timing behavior of a layered approach
where low level attack analysis and survivability mecha-
nisms are augmented with high level agent based surviv-
ability features. The low layer is based on the model pre-
sented in [22]. Details about the entire survivability ar-
chitecture can be found in [23]. Section II describes the
motivation and gives background information. Section III
describes the Survivability Architecture from [23]. Sec-
tion IV describes the methods used, implementation de-
tails, and results. Finally, Section V concludes the paper
with a summary.

II. OVERVIEW OF SURVIVABILITY ARCHITECTURE

This section presents an overview of the two level surviv-
ability architecture tailored to performance analysis. A full
description of the architecture can be found in [23]. Some
details are partially restated to aid readability and overall
understanding.

In order to justify the survivability architecture it is im-
portant to understand the target environment. The tar-
get is a single networked computer operating in a standard
user environment [11]. We view such an environment as a
typical desktop computer, operated mostly by single indi-
viduals running standard applications. Given the afford-
ability of desktop computers and the increasing popularity
of Linux, it is our experience in the academic environment
that most students have fairly powerful desktop comput-
ers as their standard networked working console in private
settings or university labs. This is quite different from pre-
vious environments where, for example, small numbers of
users connect to the same Unix host via inexpensive xter-
minals. The usage of standard, “dedicated”, workstations
is in general very low. Most common user profiles include
applications such as x-windows, browsers, email, compil-
ers, or small web servers. However, unlike systems such
as transaction systems or main servers, the actual utiliza-
tions are generally surprisingly low, as can be verified on
individual systems using utilities such as top.

The lower level of the architecture implements kernel-
level instrumentation. This process involves monitoring
the usage of functions within the kernel itself. This is the
lowest possible level in which instrumentation can be in-
serted without resorting to hardware-level solutions. In-

strumentation at this level has the capability to be very
low-overhead. This makes it an ideal candidate for a real-
time survivability architecture.

At the higher layer, autonomous migratory agents are an
integral component of the survivability architecture. There
are several possible definitions of what constitutes a soft-
ware agent, but most definitions tend to have similar char-
acteristics. Bradshaw [4] defines the term agent to mean
a software entity which functions continuously in a flex-
ible and intelligent manner that is responsive to changes
in the environment. Others ([29], [17]) are similar in the
emphasis on autonomy, that is, the agent must not require
constant human supervision, and must be able to assess cir-
cumstances and decide on the best course of action based
on the current circumstances. For the purposes of this
research, we put a high emphasis on small, autonomous,
modular agents. These agents are in general not capable
of completing an entire task, but instead each can com-
plete a sub-task and via cooperation, larger tasks can be
completed by groups of agents. The agents are also migra-
tory in that they are capable of stopping execution on one
machine, i.e. a host, packaging up their execution state,
sending it to another machine, and resuming execution.

III. SURVIVABILITY ARCHITECTURE

Figure 1 gives an overview of the survivability architec-
ture. At the heart of the architecture is the Signature Anal-
ysis engine. It is directly involved in the generation and
analysis of the attack signatures. Signatures are collected
in, and accessed from, an Attack Signature Library. At
run-time, signatures are compared to the run-time system
profile in an attempt to recognize attack signatures. Pend-
ing recognition, Event Handlers are called which implement
the kernel based survivability mechanisms. Simultaneously,
the Agent Interface selects specific agents in order to prop-
agate reactionary survivability measures.
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Fig. 1. Survivability Architecture Overview



A. Profiles and Signatures

The attack detection component of the survivability ar-
chitecture is based on the manipulation of profiles and sig-
natures. Similarly to [9], we view the system as a collection
of functionalities. The functionalities are observed during
specified time intervals At. Specifically, we view a system
in terms of its system profile Py, s(At), which is composed
of the profiles of all functionalities P;(At) executing during
At. Thus, for any At we have

k
Pyys(At) =) Py(At)
i=1
where k is the number of functionalities active during the
time interval. Each P;(At) is a vector of a length equal
to the number of identities F, i.e. C functions, profiled.
Therefore, if there are n identities profiled, then

Pi(At) = (f1(At), f2(Al), ..., fa(Al)),

where f;(At), 1 < j < n, is the number of times function
F; has been invoked during At. A value of f;(At) =0 im-
plies that function Fj has not been invoked at all, whereas
fj(At) = z, z a positive integer, implies that F; has been
invoked z times during At.

We assume attacks to be atomic. An atomic attack A4;
is the smallest attack technology unit, e.g. a port sweep or
a sequence of unsuccessful login attempts. Thus, an attack
suite can be viewed as a collection of individual atomic
attacks A;. Limiting the scope of an attack to atomic units
allows us to focus on a very narrow sets of affected functions
in the OS, application and network.

Profiles during atomic attacks are of special interest and
result in attack signatures, i.e. an attack signature is the
portion of a profile that is attributable to the attack. For-
mally, the attack signature corresponding to A; will be de-
noted by S;. Only non-zero profile components are consid-
ered. Thus,

Si = (fa(l)(At)a fa(2) (At)7 S fa(si)(At))a

where « is a function that maps (one-to-one) the indices
of S; to the indices of the functions profiled. Note that s;,
the length of vector S;, is signature dependent. The set of
functions of S; is denoted by S;, and the cardinality of S;
is denoted by |S;|. Thus, given S;, |S;| = s;.

A signature of special interest is the signature of an idle
system. The so-called idle signature is denoted by Sy. Sig-
nature Sy corresponds to the system profile Pgys(At) of
an idle Linux system. Contrary to [9] our idle profile con-
stitutes the system profile of a Linux system that was just
booted up. No applications, e.g. x-windows, are executing.

Attack signatures S; are collected a priori in an Attack
Signature Library by running atomic attacks against the
idle system. The attacks currently considered range from
DoS attacks to scanners. It seems obvious that the size
of the library should will impact the attack recognition
overhead. However, as will be shown in Subsection IV-B,
the analysis overhead may be constant in the absence of
attacks.

B. High Level Agent Architecture

Whereas the signature model described above is situated
at the low level, i.e. at the kernel level, the high level
survivability features are implemented using agents. The
agent migration system chosen for this architecture was
Aglets [27], a Java-based migration system developed by
IBM Research Laboratory Japan.

Figure 2 gives an overview of the specific agent architec-
ture.

B.0.a Signature Analysis Engine. The Signature Analysis
Engine is the component of the survivability architecture
which conducts real-time comparisons between the stored
Attack Signature Library and the Kernel Instrumentation.
Upon detecting an attack in progress, using the methods
discussed in [23], it passes the attack information, e.g. at-
tack likelihood and attack type, to the Local Agent Inter-
face. The attack likelihood refers to the probability of the
attack being underway.

B.0.b Local Agent Interface. The Local Agent Interface
is the component responsible for communicating between
the Signature Analysis Engine and the Response Agents
discussed below. Given the information regarding the at-
tack from the Signature Engine, this component will make
a decision whether to respond to an attack or not. For
example, a “port sweep” is not likely to warrant much re-
sponse, whereas a “smurf attack” requires a quick response.
If it chooses to respond to the attack, it directs one of sev-
eral response agents to apply appropriate action.

B.0.c Response Agents. The Response Agents apply high
level survivability features. They are individual, migratory
agents, which respond to attacks. Each type of Response
Agent has a unique response for the specific attack it is
defending against. For example, a smurf attack [6] might
require a router to turn off packet forwarding, whereas a
port sweep might simply require warning other hosts in the
network that there is a potential future attack. A response
to a specific observed exploit might be to apply a patch.

B.0.d Remote Agent Interface. Although Response
Agents are created on one system, i.e. the so-called home
host, in many circumstances, it is desirable for them to mi-
grate to another host to take specific action. For example,
a DoS attack might require the router to take additional fil-
tering action. However, a long-standing issue with respect
to migratory agents deals with the security and trustwor-
thiness of these agents [16]. This issue is addressed in the
current, architecture by not allowing migratory agents any
direct control over a host. This is the function of the Re-
mote Agent Interface. It evaluates the trustworthiness of
the agent and takes action on the local machine if deemed
necessary. Response agents themselves have no capability
to control a host.

IV. PERFORMANCE AND MEASUREMENT ANALYSIS
A. Attack Description

For purposes of measuring overhead, two isolated net-
works of machines connected by a router were used. Fig-
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ure 3 shows the setup of the attack network.
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Fig. 3. Attack Network Setup

The victim network contained only the victim machine
and a router. The victim machine was attacked by a smurf
attack. This would trigger a response agent which would
migrate to the router and contact a Remote Interface agent
on the router. The Remote Interface agent would acknowl-
edge the request and turn off packet forwarding from the
amplifier network to the victim machine. The response
agent would then migrate back to the source machine and
sleep. More details on the smurf attack can be found in [6].

B. Owerhead Identification

There are basically two different types of overhead as-
sociated with the survivability architecture. Firstly, the

low-level instrumentation constitutes overhead in terms of
code which is instrumented in the operating system. This
adds additional code which must be executed and therefore
will degrade system performance. Secondly, the different
components of the survivability architecture produce run-
time overhead at different levels of abstraction. It is crucial
to analyse the performance cost of each architectural com-
ponent in order to identify bottlenecks and critical events.

Response
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Fig. 4. Event Sequence Overview

Figure 4 presents the event chain of a typical attack and
the specific architectural component that is executed.

1. The system profile P;,;(At) is read and analyzed. The
profiling interval is fixed to At = 1s in the current imple-
mentation. At each At a new profile is read, thus overlap-
ping the profile generation with the analysis and responses.
2. The time consumed during the signature analysis is de-
noted by tanalysis-



3. Conditioned on the outcome of the analysis an appropri-
ate agent needs to be woken up, which takes time t,yqken-
4. The time it takes to dispatch the agent, i.e. the time
from awaking to leaving the local computer, is denoted by
tdispatch-
5. Next, the agent transit time from the source to the des-
tination, tsptransit i considered.
On the destination computer, the following timing behavior
is observed:
1. The time spent by the Response Agent between arrival
at the router and sending a message is denoted by t,,es5age-
2. The Response Agent then returns to its source com-
puter. The time consumed between sending the message
to the Remote Agent Interface and leaving the computer is
tdeparture-
3. The time it takes the Remote Agent Interface to receive
the message from the Response Agent is t;espond. This time
is independent of tgeparture-
4. The time it takes the Remote Agent Interface to take
appropriate action is denoted t4ction.
5. The destination to source transit of the Response Agent
is denoted by tpsiransit- 1t should be noted that tpsiransit
may differ greatly from tspsransit, since now the survivabil-
ity action has been finished, e.g. a packet filter has been
enabled in response to a DoS attack.

There are several different types of overhead to be con-
sidered.
1. Instrumentation Qverhead consists of code overhead.
This is strictly the number of lines added to the kernel
itself. This code will be present in the kernel source code
as well as change the size of a compiled kernel. This is not
necessarily indicative of kernel performance; lines of code
can be added to the kernel which are never called. Such
code creates no overhead in terms of time.
2. Profiling Overhead is the overhead needed to generate
P,,s(At). This is the slowdown of the kernel due to the
instrumentation. This overhead can be calculated by com-
paring execution times in an instrumented kernel to an
non-instrumented kernel. Any slowdown between the two
is due to the profiling overhead.
3. Signature analysis is the overhead used to compare
P,,;(At) to all signatures S;. This overhead is added to
the profiling overhead and both together must be less that
At. If the sum of this combined overhead is greater than
At, signatures cannot be effectively compared at runtime.
The performance of the Signature Analysis Engine is not
constant. When the signature analysis engine is started, all
signatures are analyzed and a master set (called a VIP set)
containing the functionalities contained in all signatures is
generated i.e. VIP = [J{S;}|1 <j<a.
At runtime, a check is made to see if any non-zero elements
of the Pyys(At) correspond to a functionality in VIP. If
there are all elements of Pjys(At) corresponding to the
functions in VIP are zero, then no known attack can be
taking place. This means no further vector comparisons
are needed. Thus, in the absence of attack, the the effi-
ciency of the signature analysis engine is constant: O(1),
as only one set of vector comparisons is needed.

If, however, some elements of VIP correspond to non-zero
elements of Py, s (At), an attack may be taking place. Thus,
P,,s(At) must be compared against every signature. As
the number of signatures increases, the efficiency of the
current implementation is O(k) where k is the number of
signatures stored. This could be reduced by improving
the comparison algorithm used. For example, a compari-
son mechanism using binary trees would result in efficiency
O(log2k).

4. Agent Ezecution Overhead is the time it takes an agent
to do its task, for example, to awaken when a message is
received, or to cut off an attack by engaging a filter.

5. Agent Communication Overhead is due to agents com-
municating with one another. This is dependent on the
mechanism used, but, in general, is quite low. It varies
slightly according to machine load.

6. Transit Overhead is the overhead due to a response agent
migrating from one machine to the other. It is primarily
dependent on two factors, the size of the response agent
itself and the network traffic.

C. Experimental Setup

In the laboratory, a total of eight machines were used.
The machines of interest are the victim machine and the
router. The victim was a Pentium 3/850 MHz machine
with 512 MB of memory. The router machine was the type
of low-end machine typically employed in this role. In this
case, the router was a Pentium 75 with 48 MB of memory
and two Ethernet cards. The amplifier machines varied
from 1 GHz Pentium 4 machines to Pentium 75 machines.
All machines were running RedHat linux version 6.2. The
machines were connected using 10MB Ethernet.

The measurements (except the instrumentation overhead
and analysis measurements) were conducted under four sets
of conditions:

1. No Load/No Traffic: No traffic was introduced into the
network, and no additional load was generated on the vic-
tim machine.

2. No Load/50% Traffic: The load was left normal on the
victim machine, but traffic was inserted into the victim net-
work using a Hewlett-Packard Ethernet Network Analyzer
Model J2522B. The traffic was rated at 50% of the network
capacity.

3. No Load/95% Traffic: Again, no load was introduced on
the victim machine, but traffic was inserted into the victim
network as before, but at 95% of the network capacity.
This was the maximum the Network Analyzer was capable
of generating.

4. High Load/95% Traffic: Load was introduced on the
victim machine in the form of several simultaneous math-
ematically oriented programs. In general, the load on the
machine was approximately 7.5 (using the top command)
although values above 8.0 could be seen at times. These
numbers represent jobs in the run queue of the operating
system. 1.0 is the optimal value. Further, the network was
loaded as before at 95% capacity.



D. Experimental Results
D.1 Instrumentation Overhead

In the linux kernel used in this experiment, (2.2.16), the
total number of lines of code in the non-instrumented net-
work portion is 362,749. The number of lines of code in
the network portion of the instrumented kernel is 372,992.
Thus, the increase is not that significant (approximately
2.7%). The size of the executable kernel changed from
528,268 to 556,268 bytes, also not a significant increase
(5%).

D.2 Profiling Overhead

This overhead can be considered the difference in speed
between an instrumented kernel and an identical non-
instrumented kernel. To determine this, the following test
was run on both an instrumented and non-instrumented
kernel on the same machine. The kernels were compiled
using the same configuration file to ensure they were iden-
tical except for the instrumentation.

The test performed was downloading a 50MB file using
the http protocol (the transfer was local). The file was
downloaded over the loopback interface instead of Ether-
net to avoid any network delays. The test was performed
100 times on both the instrumented and non-instrumented
kernel.

The total time to execute a single iteration of the test
(using the time command) is broken into three categories:
user time, system time, and elapsed time. The user time
is the time spent in user functions, the system time is the
time spent in system (kernel) functions, and the elapsed
time is the start-to-finish time of the task (including time
when the task was swapped out and not executing). The
average user time for both kernels was identical, 27.21 sec-
onds. This is exactly what was expected as the only dif-
ference between the kernels is in the system function calls.
The non-instrumented kernel had an average system time
of 1.49 seconds versus 1.74 seconds for the instrumented
version. Thus, on average, the system time increased by
14.3%. The elapsed time is relatively unpredictable since
it is determined by system load and other external vari-
ables. The average elapsed time in the non-instrumented
kernel was 29.56 seconds, and the average elapsed time in
the instrumented kernel was 29.85 seconds. This is an in-
crease of .971%, which is the result a user will see.

D.3 tanalysis

Several measurements were run to determine signature
analysis time. Tests were conducted using signature li-
braries of 2, 20, 50, and 100 signatures. During each test,
every signature in the library was compared to Psys(At)
and the total comparison time was recorded. A typical re-
sult is shown in Figure 5. As can be seen, the predicted
linear scaling is apparent.

The average tgnaiysis varies according to the number
of signatures. With 2 signatures in the library, the av-
erage is 6,640.07 microseconds. With 20 signatures, the
average is 13,179.21 microseconds, with 50 the average is
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Fig. 5. Signature Analysis Scalability

24,724.02 microseconds, and with 100 signatures, the av-
erage tanalysis 15 43,000.79 microseconds. These numbers
reflect linear scaling as the pure overhead of the Signature
Analysis Engine is approximately 6,000 microseconds (de-
termined by running it with no comparisons whatever).

As mentioned in Section IV-B, when no attack is un-
derway, the t,n41ysis should be constant. This is the case.
With signature libraries of 2, 20, 50, and 100 signatures
(with no attack underway), the average analysis times are
6109.88 microseconds, 6149.49 microseconds, 6097.94 mi-
croseconds, and 6064.94 microseconds, respectively. Fig-
ure 6 shows a comparison of t4naiysis With 100 signatures
and no attack underway, 100 signatures with an attack un-
derway, and 2 signatures with an attack underway. It can
be seen that the analysis time for 100 signatures with no
attack is less than the analysis time for 2 signatures with
an attack underway.
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Fig. 6. Signature Analysis Comparison

D.4 tawaken

tawaken consists of two parts: the time it takes the Signa-
ture Analysis Engine to contact the Local Agent Interface,
and the time it takes the Local Agent Interface to awaken
a Response Agent (if needed). For purposes of testing, a
Response Agent was always awoken by the Local Agent
Interface. The Signature Analysis Engine communicates



via a FIFO pipe to the Local Agent Interface. The Local
Agent Interface communicates with the Response Agent
via Aglets messaging.
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Fig. 7. tgwaken Comparison

Figure 7 shows t44qken, under both high and normal load
conditions. Note the Y-Axis scale has changed to seconds.
Under normal load circumstances, tqwqken i fairly stable,
and has an average time of 0.0172 seconds, with a high of
0.0286 seconds and a low of 0.0129 seconds. The response
time under high load is wildly variable, with an average of
0.126 seconds, a high of 0.2172 seconds and a low of 0.0455
seconds.

As expected, network load has no effect on t,qken- The
averages under different traffic conditions were: 0.0203 sec-
onds (no load), 0.0172 seconds (50% load, plotted above),
and 0.0165 seconds (95% load).

D.5 tdispatch

taispatch is the time it takes the Response Agent to leave
the local machine after receiving a signal. This signal comes
from the Local Agent Interface via Aglets messaging. This
time is affected in the same ways as tyyaken- Figure 8 shows
tdispatch, Under high and normal load conditions.
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Fig. 8. t4ispatch Comparison

As with tgweken, the 0.1076 second tgispatcr, is much
higher than the 0.0145 seconds under normal load. The

high values for ¢4;spatcn, under high load are extremely high,
0.8607 seconds and 0.6445 seconds. Averages under differ-
ing traffic conditions (with no machine load) were similar:
0.0159 seconds under no network load, 0.0145 seconds un-
der 50% network load (plotted), and 0.0153 seconds under
95% network load.

D.6 Router Activity Times

Once the Response Agent arrives at the Router, it sends
the Remote Interface Agent a message. This message is
sent using the standard Aglets messaging facility. The
router was never placed under any load, since routers are
typically dedicated machines with no interactive logins.
Thus, times relating to the router (tmessages tdeparture
trespond, and taction) are similar in all test cases.

The average tmessqge varied little under the four test con-
ditions: 0.0719 seconds, 0.0773 seconds, 0.0706 seconds,
and 0.0821 seconds with very little variance (less than 10%)
between maximum and minimum times. Likewise, all val-
ues for tgeparture Were similar: 0.0792 seconds, 0.0779 sec-
onds, 0.0823 seconds, and 0.0814 seconds.

tmessage + tdeparture cOmprises the total amount of time
the Response Agent spent on the router. These times were
0.1604 seconds, 0.1630 seconds, 0.1579 seconds, and 0.1680
seconds.

trepsond reflects the elapsed time from when the Response
Agent sent a message and the router responded. These will
be similar to tywaeken as they reflect the time required for
the same type of communication. There will be some differ-
ence in speed, however, as tespond iS a single event (tgypaken
consists of two events) and the router is a much slower ma-
chine than the victim. The test averages for trespond are
0.1328 seconds, 0.1314 seconds, 0.1285 seconds, and 0.1292
seconds.

Finally, tuction represents the elapsed time between
trespona and when action is taken. In this case, the action
is configuring the linux machine to stop packet forward-
ing between the two networks. This is done by writing a
value in the /proc filesystem. t,¢spong had test averages of
0.2272 seconds, 0.1710 seconds, 0.1546 seconds, and 0.2349
seconds.

D.7 tsDtransit and tDStransit

Transit time constitutes the time required for a Response
Agent to travel from one machine to another. No general-
usage clock synchronization method is sufficient for the
type of accuracy required (accurate to less than a mil-
lisecond to measure these times separately). Therefore,
tsDtransit and tpsiransit are discussed together.

In the experiments, network traffic was injected on the
victim network. This was so that even after the attack
had ceased, the network load would remain the same. This
alleviates the problem of having to determine a very long
tspDtransit and a very short ¢t psiransit, although this is the
more realistic situation. When the attack has ceased, there
will be little load on the network. The realistic situation
can be simulated by taking a high traffic tspiransi time



and a low-traffic tpstransit time. For purposes of this dis-
cussion, both of these times will be referred to as tiransit-
The numbers were generated by taking the round-trip time
and dividing by two.

tiransit varies as can be expected under differing condi-
tions of network load. Figure 9 shows the return time of
the Response Agent under varying network and machine
loads.

% T
"0% traffic/no load" ——— |
®r "5006 traffic/no load” - |
"359% traffic/no |oad” -~ - - :
40 "95% traffic/high load” - - - - |
35 - ]
g 0+ , ]
: : :
§ 25 . 1
E 2r - .
= o |
15 i : ; \ : -
10 - : | /" \\\“‘ T ,’(f"\ B
5 i -7 LA //\ I/’ ‘\\ /(l \\7
T N "‘r,,_/ \\\_\7‘ e ; \\\‘ 777777 //,V \

0 5 10 15 20

Trial Number
Fig- 9. tiransit Comparison

Machine load has more of an effect than might be ex-
pected. This is because the Agent server must re-assemble
the Response Agent after receiving it. It also appears that
a 50% loaded network is not significant enough to add ex-
tra transit time to the Response Agent (the size of the
Response Agent is approximately 3K).

With an unloaded machine and network, the average
transit time was 0.2433 seconds, compared to a similar
time of 0.2224 seconds with 50% network loading. With
95% network load and no machine load, tirqansiz rose to
an average of 2.8013 seconds. There was a large variation,
from a low time of 0.2435 seconds to a peak time of 14.1884
seconds. When the computational load was introduced to
the machine along with with high network loading, the av-
erage tirqnsit rose to 6.0632 seconds. There was also large
variation present, with a low time of 0.9696 seconds to a
high time of 49.6094 seconds.

E. Discussion of Results

The results indicate good performance. Based on system
call time, overall performance of the kernel is reduced by
14.3%. This degradation only occurs when instrumented
functions are called, and so appears worse than it is. If
no network functions are not used, there will be no per-
formance degradation. Elapsed time is in some ways more
accurate, as this is what a user sees. Using elapsed time
instead of system time, overall degradation appears to be
just .971%.

The Signature Analysis Engine performs at O(1) in the
best case, and O(k) in the worst case, where k is the number
of signatures being compared. This worst case could per-
haps be made more efficient by using a more sophisticated

comparison algorithm. However, even with 100 signatures
in the library, the comparisons took very little time.

The execution times for the various agents were, overall,
quite low, even under high load conditions. Although the
router was not loaded, similar results as loading the victim
will be seen if the router is loaded.

The true bottleneck in the system for this test is the
transmit time of the migratory agent. This is due to the
fact that this represents a “worst-case” situation. A DoS
attack (like smurf) is specifically designed to congest the
network is going to degrade overall performance greatly.
This is due to the fact that migratory agents are used which
must contend with the attack for network bandwidth. Even
in these situations of extreme network loading (95% load),
it is reasonable to assume that the attack will be responded
to within one minute.

V. CONCLUSIONS

The research presented demonstrates the real-world over-
head cost effectiveness of a two-layer approach to system
and network survivability. The lower level presents a low-
overhead method of determining whether a system is un-
der attack, and the high level presents a higher-overhead
method of dealing with different types of attacks.

The architecture presented causes little performance
degradation in real-world situations as evidenced by the
performance benchmarks given. In the face of realistic at-
tack scenarios, the system performs quite well. Response
time is not excessive even under extreme network load, and
the approach is feasible for real-world enterprises.
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