
© 1999, Axel W. Krings

A Byzantine Resilient Approach to Network Security1

1 This project has been supported by the INEEL and DoD TSWG

 Axel W. Krings Miles A. McQueen
 Computer Science Dept. INEEL
 University of Idaho, Moscow ID, USA Idaho Falls, ID, USA
 krings@cs.uidaho.edu amm@inel.gov

This paper describes a joint project between the Univer-
sity of Idaho and the Idaho National Engineering and En-
vironmental Laboratories (INEEL) which addresses solu-
tions to the problem of malicious intrusions in networked
systems. A new approach to network security is proposed
that is based on technology transfer of methods and algo-
rithms found in restrictive distributed fault-tolerant sys-
tems. The principles of hardware and software redun-
dancy are applied to general network security. Whereas
much research focuses on intrusion avoidance and intru-
sion detection, this research addresses survivability issues
of systems in the presence of malicious, possibly coordi-
nated, attacks. Specifically, multiple distributed copies of
critical agents or functionalities are used that combine
fault-tolerant agreement to mask malicious network at-
tacks. Thus the focus is shifted from intrusion avoidance
and detection, to guaranteeing that critical functions are
secure even in the presence of intrusion. Now malicious
acts can be masked, while intrusion detection methods are
applied. A byproduct of intrusion masking is intrusion
detection based on the critical functionalities.

There are many commonalities between the area of fault-
tolerance and network security. The main goal of fault-
tolerant system design is to mask hardware faults, such
that failure of components does not affect the ability of
the system to perform to its specifications. Several fault
models exist in which faults are classified by their behav-
ior and relative probability of occurrence. For example,
the likelihood of self-evident faults, i.e., benign faults, is
much greater than that of malicious faults [Tha88], i.e.,
Byzantine or asymmetric faults. Fault-tolerance is mainly
achieved by means of redundancy. One key issue in re-
dundant systems is the implementation of agreement algo-
rithms in order to guarantee that all non-faulty processors
agree on the same data or action. A multitude of agree-
ment algorithms exist to achieve agreement under varying
assumptions and cost in terms of system overhead.

The fault-tolerant concept just described matches very
closely issues of system survivability and network secu-
rity in distributed systems, where mechanisms like
authentication protocols are used to prevent unrightful
access or malicious tampering. However, in network se-

curity the efforts after an attack focus on the detection of
infiltration and identification of the attacker rather than
fault masking. Furthermore, whereas in fault-tolerant sys-
tems malicious faults are the least likely, in network secu-
rity the attacker is expected to behave maliciously.

Our research considers an approach to system survivabil-
ity and network security that takes the philosophy of fault-
tolerant multiprocessor systems implementing Byzantine
Agreement and transfers it to general distributed systems.
The problem with any non-replicated approach to surviv-
ability is that any mechanism that empowers can be used
against you. Once a hacker has “superuser” (or “root”)
status, little stands in his/her way to compromise the sys-
tem. Consequently, power has to be decentralized, requir-
ing redundancy and the overhead that results from redun-
dancy management. To reduce overhead redundancy
should be limited to specific functionalities or services
and should be used sparsely. The principle of redundancy
based on critical functionalities can be described best us-
ing an example. Domain Name Servers (DNS), which
resolve network addresses, are one common subject of
system attack. Rather than the usual single DNS executing
on one specific server, assume that DNS is replicated on
several network nodes. Upon receiving a DNS request, the
DNS servers initiate a voting process to reach agreement
on proper DNS resolving, thus masking and possibly
identifying any compromised DNS server. This approach
of course assumes that enough servers have been unaf-
fected by the attack.

We have derived a framework that is based on critical
functionalities. These functionalities, ranging from DNS
to telnet and passwd, need to be identified as required by
specific applications domains. Once identified, instrumen-
tation of the operating system for specific functionalities
is required. The operating system is minimally modified
with a call to and return from an isolated module, the so-
called Byzantine Agreement Module (BAM). The BAM is
the central agent on each computer that deals with man-
agement and specifics of defined critical functionalities as
well as all communication to BAMs on different systems
participating in the replication. The concept is explained

© 1999, Axel W. Krings

using Figure 1. Here the operating system is executing
functionalities fi on processor p. In

Figure 1: BAM Integration

the unmodified operating system, fi simply executes and
terminates. However, here fi is modified to call the BAM
module. The BAM on processor p is interfaced with a
service module which implements any code specific to the
modification of fi. Service modules p

if are in one-to-one
correspondence with their critical functionalities, i.e.,
service module p

if maps to functionality fi on processor
p. As a result, the BAM on processor p may have a serv-
ice module q

jf which corresponds to functionality fj on

processor q. After receiving a call from fi and under con-
siderations of the specifics in p

if , the BAM initiates an
agreement with all processors involved in the replication
of the functionality. This set of processors is called the
survivability cluster of fi and need not be the same for all
functionalities. The BAM forwards the request of fi to all
processors in the survivability cluster which in turn exe-
cute their corresponding service modules. At this point in
time each BAM in the cluster derived a result. Next all
BAMs in the survivability cluster initiate a voting algo-
rithms. The voted upon result is returned, processed, and a
return from the BAM to fi finishes up the execution.

With respect to the DNS example above, a request to re-
solve the address for computer “snake” in Figure 2 results
in a call to the local BAM. The BAM then requests each
processor in the survivability cluster to resolve the same
request using their respective service modules. If the DNS
server has been compromised by an intruder and the DNS
entry has been maliciously altered from 129.101.55.119 to
129.101.55.22, the BAM will encounter disagreement
during the voting process and will overwrite the DNS
resolution of the DNS server with the agreed upon value.

Figure 1

Figure 2: Survivable DNS

The principle of minimal redundancy is applied. Thus we
have selected the least restrictive agreement algorithm for
each functionality. For functionalities with no possibility
for initial disagreement a simple majority vote is suffi-
cient. Wherever Byzantine agreement is necessary we
have selected early stopping algorithms [Kri99] in order
to reduce overhead. Some functionalities have different
redundancy requirement depending on the service pro-
vided, e.g., the DNS resolution of Figure 2 requires only
results from 2 of the 3 redundant servers in order to
achieve agreement in the primary DNS server. However,
DNS updates require up to 4 processors in order to ensure
consistency.

Since our approach requires alterations to the operating
system and thus access to its source code, our implemen-
tation is based on Linux and is written in C. We are cur-
rently implementing libraries of functionalities and are
analyzing overhead and synchronization issues. In the
next project phase intrusion detection and fault isolation
based on functionality-usage profiles are envisioned.

References

[Tha88] Thambidurai, P.M., Park Y.K., "Interactive Con-
sistency with Multiple Failure Modes", Proc. 7th Reliable
Distributed Systems Symposium, Columbus, OH, pp. 93-
100, Oct. 1988.

[Kri99] Krings, A.W., Feyer, T., “The Byzantine Agree-
ment Problem: Optimal Early Stopping”, Proc. 32nd Ha-
waii International Conference on System Sciences, No.
stdds03, pp. 1-12, January 5-8, 1999.

