
Considering Attack Complexity:

Layered Intrusion Tolerance∗

C. Taylor, A.W. Krings, W.S. Harrison, N. Hanebutte M. McQueen
Computer Science Dept. INEEL

University of Idaho, Moscow ID, USA Idaho Falls, ID, USA
{ctaylor,krings,harrison,hane}@cs.uidaho.edu amm@inel.gov

Abstract

This paper addresses issues of intru-

sion tolerance. Specifically, we discuss

motivations for building solutions on top

of standard operating systems. Within a

signature based approach to network sur-

vivability, we have encountered diverse

issues relating to attacks sophistication,

real-time responsiveness and implementa-

tion complexity, as well as their impact

on maintainability, scalability, efficiency,

and transparency. In an attempt to bal-

ance these issues, we propose a layered

approach to intrusion tolerance. This ap-

proach diverges from comprehensive so-

phisticated solutions by attempting to ap-

proach the problem at the lowest possible

level of complexity. Finally, an example

of such an architecture is presented.

1 Motivation

Historically, intrusions were relatively
easy to deal with in the pre-Internet
era. Computers were mainframes or
standalone PC’s with well-defined phys-

∗This work has been supported in part by

NIST grant 60NANB1D0116 and by the INEEL.

ical boundaries. Users were limited to
a known group with authenticated ac-
cess. Actual intruders needed to physi-
cally penetrate a security perimeter be-
fore gaining entry to a machine. Conse-
quently, the primary security concern of
the pre-Internet corporate world was in-
sider misuse [1].

The 1990’s brought connectivity which
changed the entire computer security en-
vironment by extending both the physical
computer boundaries and the user com-
munity, resulting in an unbounded net-
worked environment. Ubiquitous access
translates to huge increases in the risk of
external intrusion.

Another factor contributing to the in-
security of today’s systems are the many
faults inherent in commercial application
and system software. Commercial devel-
opers have high pressure to deliver prod-
ucts rapidly, driven by market speed and
feature demand [2, 11]. The outcome is
software produced with limited testing,
resulting in many faults.

The end user often has little choice
of products in a market dominated by
a few large corporations. This is espe-
cially true with respect to operating sys-



tems, where the choices are mainly limited
to Microsoft Windows products, Unix fla-
vors, or Apple’s Mac OS. In most cases,
security related faults of the operating
systems can only be rectified in a reac-
tive fashion with manufacturer supplied
patches. Intrusion tolerant features, how-
ever, are not an integral part of these op-
erating systems and need to be built on
top of the existing system or application.

With respect to the dependability of
applications, design and test efforts are of-
ten motivated by the probability of faults,
e.g. Probability Risk Assessments (PRA).
As such, testing efforts attempt to fol-
low optimization criteria suggested by the
PRA. However, it is virtually impossible
to predict malicious behavior. As a re-
sult it may be difficult or impossible to
predict which portion of systems is most
vulnerable. Given the complexity of stan-
dard operating systems, as well as market
pressures, it is unrealistic to assume total
security and robustness.

2 Solutions

Given the assumptions of the previ-
ous section, we suggest that additional in-
trusion tolerance be built on top of the
operating system. Examples of such ap-
proaches are software wrappers [6], instru-
mentation based response mechanisms [4,
10], or programming tools or languages
such as AT&Ts Cyclone [3].

Any implementations of intrusion tol-
erance enhancements should have several
distinct properties.

Automation: Any solution should re-
quire the least amount of human in-
tervention. Labor intensive solutions

may result in operator error or over-
load.

Efficiency: Whereas performance
penalties of up to 80% may be ac-
ceptable in specific ultra reliable ap-
plications [7, 13], it is unlikely to be
accepted in general applications.

Transparency: No changes in the op-
erating system specification may be
introduced.

Scalability: As the network or the
applications grow, the overhead in-
troduced by the solutions should not
grow to the point of inefficiency.

Maintainability: Maintainability is
directly linked to the life cycle of a
product, i.e. unmaintainable solu-
tions are not practical.

Responsiveness: Responsiveness is a
direct measure of how quickly the
system can react to an intrusion or
attack.

Responsiveness warrants more expla-
nation, as it is often referred to in terms
of “real-time”. Exactly what constitutes
real-time depends on the application. The
spectrum extends from kernel based intru-
sion tolerance, capable of reacting within
milliseconds, to audit trail based ap-
proaches, where recognition alone may re-
quire days.

2.1 Balancing the Issues

Given all the issues above, it seems un-
likely to develop a monolithic comprehen-
sive solution to intrusion detection and
tolerance. This thesis is supported by



the observation that, as the sophistica-
tion and complexity of attacks increase,
detection and thus response requires op-
eration at a higher level of complexity.
However, this is in direct conflict with
real-time feasibility. Information logged
in audit trails is at a very high level of
abstraction, which is not available at the
kernel level. For example, this level of in-
formation would be required to respond to
stealth attacks. On the other hand, kernel
level responses have the highest real-time
potential.

This suggests a layered, hierarchical
approach to intrusion tolerance based on
the complexity of the attacks. Whereas
more complex attacks are dealt with at
the higher layers, less complex attacks are
considered at the lower layers. This can
be optimized such that attacks are con-
sidered at the layers with the lowest ap-
propriate complexity.

3 Case Study

A layered approach to intrusion toler-
ance based on signature recognition has
been presented in [5, 8, 9, 10]. A core
assumption is the notion of a standard

user environment. Such an environment
is viewed as a collection of typical pow-
erful desktop computers, operated mostly
by single individuals. The usage of these
“dedicated” workstations is in general
very low.

This environment is subjected to a sig-
nature based attack detection strategy.
Attack recognition is based on signatures
that capture attack characteristics. Most
IDS’s, both research and commercial, em-
ploy some form of signatures [1]. Signa-
tures can be captured at different levels

of abstraction corresponding to the layers
discussed above.

Our approach considers kernel level sig-
natures. Kernel based signatures are at
the lowest layer of complexity. We cre-
ate signatures from functional profiling of
a running system. Attack signatures are
captured off-line in a very controlled en-
vironment. These signatures then serve
as a frame of reference for on-line attack
recognition which is conducted under nor-
mal system use.

Attack signatures serve dual purposes.
Off-line, attack signatures assist in iden-
tifying critical functions in the operating
system. On-line, the signatures serve as
real-time indicators of intrusions which
can then be used to trigger recovery mech-
anisms.

Recovery or response is the next step to
tolerating an intrusion. Recovery mech-
anisms can be implemented at different
layers. At the lowest layer, intrusion tol-
erance can be built into the operating
system kernel in the form of intrusion
handlers. A higher level response was
presented in [5] as an autonomous agent
based solution to denial of service attacks
(DOS).

4 Future Research

The approach discussed so far has been
based on analysis of the network portion
of the Linux operating system. Conse-
quently, the set of attacks analyzed were
limited to those that affected the network,
e.g. scan, probe, and DOS attacks. Ex-
tending the set of attacks to those that are
non-network oriented, e.g. buffer over-
flows, will require inclusion of other parts
of the operating system in the signature.



Adding operating system components will
increase the size of the attack signature
and reduce the efficiency of real-time iden-
tification. Thus, a method is needed for
signature reduction in order to isolate the
important parts of the operating system
for attack recognition. Signature reduc-
tion is currently being investigated.

Another way to increase the detection
is to perform N-version signature analysis.
Signatures from both the kernel and net-
work traffic analysis, as discussed in [12],
can be used as complements of each other.
It is expected that some attacks which
may not be identifiable in kernel signa-
tures will show up in network traffic sig-
natures and vice versa.

Up to this point the research focus has
been on the intrusion tolerance of the op-
erating system. The layered approach ap-
pears suitable for applications, for which
source code is available, as well.

Finally, preliminary analysis of the sig-
nature database has shown correlation be-
tween attacks, which suggests that limited
anomaly detection capabilities may arise.

References

[1] J. Allen, et. al., State of the Prac-

tice of Intrusion Detection Technolo-

gies, Carnegie Mellon, SEI, Technical
Report, CMU/SEI-99-TR-028, ESC-
99-028, January 2000.

[2] R. Chillarege, Top Five Challenges

Facing the Practice

of Fault-Tolerance, Lecture Notes in
Computer Science, No. 774, pp. 3-12,
Springer Verlag, 1994.

[3] Cyclone, A Safe Dialect of C,
http://www.research.att.com/pro-
jects/cyclone.

[4] S. Elbaum and J. Munson, Intrusion

Detection Through Dynamic Software

Measurement, Proc. Eighth USENIX
Security Symposium, 1999.

[5] W.S. Harrison, A.W. Krings, N.
Hanebutte, and M. McQueen, On the

Performance of a Survivability Ar-

chitecture for Networked Computing

Systems, Proc. 35th Hawaii Interna-
tional Conference on System Sciences,
(HICSS-35), January, 2002.

[6] C. Ko. T. Fraser, L. Badger, and
D. Kilpatrick, Detecting and Counter-

ing System Intrusions Using Software

Wrappers, Proc. 9th USENIX Security
Symposium, 2000.

[7] Kieckhafer, R.M., et al, The MAFT

Architecture for Distributed Fault-

Tolerance, IEEE Transactions on
Computers, V. C-37, No. 4, pp. 398-
405, April, 1988.

[8] A.W. Krings, W.S. Harrison,
J.Dickinson, and M. McQueen, Sur-

vivability of Computers and Networks

based on Attack Signatures, Proc. 3rd

Information Survivability Workshop,
(ISW-2000), Boston, Massachusetts,
October 24-26, 2000, pp. 91-94.

[9] A. Krings, W. Harrison, et. al., Attack

Recognition Based on Kernel Attack

Signatures, Proc. International Sym-
posium on Information Systems and
Engineering, Las Vegas, pp. 413-419,
2001.



[10] A. Krings, W. Harrison, et. al., A

Two-Layer Approach to Survivabil-

ity of Networked Computing Systems,
Proc. International Conference on Ad-
vances in Infrastructure for Electronic
Business, Science, and Education on
the Internet, L’Aquila, Italy, pp. 1-12,
2001.

[11] P. Pal, F. Webber, R.E. Schantz, J.
P. Loyall, Intrusion Tolerant Systems,
Proc. Information Survivability Work-
shop, ISW’2000, Boston, Mass, 2000.

[12] C. Taylor, W. Harrison, A. Krings,
N. Hanebutte, and M. McQueen, Low-

Level Network Attack Recognition: A

Signature-Based Approach, Proc. 13th

International Conference on Parallel
and Distributed Computing and Sys-
tems, Anaheim, California, pp. 570-
574, 2001.

[13] Wensley, J.H, et al, SIFT: Design

and Analysis of a Fault-Tolerant Com-

puter for Aircraft Control, Proceed-
ings of the IEEE, 66(11) pp. 1240-
1255, Oct 1978.


