The Test Vector Problem and Limitations to Evolving Digital Circuits

Kosuke Imamura

James A. Foster

Axel W. Krings

Computer Science Department
University of Idaho
Moscow, ID
83844-1010
{kosuke,foster,krings} @cs.uidaho.edu

Abstract

How do we know the correctness of an evolved circuit?
While Evolutionary Hardware is exhibiting its
effectiveness, we argue that it is very difficult to design a
large-scale digital circuit by conventional evolutionary
techniques alone, if we are using a subset of the entire
truth table for fitness evaluation. The test vector
generation problem for testing VLSI (Very Large Scale
Integration) suggests that there is no efficient way to
determine a training set which assures full correctness of
an evolved circuit.

1 Introduction

Evolutionary computation has shown its effectiveness,
particularly in the applications where the search space is
huge and multi-modal. Many evolutionary applications
have been implemented in software in the past. However, a
recent development in evolutionary computation is its
application to hardware design using programmable and
reconfigurable electronic devices such as FPGA (Field
Programmable Gate Array). While evolved hardware
successes have been reported [NASA99, ICES98, GP98,
GP97], it is important to investigate under what
circumstances Evolutionary Hardware (EHW) would be
successful, and unsuccessful. Our conclusion is that truth
table driven EHW is likely to succeed in two cases: 1) there
are large numbers of “don’t care” bits involved, and 2)
fitness evaluation is exhaustive. Circuit testing is an
integral part of VLSI chip production, and the test vector
generation problem, i.e., finding input test vectors that
expose hardware faults at the output, has been well studied
[AgrawalSeth87]. EHW performs circuit verification
through fitness evaluation using selected training samples.
The training samples are in fact test vectors for EHW. In
the following, we present a scaled down problem, yet it
describes our concerns. We emulate the evolution process

using an AND-OR logic array, since every feed-forward gate
network circuit can be transformed into sum-of-products.
Suppose that we are evolving an OR gate. Assume that we
chose input vectors (0,0), (0,1), and (1,0) as a fitness
evaluation set. The desired outputs of this test input set
should be 0, 1, and 1 respectively. Can we conclude that
this test set is sufficient to verify the correctness of this
circuit? We consider evolving the connection points on the
AND and OR planes of Figure 1.

A B l C ANDplane
input ::DC :
DO OR plane
.. Ty &
III O output

9

Figure 1: Emulated evolution of an OR gate on a logic
array.

Every feasible input can be recognized by the four lines
A, B, C, and D. Suppose that our evolved circuit produces
correct output for input vectors (0,0), (0,1), and (1,0) which
are emulated on A, B, and C. But what would be our
reasonable expectation on line D, which did not receive any
training? How do we know which test vectors must be
included in the fitness evaluation? This raises the
following fundamental question:

What fitness function and which input-output samples
can guarantee that the evolved circuit is indeed what we
want, if we are using only a subset of the truth table of the
target function?

2The test vector problem and fitness
evaluation

A fault is a physical defect, imperfection, or flaw that
occurs within some hardware or software component
[Johnson96]. In this paper only hardware faults are
considered. A test for faults is an input vector (a vector or
a sequence of vectors) that will produce different outputs in
the presence and absence of the fault [AgrawalSeth87]. It is
difficult to generate test vectors that uncover as many faults
as possible. To see why, consider random testing for the
line stuck type fault in Figure 2. It passes all 2 test
vectors but one. The only test vector that detects the stuck-
at-0 fault at X is (i1..in=1, ip2..119=0). This example
points out a serious problem with random VLSI fault
diagnosis. The test vector generation problem addresses
how the number of test vectors can be kept reasonable.

iy

ill

oy

i12
[]

i1g

Figure 2: Line stuck example modified from
[MazumderRudnick99]

A combinational or non-sequential circuit consists of
interconnected gates with no feedback loops, while a
sequential circuit includes feedback loops, which may be
clocked or non-clocked. There are algorithms to test
combinational circuits [Fujiwara85]. However, the problem
of generating a test for a given fault has been proven to be
NP-complete even for combinational circuits
[ChengAgrawal89]. Testing a sequential circuit is a far
more complex task than testing a combinational circuit and
no satisfactory methods is known. For complex chips,
scan design methods (by which flipflops can be initialized
through a shift-register) can reduce the complexity of
sequential circuit testing [AgrawalSeth87]. An approach to
the test vector generation problem based on genetic
algorithms 1is discussed in [RudnickHsiaoPatel99,
MazumderRudnick99].

A feed-forward EHW gate network is a non-sequential
circuit. There are known test vector generation algorithms
for non-sequential circuits, such as the D-algorithm,
PODEM, and the fan algorithm [Fujiwara85], but they
assume that the circuit structure is known. These
algorithms generate test patterns to detect assumed faults.
What would be the assumed faults if the circuit structure
were not known? A black box has only the input-output
specification without the circuit diagram. What would be

an efficient algorithm to generate test vectors for a black
box? We define the term, “efficient algorithm” as follows:
Let S be the input-output specification and let I denote a
set of input vectors. The corresponding set of output
vectors, O, can be obtained by O = S(I). The most
accurate testing is the exhaustive test. Let I, be the set that
contains all the feasible inputs. We are interested in the
number of incorrect outputs. Therefore, we define D as

0 : if inout 7: results in the specified

D{. 0) 1 : otherwise

Thus, the perfectly functioning circuit or chip is
expressed as f(I,) = XD(l;, O;) =0 for all ; € I,. A circuit
passes the test if f(I,) = 0. We may prefer I,C I, over I,C
L, if the reject rate is lower when the circuit is tested with I,
than with I,. The reject rate is the ratio of the number of
defective chips over the number of chips passing the test.
An efficient algorithm is one that generates I, such that
there exists correlation between f(I,) and f(1,), i.e., when
f(I,) = 0 it is likely that f(I,) = 0.

Is there an efficient algorithm to generate test vectors for a
black box? The answer is empirically “No”. We now show
that fitness evaluation is in fact one special case of the test
vector generation problem, namely black box testing. The
diagnostic resolution is the quantity of information on
locations and types of fault. If a test detects only the
presence of faults and no other information, then the
diagnostic resolution is zero [Fujiwara85]. Since any test
vector for a black box detects only the presence of faults,
the diagnostic resolution is zero. The fitness evaluation of
a typical EHW does not consider how the gates are
connected. Assume that the fitness is computed based on
deviation of the output, for instance, Hamming distance or
binary distance. The training samples provide no other
information than the existence of design flaws (faults).
Thus, this type of fitness evaluation is equivalent to a fault
detection test with zero diagnostic resolution. Hence,
fitness evaluation is black box testing.

Even if we did account for the structure of evolved
circuits in the fitness function, training would have to be
based on input similar to those derived from standard test
vector generation algorithms, e.g., PODEM or the fan
algorithm. To illustrate this observation, we evolve a
circuit that performs (A AND B). Assume that the evolved
circuit is (A AND (B OR ~B)). This case is equivalent to
a stuck-at-1 fault, (A AND 1), and fitness evaluation
becomes exactly the same as the test vector generation.

[YaoHiguchi96] points out the following difficulties of
EHW relating to fitness evaluation:

1. If all the combinations of input are used to evaluate
fitness, then we do not have problems. However, it is
not economically feasible.

2. A fitness function, which guarantees the correctness of
the circuit, is very difficult to create.

3. It is difficult to know for EHW when a correct circuit
has evolved.

It is our observation that these difficulties are a
manifestation of the fact that there is no efficient algorithm
to generate test vectors for a black box. Although the
observation is simple, the following can be said about an
evolved feed-forward gate network:

1.The exhaustive fitness evaluation ensures the
correctness of the circuit. However, if a truth table
based EHW requires the exhaustive fitness evaluation,
then why do we need an EHW? A straightforward
(simplified) sum-of-product can implement the truth
table.

2. If I, is used for the fitness evaluation,
then the high correlation must be observed between
f(I,) and f(I,). But, it seems that there is no known
mechanism that forces the high correlation between
them.

Numerous EHW applications have been tried successfully
in the past. In the next section, we will investigate why
EHW does and does not seem to work.

3 Current evolutionary approaches

[DamianiLiberaliTettamanzi98][DamianiTettamanziLibera
1i99] applied EHW to a 16-bit to 8-bit hashing function
generation. The fitness is measured in terms of even
distribution of the address space mapping. Hashing does
not require state information. As a result, the hashing
function generation circuit is implemented by a
combinational circuit. We should notice that this can be
implemented by specifying any 8 bits of input as “don't
cares”, which guarantees the perfect even distribution. This
example shows that EHW can discover “don’t care”
components as specified.

[MillerThomsonICES98] carried out EHW
experimentation evolving combinational circuits for 2-bit
and 3-bit multipliers. They conclude that it is very
difficult to evolve correct circuits using only a subset of the
entire truth table, even for a 2-bit multiplier. This is an
unfortunate conclusion because the truth table grows
exponentially as the number of input bits increases. Why
is this difficult? The circuit used for this experiment is a
feed-forward structure of gates. If only a subset of the truth
table is used during evolution, the circuit may output
correctly if the input is included in the subset. But nothing
can be said about the correctness of output resulting from
input that is not in the training set. We show later that
correct generalization is fundamentally limited by the
number of sample input-output patterns.

Evolutionary Algorithms perform well to obtain
approximate optima. Given that exact correctness of a
circuit needed by a multiplier is difficult, perhaps EHW can
approximate real-valued functions. This question was
raised by Miller and Thomson [MillerThomsonGP98] in
the context of a square root function, indicating the
limitation of a feed-forward structure. Their best result is
an approximation by a stair case function (Figure 3),

suggesting that the least significant bits (low-order bits)
became “don't cares”.

Figure 3: Approximation by a stair case
function

If low-order bits have more influence over the
approximation than the most significant bits, then fitness
will be low. The interval between 0.0 and 0.1 is not well
approximated. Miller and Thomson speculate this is
because of the rapid change in the gradient of square root
(x). Indeed, if the gradient is steep, we need to have fewer
low-order “don't care” bits in input numbers. On the other
hand, when the tangent line becomes flat, we can have more
low-order “don't cares” bits in the input. This implies that
it is a necessary (but it is not sufficient) condition that we
sample more often in (0.0-0.1). If we have too many
“don’t cares” in this intervals, more samples will not
increase the accuracy of the approximation. Therefore, the
number of “don’t cares” must vary from one interval to
another. It is also possible to design a more precise circuit
by conventional techniques. For example, one can divide
the domain into several intervals. The truth table for each
interval is implemented on a different logic array, using
some portion of the input bits (low-order bits in this case).
The remaining input bits are then used to select the
appropriate logic array. Essentially, this is address
decoding.

Now, what is the chance for the output to be correct if the
input is not in the training set? Assuming the output for
untrained input data is a uniformly distributed random
variable, we have certain success rates for producing 100%
correct circuits, using a subset of the truth table for the
training set. Some definitions are needed:

N: number of total feasible input vectors.

T: number of input/output vector samples in the training

set, (T = N).

O: number of correct output bits that a trained EHW

needs to produce.

If the evolved circuit is 100% correct using the training
set, then the probablllty of being 100% correct on all the
feasible inputs is (2 ™D The term (2°) is the probability
of having a correct output and there are (N-T) input-output
pairs outside of the training set. If we consider the OR gate
evolution example of Figure 1, the circuit will produce 1
Or 0 for input vector (1,1), which is not in the training set.

1£0,0), (0,1),(10),(LD} = 4, T = [{(0.0),
(0,1),(1,0)}| =3,and O =1. Thus, we have @)“ ' So,
the evolved OR gate has a 0.5 probability of being an OR
gate and a 0.5 probability of being an exclusive OR gate.

In the case of a 2-bit multiplier, there are 16 possible
multiplier-multiplicand combinations. The output is 4

bits. Assume the training set has 10 samples out of 16
combinations. After successful training, the evolved circuit
has a (2°H''” = 5.96*10® probability of being 100%
functional. Now, assume that we set aside P bits as “don’t
cares” so that O-P is the number of effective bits. The
probability of obtaining a satisfactory circuit after training
is now expressed by (2 O")YND " This implies that if the
target function has a large number of “don’t cares” and the
test set is large enough, then the evolved circuit is likely to
generalize.

With respect to the function approximation of a square
root presented in [MillerThomsonGP98], a larger number of
low-order output bits defined as don’t cares (higher
tolerance in approximation), i.e., a larger P value, results in
a smaller O-P, which leads to a higher success rate. If the
higher order bits can be mapped correctly, then the
difference of output produced by low order bits is relatively
small. However, this difference depends on the position of
two related points on the function, e.g. more high order
bits are needed for the function segment with steeper
tangent lines than for flat segments. When the tangent line
is near horizontal, we need only a few high order bits of
input data to approximate the function outputs. For
example, if we have two samples of input-output pairs,
(10100, 11000) and (10111, 11001), and if evolution
successfully maps 101xx to 1100x, we will have a perfect
approximation for any input between 10100 and 10111 so
long as both 11000 and 11001 are acceptable outputs.

To summarize the above feed-forward based EHW,
generalization is only possible with discovery of “don’t
cares”. A hash function evolution specifies “don’t care”
bits of inputs. In the case of 2-bit/3-bit multipliers, there
are no “don’t cares”, so the only viable method is the
exhaustive fitness evaluation. Discovery of “don’t cares”
not only in inputs but also outputs plays a key role for real-
valued approximation.

4 Conclusion

We observe that the difficulties with EHW are rooted in
the fact that there is no efficient algorithm to test a black
box. EHW will be successful if we have a large test set
and/or there are a large number of “don’t care” bits.
However, classical techniques may be better suited for these
cases.

Yet there are advantages of EHW. If the full truth table is
not available, EHW can be built as an adaptive system,
adding more training samples over an extended period
while online. If a target function is poorly understood so
that traditional design techniques do not apply, and if it
happens to have many “don’t cares”, and if it is difficult to
identify them, then EHW may be a viable approach. Such
applications may include feature extraction, data mining,
and detecting signals in noisy data.

Acknowledgments

One of us (Foster) was supported on NIH grant F33
GM20122-01. Krings is supported on INEEL. We would
like to thank Janet Holmberg for editing the manuscript.

References

[AgrawalSeth87] "Tutorial: Test generation for VLSI chips",
Vishwani D. Agrawal, Sharad C. Seth, Manuscript, 1987.

[ChengAgrawal89] "Unified Methods for VLSI Simulation
and Test Generation", Kwan-Ting Cheng, Vishwani D. Agrawal,
luwer Academic Publishers, 1989.

[DamianiLiberaliTettamanzi98] "Evolutionary Design of
Hashing Function Circuits Using an FPGA", Ernesto Damiani,
Valentina Liberali, Andrea G. B. Tettamanzi, Proceedings,
"Evolvable Systems: From Biology to Hardware", Second
International Conference, ICES 98, pp.36-46, Lausanne,
Switzerland, September 23-25, 1998 Lecture, Notes in
Computer Science #1478, Springer, 1998.

[DamianiTettamanziLiberali99] "On-line Evolution of FPGA-
based Circuits: A case Study on Hash Function", Ernesto
Damiani, Andrea G. B. Tettamanzi, Valentina Liberali,
Proceedings of the First NASA/DoD Workshop on Evolvable
Hardware, pp.26-33, Pasadina, Calfornia, July 19-21, 1999.

[Fujiwara85] "Logic Testing and Design for Testability",
Hideo Fujiwara, MIT Press, 1985.

[GP98] Genetic Programming 1998, Proceedings of the 3rd
Annual Conference, Morgan Kaufmann, 1998.

[GP97] Genetic Programming 1997, Proceedings of the 2nd
Annual Conference, Morgan Kaufmann, 1997.

[ICES98] Proceedings, "Evolvable Systems: From Biology
to Hardware", Second International Conference, ICES 98
Lausanne, Switzerland, September 23-25, 1998 Lecture Notes
in Computer Science #1478 Springer, 1998.

[Johnson96] "An Introduction to the Design and Analysis of
Fault-Tolerant Systems", Barry W. Johnson, in Dhiraj K.
Pradhan, "Fault-Tolerant Computer System Design", Chapter 1,
pl, Prentice Hall PTR, 1996.

[MazumderRudnick99] "Genetic Algorithms for VLSI
Design, Layout, & Test Automation", Pinaki Mazumder,
Elizabath M. Rudnick, p16, Fig.1.12, Prentice Hall PTR, 1999.

[MillerThomsonGP98] "Evolving Digital Electronic Circuit
for Real-Valued Function Generation using a Genetic
Algorithm", Julian Miller, Perter Tomson, Proceedings of the
3rd Annual Conference, pp863-868, Morgan Kaufmann, 1998.

[MillerThomsonICES98] "Aspects of Digital
Evolution:Geometry and Learning", Julian F. Miller, Perter
Thomson, Proceedings, in Moshe Sipper, Daniel Mange,
Andres Perez (Eds.) "Evolvable Systems: From Biology to
Hardware", Second International Conference, ICES 98, pp.25-
35, Lausanne, Switzerland, September 23-25, 1998 Lecture
Notes in Computer Science #1478 Springer, 1998.

[NASA99] Proceedings of the First NASA/DoD Workshop on
Evolvable Hardware, Pasadina, Calfornia, July 19-21, 1999.

[RudnickHsiaoPatel99] "Automatic Test Generation", E. M.
Rudnick, M. S. Hsiao, Patel, in Pinaki Mazumder, Elizabeth M.
Rudnick, "Genetic Algorithms for VLSI Design, Layout, & Test
Automation", Chapter 6, pp.158-226, Prentice Hall PTR, 1999.

[YaoHiguchi96] "Promises and Challenges of Evolvable
Hardware", Xin Yao, Tetsuya Higuchi, "Evolvable Systems:
From Biology to Hardware", First International Conference,
ICES 96, pp.55-78, Tsukuba, Japan, October 7-8, 1996 Lecture
Notes in Computer Science #1259, Springer-Verlag, 1997.

