
A Graph Based Model for Survivability Applications∗

A. W. Krings A. Azadmanesh
Computer Science Dept. Computer Science Dept.

University of Idaho University of Nebraska at Omaha
Moscow, ID 83844–1010, USA Omaha, NE 68182–0500, USA

krings@cs.uidaho.edu azad@unomaha.edu

Abstract

Many problems found in standard security and survivability applications can be transformed
into graph and scheduling problems, thereby opening up the problems to a wealth of potential
solutions or knowledge of limitations, infeasibility, scalability or intractability. This paper
introduces a model to aid in the design, analysis, or operations of applications with secu-
rity and survivability concerns. Specifically, a five step model is presented that transforms
such applications into a parameterized graph model that, together with model abstraction
and representations, can be the basis for solutions derived from graph and scheduling algo-
rithms. A reverse transformation translates the solutions back to the application domain.
The model is demonstrated using migratory agent security and fault-tolerant agreement and
their transformation into chain constrained and group scheduling problems respectively.

Keywords: Scheduling, Security, Survivability, Transformation Model.

1 Introduction

Malicious attacks on computers and networks have reached epidemic proportions. Although
much research has addressed the issue of increasing security of networked computer systems,
problems and malicious acts are on the rise, rather than getting less [5]. Of special concern
is the reliance of critical infrastructures on networked computer systems. The 1997 Pres-
ident’s Commission on Critical Infrastructure Protection (PCCIP) “designated as critical

∗Portions of this work were funded by grant #60NANB1D0116 from the National Institute of Standards
and Technology, U.S. Dept. of Commerce.

certain infrastructures whose incapacity or destruction would have a debilitating impact on
defense or economic security”[17]. Among the eight critical infrastructures identified were
telecommunications, electrical power, gas and oil storage and transportation, transporta-
tion, and water supply. What these critical infrastructures have in common is that their
underlying devices are controlled by communication networks and that their underlying
physical infrastructure can be modeled by graphs. As such, it is reasonable to assume that
many problems associated with these infrastructures may have solution spaces in areas that
use graphs as common models, e.g. graph or scheduling theory.

In the area of cyber terrorism, computer and network security and survivability are the
principal research areas addressing protection. Security is often viewed as addressing issues
of confidentiality, integrity, availability, as well as accountability and correctness. Surviv-
ability, on the other hand, goes beyond security and has been formulated with respect to
Resistance to, Recognition of, and Recovery from attacks, with a final iteration considering
Adaptation [7]. Whereas resistance and recognition are typically associated with security,
the main consideration of survivability is recovery. The recovery aspect can adopt many
concepts from the area of fault-tolerance considering diverse fault models, which are directly
affected by the topology and communication protocols of the systems involved.

The lack of success in securing networked computer systems may be attributable to the
missing theoretical groundwork and mathematical models [8]. Most approaches to security
and survivability are ad hoc. Thus, in the absence of standardized security test procedures
claims, e.g. of intrusion detection systems, cannot be verified. Furthermore, it is not
possible to compare relative results, as such comparisons would require a general common
basis.

In an attempt to increase rigor in certain critical cyber problems, we are investigating
transformation of security and survivability problems to other disciplines. Problem trans-
formations in order to solve hard problems have been used extensively in mathematics and
engineering. Well known examples include exponentiation or Laplace transformation. The
general strategy is to transform the original problem into a different problem space in which
known solutions exist, or solutions can be found at lesser cost. After a solution has been
derived in the new problem space, a reverse transformation is used to translate the solution
found back to the original problem space.

This research presents a transformation model to formalize certain survivability and security
problems. The transformation model enables solutions to be based on graph and scheduling
theoretical concepts. Section 2 gives a model overview. Section 3 explains the model using
examples of graph and scheduling problems. Section 4 outlines two case studies in which
the original problems are transformed to scheduling problems. Finally, Section 5 concludes
the paper.

2

2 Model Overview

The basic philosophy of the transformation model is shown in Figure 1. We will first
describe the model in general and will demonstrate it using a mobile agent and a distributed
agreement application in Section 4. For the description of the model overview imagine that
the application under consideration is associated with a general network of computers, or a
critical infrastructure such as the electric power grid together with the data communication
network controlling its devices.

Parameterization

Model Abstraction and
Representation

Model Generation

Graph Algorithms

Scheduling Algorithms
Optimization

Reverse Transformation

Application A Application X...

Figure 1: Model Overview

2.1 Model Generation

The application is transformed into a task graph together with the task model specification,
if applicable. The general model is based on a directed graph G = (V, E), where V is a
finite set of vertices vi and E is a set of edges eij, i 6= j, representing precedence relations
between vi, vj ∈ V .

2.2 Parameterization

Now that the application is mapped to vertices and edges of G, a mapping of application
specific parameters to generic parameters is needed. Examples of such parameters are
power transmission, network throughput, communication cost, sensitivity or confidentiality,
relative importance based on the cost of loss of services etc. The vertices and/or edges of

3

the graph generated need to be assigned weights representing their characteristics. The
results can be generalized by integer or real valued weights. Thus, for each vertex in V
and edge in E, vertex and edge weights are defined respectively. Let wv

i denote the vertex
weight of vi. Furthermore, let we

ij denote the weight of edge eij, where vi, vj ∈ V and i 6= j.

If multiple parameters need to be considered simultaneously, scalar weights are insufficient.
Depending on the application that G represents, multiple weights may be defined for vertices
and/or edges. In this case wv

i and/or we
ij are weight vectors, where wv

i [k] and we
ij[l] represent

the kth and lth parameter respectively. The number of weights, representing the length of
the vector, is denoted by |wv

i | and |we
ij|.

2.3 Model Abstraction and Presentation

Once a weighted graph G is defined, the graph can be considered in the context of standard
graph or scheduling problems. A graph theoretical formulation can be represented by the
graph itself, along with the manipulative objectives, such as max-flow or min-cut. On the
other hand, a scheduling theoretical formulation requires the specification of the scheduling
model, i.e. the processing environment, and the optimization criteria. In order to avoid
lengthy descriptions of scheduling models S, a compact description of the form S = (α|β|γ)
is commonly used [4]. The fields α, β, and γ indicate the processor environment, the task
and resource characteristics, and the optimization criteria respectively. The most important
feature of the model generation process is the matching of the survivability requirements
and objectives with the graph and scheduling model and objectives.

2.4 Graph and Scheduling Algorithms

Graph G and schedule model S are now subjected to graph and scheduling theoretical al-
gorithms respectively. The goal is to find optimal or suboptimal solutions for the sought
after survivability criteria, applying the best suitable algorithm(s). A wealth of algorithms
and heuristics of varying space and time complexity exist. Appropriate algorithms need
to be identified that suit the optimization criteria, i.e. the survivability criteria, consider-
ing response time or computation requirements. One of the desired aspect of using graph
or scheduling models is that the time or space complexity may be inherited from the al-
gorithms, i.e. many problems have been shown to be intractable, e.g. NP-complete or
NP-hard. This may provide valuable information about the solution space. However, it
should be noted that intractability in the general case does not necessarily imply that the
problem cannot be solved efficiently. In fact, for specific limited problem sizes solutions
may be obtainable efficiently or at acceptable cost, despite of the problem being computa-
tionally hard. After the application of graph or scheduling algorithms or heuristics, optimal
or sub-optimal solutions will be available.

4

2.5 Reverse Transformation

The solutions of the graph or scheduling algorithms must now be translated back to the
application. This requires a reverse transformation analogous to the transformation used
in the Model Generation. This step represents the transformation from the solution space
back to the application space.

2.6 Application Adaptation

The model of Figure 1 can be used in an adaptive way by applying it in a circular fashion.
Thus, after the reversed transformation the application could be refined, and the entire
transformation process can be repeated utilizing the results of the previous iteration. Such
iterative approach could benefit applications which are inherently dynamic and need the
ability to adapt.

3 Applications

The process outlined above will now be explained using examples for a graph and scheduling
problems.

Assume we need to analyze the vulnerability of a data communication infrastructure. The
communication network may be represented by a digraph with weights equal to a spe-
cific Quality of Service (QoS) parameter, e.g. maximal data rate. The objective may be
maintaining a desired data rate, even if some links fail. Such scenario may arise when a
communication infrastructure is to be analyzed with respect to its resilience to malicious
acts destined to disrupt communication links.

In this scenario the graph G is defined by the network graph. Vertices in V constitute
communication hardware, e.g. gateways or routers, and edges in E are communication
links. The QoS parameter, the maximal data rate we

ij, is defined for each link between
devices vi and vj.

The scenario above is a graph problem which can be formulated as follows: Given a minimal
required data rate between any two vertices vi and vj, find the minimal number of network
links that must be destroyed in order to violate the data rate requirement. The answer
should provide insight about vulnerabilities, and the minimal attack scenarios could be
used to motivate enhancement to the robustness against attacks.

To demonstrate how security problems can benefit from solutions of their transformed
scheduling problems, consider a system facilitating autonomous migratory agents to perform
security related operations, e.g. patch management or diagnostics. Assume that, as a result

5

of an exposed vulnerability, patches need to be automatically installed in a large set of
computers in such a way that patch management does not affect the overall mission.

The patch management agents will have a set of core tasks to be performed, diagnosing the
presence of a certain vulnerability and installing the associated patch. As patch manage-
ment often implies disruption of normal operations, including reboot of the computer, each
computer needs to be queried, identifying the earliest time ri at which the patch may be
installed as well as the disruption weight wi on computer vi. If a patch management agent
is viewed as a processor, and diagnosing and installing the patches on a specific computer
vi as a task Ti with a minimum and maximum processing time pmin

i and pmax
i equal to

the diagnosis and patch installation duration respectively, then the agents paths may be
determined by solving the scheduling problem that optimizes the makespan Cmax,

∑
Ci or∑

wiCi.

3.1 Processors and Tasks

Whereas in scheduling resources are usually seen in the traditional sense, e.g. computers
and machines, in the field of security and survivability resources may be interpreted more
generally. There are many different attributes associated with different resources. For
example, processors may be identical, uniform, unrelated or dedicated [4].

1. Identical: homogeneous environments, e.g. homogeneous computers and input/output
devices, software licenses, personnel with same skill level.

2. Uniform: processors with different speed bi, e.g. heterogeneous computers and in-
put/output devices, network devices with different bandwidth, personnel at different
skill levels within the same expertise domain, network sniffers with different sniffing
capabilities, and vulnerability analyzers with different capabilities.

3. Unrelated: in classical scheduling theory, uniformity implies that processor speeds
differ but individual processor speeds are considered constant. If the speed is depen-
dent on the task performed, processors are called unrelated [4]. Typical examples are
computers or networks subjected to Denial of Service (DoS) attack, which may be
distributed (DDoS).

4. Dedicated: specialized for the execution of certain tasks. Examples include special
purpose computers, or domain specialists with different areas of specialization, e.g.
Unix and NT system administrators.

Tasks may be non-preemptive or preemptive.

1. Non-preemptive: once a task is started, its execution can not be interrupted. The
classical example is printing. However, security policies often have strong require-

6

ments for patch management, redundancy management, and maintenance operations
such as backups and logging that represent atomic, i.e. non-preemptable, operations.

2. Preemptive: task execution can be interrupted. This is standard for the majority
of applications running on most commercial general purpose and real-time operating
systems. Besides traditional interpretations, security policies specify the course of
action in response to many kinds of benign and malicious activities, thereby preempt-
ing normal system operations. In response to system problems or attacks, technical
response assistance centers require technicians to frequently process several incidences
at a time, switching back and forth between them.

3.2 Model Mappings

There are countless security problems that can benefit from applying the model of Figure 1.
Below we identify some problems, but it should be noted that this is by no means an attempt
at generating a complete list of application domains.

Graph Model Many Critical Infrastructure Protection (CIP) problems have topology
maps that can be represented by directed or undirected graphs. Typical examples are
transportation networks, electrical power grids, pipelines, water lines, and the communica-
tion networks controlling these infrastructures. Below are some examples that would result
in a graph model.

1. With respect to determining emergency procedures involving the transportation in-
frastructure, identification of the number of suitable disjoint paths between two loca-
tions, e.g. cities, and the associated traffic capacities are essential.

2. The identification of prime targets, whose destruction or compromise would render
the application useless is a key task in CIP and communication networks. The 1997
report of the Presidential Commission on Critical Infrastructure Protection (PCCIP)
identified infrastructure elements that are essential to the national defense and eco-
nomic security of the United States.

3. Identification of the minimal infrastructure configuration needed to satisfy basic re-
quirements. The definition of “basic” could differ depending on the application, e.g.
military vs. civilian infrastructures.

4. After outages in the electric power infrastructure, it is very common for the mainte-
nance personnel to physically reset Supervisory Control and Data Acquisition (SCADA)
devices, rather than resetting or reactivating the devices remotely. Directing the main-
tenance crews to power substations is heavily influenced by the significant geographic
distances between substations. Solutions may be derived from solving the associated
traveling sales person problem.

7

Scheduling Model Many security problems can be mapped to scheduling problems. One
key observation is that security personnel or mechanisms can be viewed as the processor
environment. There are many ways to map the security problem examples described below
to a scheduling problem α|β|γ. The formulations shown are only examples. Especially
in the task and resource characteristics, i.e. β, many interpretations and formulations
are possible. This vagueness should be seen as a strength, not weakness, as it introduces
flexibility in generating a solution space.

1. Response management: P ||Cmax.
Each of the P identical processors represents a security specialist.

2. Response management: P |ri|Cmax or P |ri, di|
∑

wiDi.
These are variations of the previous case, where release times ri, due dates di, and
tardiness Di are considered. Schedule the security tasks, as they arrive (perhaps with
dynamic arrival times) under considerations of deadlines.

3. Response management: Q|ri|Cmax or Q|ri, di|
∑

wiDi.
In this variant, the realistic assumption is taken that the security personnel has dif-
ferent levels of expertise, e.g. junior versus senior security officer. Thus personnel is
represented by uniform processors Q.

4. Response management: J ||Cmax.
If the assumption is that different personnel has different qualifications, e.g. special-
ization with respect to specific operating systems, then processors might be considered
to be dedicated. In this case the problem might be treated as a job shop.

5. Response management: Pm|ri|Cmax or Pm|ri, di|
∑

wiDi.
Given a specific task to be performed in a time critical application, determine the
suitable number m of specialists needed for a given objective.

6. Response management: P |pmtn|Cmax or P |pmtn, ri, di|
∑

wiDi.
Preemptive scheduling (pmtn) considers context switching time and the number of
preemptions. This could include minimizing the number of preemptions. Technical
support staff of most customer response centers subject their technicians to multiple
cases at a time.

7. Physical security: P |prec, group, ri, di|
∑

wiDi or P |chain, group, ri, di|
∑

wiDi.
A facility is monitored by security cameras and observation personnel [11]. Different
locations to be observed are represented by task groups Gi, where Gi consists of ni

tasks, Ti1, Ti2, ..., Tini
. Each task Tij represents an observation window of processing

length pij. The processors are the observation monitor(s), or observation person(s).
Groups are to be scheduled with deadlines less than the times required by a skilled
adversary to infiltrate the facility. Solutions would be based on group scheduling or
scheduling with strong precedence under consideration of precedence (prec).

8

8. Physical security: F ||Cmax or J |di|
∑

wiDi.
The previous physical security application can also be formulated as a flow shop
problem, capturing the requirement that Tj i−1 needs to be executed before Tji, or as
a job shop problem.

9. Agent security: 1|ri|Cmax or Pm|di|
∑

wiDi.
In systems facilitating autonomous agents to perform security related operations, e.g.
version tracking, diagnostics, etc., the agent might have a set of critical tasks to be
performed on specific systems [12]. In the case of distributed denial of service attacks
(DDoS), timing might be crucial when implementing survivability measures using the
agent, as the defensive measures race in time against the increasing affects of the
DDoS attack. The agent is represented by a processor, the systems to be traversed
are the tasks.

10. Agent security: R|ri|Cmax or Rm|di|
∑

wiDi.
The previous case can be viewed with respect to the affects of the DDoS attack. In
this case it might be valid to consider unrelated processors. Recall that the speed of
an unrelated processor depends on the the particular task processed [4].

11. Agent security: 1|ri, pi|Cmax or Pm|di|
∑

wiDi.
Similarly, if agents are used for patch management, installing patches has to be coordi-
nated with the usage of the system in order to avoid conflicts with the tasks executing
on the system. This is very obvious in operating systems that require applications to
be terminated before installing the patches or rebooting after installation.

12. Intrusion detection systems: P |ri, pi|Cmax or Pm|pi, di|
∑

wiDi.
Many intrusion detection systems (IDS) rely on centralized computers to collect data
from log files and audit traces of different clients in order to check for coordinated
attacks. The individual log files can be large in size and need to be downloaded in
local area networks (LAN) or wide area networks (WAN).

13. Attack recognition systems: 1|pi, τ |Cmax.
Certain low-level attack recognition systems [13] need to be scheduled with end-to-
end and real-time requirements, guaranteeing that they are instantiated at regular
intervals τ . The periodic tasks are 1) sensor data collection and 2) attack signature
evaluation.

4 Case Studies

The previous section presented examples of applications and indicated possible transfor-
mation problems. However, it was not shown how the applications can be systematically
transformed. In this section we outline transformations, by applying the model of Fig-
ure 1 to two different problems that are at the core of some survivability, security, and
fault-tolerance concerns.

9

4.1 Autonomous Mobile Agents

Due to the very nature of the concept of software agents, mobile agents have been the
source of many security concerns. Malicious agents could impact computer survivability
and malicious computers could compromise agent security and survivability. The concept
of resistance, recognition and recovery can therefore be seen from a computer system’s or
agent’s point of view.

This case study utilizes the research presented in [15] and considers the first case, i.e.
we consider survivability aspect due to potential malicious agents. In order to address
security concerns and system survivability we assume that agent systems utilize redundancy.
Redundancy in agent system has been the focus of recent research [9, 10, 18, 19, 20], and
our specific focus is on secret sharing [21, 19] rather than pure spatial or information
redundancy. In secret sharing the information is divided into k shares, and one has to
have all shares to use the information. If each agent carries a single share, secret sharing
using k shares can be easily extended to achieve survivability by extending it to an m-of-k
scheme, in which the information of m out of k uncorrupted agents is needed to perform
an action [19]. We now apply the process of Figure 1.

Application: Assume a multi-agent system is used to implement survivability function-
alities on a set of networked computer systems. The relative importance of each computer
to the system is prioritized, e.g. indicated by an integer numbered priority index scheme.
Next, assume that a secret sharing scheme is implemented requiring ki shares for a specific
processing element, i.e. computer, PEi. Thus, all ki agents must be present at computer
PEi to perform their specific function. Given this secret sharing agent survivability scheme,
it is important to find efficient agent traversal paths, e.g. paths that maximize the efficiency
of an agent system charged with reactionary response to malicious act.

Model Generation: The application is translated into a task graph G = (V, E) con-
sisting of K job chains Ck, each representing a group of computers. Each computer to be
traversed by the agents is shown as a vertex, i.e. job, Jk,i ∈ Ck, for 1 ≤ k ≤ K. The posi-
tion of Jk,i in Ck, i.e. the chain position, indicates the relative computer priority. Thus, if
Pr(PEi) and Pr(PEj) denote the priority of PEi and PEj respectively with priority values
in the range 1 ≤ i, j ≤ mk, then edge ei,j is introduced in E if Pr(PEi) = Pr(PEj) − 1.
Edge ei,j represents job precedence Jk,i < Jk,j.

Parameterization: The parameters reflecting the functionality executed by the agents
during job Jk,i need to be specified. The job priorities are implicitly defined by the position
of Jk,i in chain Ck, and the processing and release times of Jk,i are determined by pk,i and
rk,i respectively. Potential cost or liabilities due to malicious act can be modeled by weight
wk,i.

10

Model Abstraction: Suitable scheduling models can be found in [6], where ‘Strong’-
‘Weak’ chain constrained scheduling is discussed. The specific model considered is

Pm|fixj, chain, pj = 1|Cmax,

where m is the number of machines (represented by agents) in the system. The number
of machines necessary to process a job is indicated by fixj, and chain indicating chain
precedence. It should be noted that fixj indicates the degree of secret sharing.

To show how this model suits the application an example from [6] given. Let J denote
a partition of all jobs Jk,j. Furthermore, let Jexpr denote the set of jobs that require all
machines with indices indicated in expr for execution. Now jobs can be partitioned by their
resource requirements. If one assumes m = 3, then jobs can be partitioned as

J = {J123, J12, J13, J23, J1, J2, J3}. (1)

The superscript indicates the machines required, e.g. J123 comprises all jobs that need
machines M1, M2 and M3 to execute, whereas jobs in J12 only require M1 and M2. The
number of indices listed in the superscripts indicate the degree of secret sharing required
by each of the jobs of the associated set. For example, each job in J123 requires that three
agents need to be present before their respective functionality can be executed. Similarly,
each job in J12, J13, and J23 require two agents, however, each set has its specific set of
associated agents. The problem

P3|fixj, chain, pj = 1|Cmax

captures the notion of scheduling the tasks in J .

Scheduling Algorithm: It is shown in [6] that the problem Pm|fixj, weak chain, pj =
1|Cmax can be solved in O(n) time if all jobs of chain k belong to the same partition in
equation (1). The last constraint is called agreeable machine configuration. The weak chain
constrained implies that scheduling two jobs of a chain, under consideration of the chain
precedence constraint, may be interleaved with other jobs. This interleaving is not allowed
in strong chain constrained scheduling.

Problem Pm|fixk, strong chain, pj = 1|Cmax, for m > 1 has been shown to be NP-hard in
the strong sense [6]. Similarly, problem P3|fixj, strong chain, pj = 1|Cmax with agreeable
machine configuration is NP-hard in the strong sense [2, 3].

Reverse Transformation: A valid schedule produced by any scheduling algorithm di-
rectly reflects the agent traversal path.

11

4.2 Case Study: Distributed Agreement

The next case study outlines the transformation for the problem of reaching agreement in
the presence of faults. The specific application, derived from [14], is defined as follows.

Application: Consider the formulation of the well known “Byzantine General Problem”
together with recursive algorithm OM(t) presented in [16]. OM(t) guarantees to achieve
agreement using N ≥ 3m + 1 processors, where m is the maximum number of maliciously
faulty processors. The algorithm is based on rounds of message exchange. In each round
each processor forwards values received in the last round to all other processors that have
not receive it before. Agreement is achieved using majority calculations at each processor
after the algorithm executes for m + 1 rounds.

Model Generation: In the recursive OM(t) algorithm each processing node keeps track
of values received in a so-called EIG-Tree [1], where each level represents a round of message
exchange. This EIG-Tree can be mapped into an agreement task graph [14] GA = (V A, EA).
The tasks in set V A represent computation and communication tasks associated with the
generation of the EIG-Tree and the final determination of the agreement value, which is a
majority voting process. Edge set EA defines the precedence constraints.

Parameterization: In this example, parameterization first implies the trivial mapping
from each vertex vi ∈ V A to task Ti, i.e. each vi is a task Ti. Next, the processing time
pi of each Ti needs to be specified. If Ti is a computational task, then pi is the processing
time required to receive the messages and manipulate the data structures representing the
EIG-Tree. The leaf nodes of the graph also perform the final voting, with the voted-upon
value constituting the agreement value. Exact values for pi can be either computed from
the program segment or based on measurement. If Ti is a communication task, then pi

represents the overhead of the protocol stack, network interface, and data link. In this case
it is more practical to use measurement for the determination of pi.

Model Abstraction and Presentation: In [14] it has been shown that the performance
of agreement algorithms is linked to how efficient certain task groups can be scheduled. The
groups were defined to contain all tasks of the agreement task graph GA = (V A, EA) that
are associated with a specific level of the EIG-Tree. Thus if the tree has k levels, then
k task groups can be identified in GA. The task groups of GA must be scheduled on N
processors, together with the standard application tasks of each processor, represented by
graph GP

i = (V P
i , EP

i). The final scheduling model is a hybrid model which requires the
scheduling of GA to coincide with the static scheduling of each GP

i . The resulting scheduling
formulation is thus a variation of PN |prec, group, static|Cmax, assuming a homogeneous
processing environment, the agreement task graph GA with identification of the task groups,

12

as well as static task to processor assignments within a group, in addition to application
task graph GP

i .

Scheduling Algorithm: The problem Pm|prec, group, static|Cmax can be solved with
any heuristic with special focus on group or strong precedence scheduling. An optimal or
suboptimal solution could be acceptable.

Reverse Transformation: The scheduler and dispatcher satisfying the static allocation
scheme need to be implemented. Thus, the reverse transformation in this application is
simply the implementation of both.

5 Conclusion

This paper presented a model that can be used to derive solutions from other areas, e.g.
graph or scheduling theory, to solve problems occurring in security and survivability ap-
plications via problem transformation. The specific targets were applications that can
be reduced to graphs or task systems to be scheduled under specific scheduling models.
The model was demonstrated using two case studies. The problem of migratory agent
security was transformed to chain constrained scheduling based on [15], and distributed
fault-tolerant agreement was expressed as a group scheduling problem based on [14].

We hope that through this contribution, researchers from the areas of scheduling theory
and operations research will realize that many problems in security and survivability could
have potential solutions in their research areas.

References

[1] P. Berman, J. A. Garay, and K. J. Perry, “Optimal Early Stopping in Distributed
Consensus”, Proc. 6th International Workshop on Distributed Algorithms (WDAG ’92),
LNCS 647, Springer-Verlag, Nov. 1992, 221-237.

[2] J. Blazewicz, P.W. Dell’Olmo, M. Drozdowski, and M.G. Speranza, “Scheduling Mul-
tiprocessor Tasks on Three Dedicated Processors”, Information Processing Letters 41,
pp. 275-280, 1992.

[3] J. Blazewicz, J., P.W. Dell’Olmo, M. Drozdowski, and M.G. Speranza, “Scheduling
Multiprocessor Tasks on Three Dedicated Processors: Corrigendum”, Information Pro-
cessing Letters 49, pp. 269-270, 1994.

13

[4] Blazewicz, J., et.al., “Scheduling Computer and Manufacturing Processes”, Springer-
Verlag, 1996.

[5] CERT/CC Statistics 1988-2002, CERT Coordination Center,
http://www.cert.org/stats/cert stats.html.

[6] M. Dror, Kubiak, W., and Dell’Olmo, P., “ ’Strong’ - ’Weak’ chain constrained schedul-
ing,” Ricerca Operativa, Vol. 27, 1998, pp. 35-49.

[7] E. Ellison, L. Linger, and M. Longstaff, Survivable Network Systems: An Emerging
Discipline, Carnegie Mellon, SEI, Technical Report CMU/SEI-97-TR-013, 1997.

[8] Keynote Speech of the Information Survivability Workshop, part of the International
Conference on Dependable Systems and Networks, DSN-2001, by Roy Maxion, CMU,
Goteborg, Sweden, 2001.

[9] D. Johansen, et al., Operating System Support for Mobile Agents, Proc. 5th IEEE
Workshop on Hot Topics in Operating Systems, 1995.

[10] D. Johansen, et al., NAP: Practical Fault-Tolerance for Itinerant Computations, Tech-
nical Report TR98-1716, Department of Computer Science, Cornell University, USA,
November, 1998.

[11] A.W. Krings, and M.A. McQueen, “Distributed Agreement in a Security Application,”
28th International Symposium on Fault-Tolerant Computing, Digest of FastAbstracts:
FTCS-28, IEEE Computer Society Press, Munich, Germany, June 23 - 25, 1998, pp. 37-
38.

[12] A.W. Krings, et al., “A Two-Layer Approach to Survivability of Networked Computing
Systems”, Proc. International Conference on Advances in Infrastructure for Electronic
Business, Science, and Education on the Internet, L’Aquila, Italy, Aug 06 - Aug 12, pp.
1-12, 2001.

[13] A. Krings, et al., Attack Recognition Based on Kernel Attack Signatures, Proc. Inter-
national Symposium on Information Systems and Engineering, Las Vegas, pp. 413-419,
2001.

[14] A. Krings, et al., Scheduling Issues in Survivability Applications using Hybrid Fault
Models, to appear in Parallel Processing Letters.

[15] A. W. Krings, “Agent Survivability: An Application for Strong and Weak Chain Con-
strained Scheduling”, to appear as paper STSSM01, 37th Hawaii International Confer-
ence on System Sciences, (HICSS-37), Minitrack on Security and Survivability in Mobile
Agent Based Distributed Systems, January, 2004.

[16] L. Lamport, M. Pease, R. Shostak, The Byzantine Generals Problem, ACM Transac-
tions on Programming Languages and Systems , Vol. 4, No. 3, July 1982, 382-401.

14

[17] Critical Foundations, The President’s Commission on Critical Infrastructure Protec-
tion, Government Printing Office, Washington, DC, Oct. 1997.

[18] K. Rothermel, and M. Strasser, A Fault-Tolerant Protocol for Providing the Exactly-
Once Property of Mobile Agents, Proc. IEEE Symposium on Reliable Distributed Sys-
tems (SRDS’98), West Lafayette, USA, October, 1998, pp. 100-108.

[19] F.B. Schneider, Towards Fault-tolerant and Secure Agentry, Proc. of the 11th Interna-
tional Workshop on Distributed Algorithms Saarbrucken, Germany. September, 1997.

[20] F.M. Assis Silva, A Transaction Model based on Mobile Agents, PhD Thesis, Technical
University Berlin, 1999.

[21] Jay J. Wylie, et al., Selecting the Right Data Distribution Scheme for a Survivable
Storage System, Technical Report, CMU-CS-01-120, Carnegie Mellon University, May
2001.

15

