
A Survivable Critical Infrastructure Control Application*∗

A. Serageldin, A. Krings A. Abdel-Rahim
Computer Science Department Civil Engineering

University of Idaho University of Idaho
Moscow, ID 83844-1010 Moscow, ID 83844-1022

ABSTRACT
A microcontroller-based system is described that utilizes
real-time distributed sensor data to adapt a critical infras-
tructure control application to reflect current environment
conditions. The system monitors the behavior of its software
execution based on real-time analysis of certified frequency
spectra and call-graph transition validations in order to de-
tect and react to uncertified behavior and state transitions.
The real-time data used to adapt the application is geo-
graphically distributed and redundant. The overall system
is outlined with focus on the contingency management of
the system. Finally, a basic reliability analysis is given as a
tool to evaluate the impact of fail rate assumptions.
Keywords: Design for Survivability, Dynamic Monitor-
ing, Real-time Profiling, Certification, Contingency Manage-
ment, Critical Infrastructure

1. INTRODUCTION AND BACKGROUND
Most of today’s critical infrastructures are controlled by

computers and embedded systems that utilize networks dur-
ing operation. Examples are embedded systems that con-
trol the electrical power grid, traffic controllers as part of
intelligent transportation systems, or sensor systems used
in weather prediction and reporting. Unlike legacy systems
that operate independently as an isolated stand-alone sys-
tem, today’s control systems are guided by real-time data
that helps adapt the application, e.g., update schedules to
reflect expected power usage, change phases in traffic signals,
or weather-induced changes to the operation of the system.
This need for flexibility of control exposes the system to a
wide range of security and Cyber threats in addition to those
issues addressed by fault-tolerant design strategies.

Given the criticality of the systems, fault-tolerance and
survivability considerations have to be designed into the sys-
tem, rather than in an add-on fashion. Fault-tolerant design
considerations include basic concepts like redundancy man-

∗This research has been supported by grant DTFH61-10-P-
00123 from the Federal Highway Administration - US DoT.

agement, a contingency management system, and a good
understanding of the issues that can affect the reliability,
e.g., using reliability analysis. Survivability considerations
are more difficult to incorporate since the faults that are to
be considered include all security issues, including patho-
logical cases, as they may result from insider attacks. The
general expectation is that the system can“survive”different
faults and continue to provide essential services [4].

1.1 System Overview
The system that is the basis for this research is repre-

sentative of any control application found in a distributed
critical infrastructure, e.g., electrical power grid; however, in
this case it turns out to be part of the intelligent transporta-
tion system. The application is an embedded system that
takes real-time data from a national sensor network via the
Clarus [1] database server over the Internet and incorporates
this data in algorithms that control the behavior of traffic
signal operation [6]. The basic system is depicted in Fig-
ure 1, which shows the application controller (in this case
the traffic control system), the embedded system that re-
ceives environment data from any specified database server
(e.g., Clarus server and local mirror site) over the Inter-
net that is accessible via a local switch through a setup of
routers and firewalls. The embedded system receives envi-
ronment data at regular intervals and computes changes for
the application controller, which it accesses though the local
switch. The application controller can also function in an au-
tonomous fashion, i.e., the embedded system only supplies
additional functionality, but it is not necessary for opera-
tion. The functionality that the embedded system adds to
the control application is the flexibility to change the traffic
signal timing in real-time to account for adverse road con-
ditions, e.g., due to rain, ice, or snow. For example, if the
road surface is slippery then the yellow time of the traffic
signals is extended to increase safety.

This brings up an important issue related to safety: the
actual application controller is NTCIP compliant, i.e., the
controller is governed by National Transportation Commu-
nications for ITS Protocol NTCIP 1202. This means that
the application controller is designed to work within a spec-
ified safe range of parameters. Only the system parts in the
shaded areas are part of our consideration. All non-shaded
components are already in place in most modern traffic sig-
nal intersections. Furthermore, the addition of the embed-
ded control system does not require any modification of the
existing (non-shaded) system components.

1.2 Threat Space and Fault Assumptions
As systems communicate over the Internet the exact threat

Embedded System

Switch
Router
Firewall

Application Controller

Operation Monitoring
Contingency Management Inter

net

Clarus Server

Local Clarus
Server

Figure 1: System Overview

space is unknown; however, it is fair to say that one inherits
all security threats associated with Internet communication.

Our main concern is that the system operates within spec-
ifications and that any deviation from nominal behavior does
not cause incorrect system states. Thus we need to consider
any manipulation associated with access to the server, e.g.,
denial of service (DoS) attacks, code injection, buffer over-
flow, masquerading etc. The result of such fault scenario
could be that the system (due to a software fault or attack)
computes application parameters that reduce the effective-
ness of the control application.

2. SYSTEM ARCHITECTURE
The system architecture combines traditional principles of

fault-tolerance with the concept of Design for Survivability
[4]. Whereas fault-tolerance addresses standard issues re-
lated to system reliability and safety, design for survivabil-
ity is centered around a contingency management system
that utilizes operation monitoring to detect and react to off-
nominal executions to maintain essential functionalities. As
mentioned above, the control application is augmented with
the shaded subsystems shown in Figure 1.

At the core of the system is an embedded controller based
on the RabbitCore RCM4300 Rabbit Microprocessor, which
we will refer to as “Rabbit” in the following. The Rabbit
uses Dynamic C version 10.70, which operates in a task-
ing model that strongly resembles non-preemptive schedul-
ing. This version of Dynamic C supports Security Modules
(AES and SSL), a FAT File System, Library Encryption Ex-
ecutable, the µC/OS-II Real-time Kernel supporting Point-
to-Point Protocol, RabbitWeb and Simple Network Manage-
ment Protocol (SNMP).

Dynamic C implements the non-preemptive tasking model
using so-called costatements, which define the basic execu-
tion entities, similar to a non-preemptive process. The soft-
ware system consists of several costatements (also referred to
as costates), which execute in an endless loop, passing con-
trol from one costate to the next. The context switch from
one costate to another is initiated by the currently execut-
ing costate itself by “yielding” calls. Thus this constitutes a
dispatching environment that is based on “good behavior”.
Failing to yield would result in the current costate to monop-
olize the system. This can be safeguarded against by timer
mechanisms, e.g., watchdog timers, which are also the rea-
son why the execution model is not strictly non-preemptive
in the scheduling theoretical point of view (which would not
allow such preemption).

The Rabbit executes several costates, including the Ap-
plication Control, which receives data, computes parameters
and initiates changes to the application controller, and the
Operation Monitoring and Contingency Management Sys-
tem, which will be described below.

2.1 Operation Monitoring
The software running on the embedded system shown in

Figure 1 monitors itself to detect executions that are con-
sidered off-nominal (described below) using several mech-
anisms that can be mainly partitioned into detection and
recovery. The main detection mechanisms are (1) frequency
spectra analysis with detection of off-nominal patterns, (2)
call-graph validation, which will be addressed in Section 2.3,
in addition to (3) usual program exception handling. Re-
covery is initiated by the contingency management system,
which takes advantage of data redundancy and extensive
exception handling.

2.2 Off-nominal Executions
The software system is instrumented, allowing to gener-

ate frequency spectra, and thus profiles, of the execution
system. It is based on the work in [3] and described in
[5, 6]. If the observed profile deviates a certain distances
from the expected profile then the profile is considered off-
nominal. Only executions with nominal profiles are allowed
to execute on the system. Any off-nominal execution in-
dicates that such execution profile has not been observed
before. This could be due to some unexpected changes of
the environment, a software fault, an attack etc., in short:
a so-far unobserved behavior. This approach was taken us-
ing simple threshold functions in [7] which were later refined
on a costate-basis in [5]. Here we use the dual-bound and
costate-based threshold functions described in [6], i.e.,

εmax[α] = (εmax
1 [α], ..., εmax

|M| [α]) (1)

εmin[α] = (εmin
1 [α], ..., εmin

|M| [α]) (2)

where εmax
i [α] and εmin

i [α] are the upper and lower threshold
values of software module mi in the set of modules M for
costate α. Every observed profile over k epochs, denoted
by p̂k[α], that is in the region between the two vectors is
assumed nominal. An epoch is defined between transitions
from one operation to another. Thus we certify a profile
p̂k[α] to be a nominal profile if

εmin[α] ≤ p̂k[α] ≤ εmax[α] (3)

Any off-nominal execution triggers an action from the con-
tingency management system.

2.3 System States
As the system executes, the main operations, implemented

by Dynamic C modules, form a state machine represented by
the state machine shown in Figure 2. A total of 25 system
states can be observed, i.e., S0, ...S24. For example, state
S0 indicates that the software is in function main(). There
are two types of transitions between two states Si and Sj ,
represented by arcs between states. The solidly drawn arcs
represent calls, whereas dotted arcs represent returns, e.g.,
a call will cause the transition from S1 to S2, whereas a
return will cause the transition from S2 back to S1. The
state machine is derived directly from the software call graph
during compile time of the program.

The system’s state machine is directly related to the pro-
files that are derived during execution of the software. Specif-
ically, the observed profile reflects the probability distribu-
tion of the system states. The system state machine is col-
lectively exhaustive and states are mutually exclusive. Due
to the fact that the system is a single processor, there can-
not be true parallelism that could violate the assumptions

that at any given time the system is in only one state. Fur-
thermore, during compile time a Dynamic C mapping file
supplies the system call graph that is the basis for the state
machine. The observed profiles are the basis for determining
the threshold functions given in Equations (1), (2) and (3).
In fact, the threshold functions can be determined using the
approach discussed in [9], where execution sequences were
used to determine the Markov chain and the state proba-
bilities. In our case the Markov chain is derived not from
execution sequences, but during compile time. The state
space of this Markov chain should not be confused with the
state space reflecting any possible execution sequence, which
could be potentially very large. Our state space is at most
the size of the vertex set of the call graph. Any violation
of execution transitions, thus causing an illegal transition, is
captured.

0
1

2

3

4

5

6

7

10

8

9

11

12

13

17161514

20

21

22

23

24

18

19

Figure 2: System State Machine

Any violation of transitions during system execution is
detected. Specifically, detected are (1) the transition to an
incorrect state as the result of a call, e.g., due to a code
injection attack and (2) the return to an incorrect state as
the result of a return, e.g., as the result of a buffer overflow
attack. Any violation of state transitions is detected and
activates the contingency management system.

3. CONTINGENCY MANAGEMENT
The Contingency Management System (CMS) is that part

of the system managing decisions that need to be made as
the result of faults or any external or internal events that
should initiate some reaction, e.g., recovery to a certain safe
state.

3.1 Application Control
The sub-system for the application control, i.e., the costate-

ment that implements the real-time traffic control applica-
tion, is shown in the simplified flow chart in Figure 3.

Since the real-time condition data is available from the
Clarus server for specific subscriptions (indicated by sub-
scription numbers) during fixed time intervals, e.g., every
15 minutes, the Rabbit determines the time and composes
the URL that contains the comma separated values (a csv
file). It then uses a recovery block strategy [8] to get the
data from a set of data base servers. In our current im-
plementation this is a Local Clarus Server (LCS) and the
actual Clarus server, thus implementing a dual redundant
system. First the LCS is queried and if the data cannot be

retrieved within a certain amount of retries, then the Clarus
server is tried. If it fails to provide the data after a certain
amount of retries, the CMS initials fail-safe mode, which is
a forward recovery mechanism bringing the system into a
desired default state. Once entering fail-safe mode the sys-
tem attempts to establish normal operations again. If data
acquisition was successful via one of the alternatives, then
the traffic controller adjustments that reflect the environ-
ment parameters are computed and the signal controller is
adjusted correspondingly.

The data supplied by the Clarus server is assumed to be
correct. This assumption is not unrealistic, since Clarus is
designed using quality checking algorithms [2]. Thus the in-
put data to the application control is assumed correct. How-
ever, the computed signal adjustment values, as computed
by the Rabbit, are not assumed to be correct, as a fault
may have occurred during computation. Therefore a Va-
lidity Check is implemented that tests the computed signal
changes for range violations. If such violation is detected the
CMS enters fail-safe mode. There are many other checking
mechanisms implied in the flowchart of Figure 3, including
reaction to network connection problems, data corruption,
loss of time synchronization, e.g., after reboot as the result
of power failure, inability of finding valid Clarus data sub-
scriptions, changing the LCS Internet address, etc. Some
of these issues require the CMS to enter a receive mode, in
which configuration information, e.g., the IP of a new LCS
or Clarus subscription number, is communicated to the sys-
tem.

3.2 Monitoring Executions
The monitoring costatement (which is not depicted in the

flow chart of Figure 3) implements system software moni-
toring and analysis of the observed profiles to determine if
the execution is nominal, i.e., it conforms to Equation (3).
If an off-nominal execution is detected, i.e., Equation (3)
is violated, the system enters fail-safe mode. Thus, no off-
nominal execution is allowed to make adjustments to the
traffic controller. The reason for having an off-nominal ex-
ecution may not have to be malicious in nature nor does it
imply a fault. It may simply reflect an operation scenario
that was not observed previously, e.g., at the time of system
tuning before deployment. The CMS can send messages to
that extend, thus allowing for an analysis of the scenario,
which in turn may cause an updating of the threshold func-
tions in Equations (1) and (2).

Any violation of the system state machine of Section 2.3
indicates a serious problem, as it implies that the system is
calling modules that it should not be calling or it is returning
to modules other than intended, e.g., as the result of a buffer
overflow. The CMS initiates fail-safe mode and issues a
notification about the nature of the violation.

As the result of monitoring the execution of off-nominal
behavior and state transition violations, the system oper-
ates in a rather inflexible fashion. Whereas this could be
undesirable in a generic computing application, most em-
bedded systems have limited functionality and our system
in particular is very deterministic in its execution due to the
non-preemptive scheduling model.

3.3 Reliability Considerations
The reliability of the traffic control system is not affected

by the embedded system since none of the components of
the original signal control systems are modified. Recall that
the embedded system implements only added value, but not

Application
Costate

Wait
Interval

Get Data

Select Next Data Source
and Start connection

Tried all data
Sources

Reach Max
No. of Trials?

Connect to
Selected

Data Source
Connection

Established ?

Try First Data
Source again

Send Alerts & begin
Receive Mode

Problem
Solved ?

Enter Fail
Safe Mode

Data is
Correct ?

Adjust Signal
Controller to Default

Analyze Filtered
Data

Calc. Yellow
change

Adjust Signal Controller

Validity
Check ? Y

N

N

N

N

N

N
Y

Y

Y
Y

Y

Figure 3: Flowchart of Application Control Costatement

basic functionality. In fact, as mentioned before, the traffic
controller is NTCIP compliant. Thus action movie scenarios
like an “all-green intersections” or “split second yellow tim-
ing” causing accidents are not possible (with or without the
embedded system), e.g., attempts to assign parameters that
violated NTCP compliance during testing of the embedded
system were simply ignored by the traffic controller. The
only physical connection with the existing infrastructure is
via the connection to the switch.

The embedded system and its other components, as shown
in Figure 1, can be modeled by the simple Fault Tree shown
in Figure 4. The failure scenario is that the embedded sys-
tem fails to provide added functionality. It should be noted
that if the Clarus server (or the network to it) fails, then
the LCS server is of no use anymore either, since it is only a
mirror site, whereas if the LCS fails, the Clarus server can
provide services.

OR

AND

Rabbit

Switch

OR

OR

Clarus

LCS

Figure 4: Simplified Fault Tree of System

4. CONCLUSIONS
The principles of fault-tolerant design and design for sur-

vivability were applied to a control application in a critical
infrastructure. An embedded system was described that pro-
vided added value by incorporating real-time environment
data to increase safety. The system implements a contin-
gency management system that responds to the detection of
off-nominal executions based on dual-bound observed pro-
files as well as detection of state transition violations. Thus
the system observes any changes in its nominal execution,

e.g., as the result of faults or malicious act, and any devi-
ation from valid execution traces, e.g., as they may result
from code injection or buffer overflow.

5. REFERENCES
[1] The Clarus System: http://www.clarus-system.com/
[2] RITA Intelligent Transportation Systems Joint

Program Office, Clarus Quality Checking Algorithm
Documentation Report, Final Report, December 21,
2010, FHWA-JPO-11-075.

[3] A. Krings, et al., A Two-Layer Approach to
Survivability of Networked Computing Systems, Intl.
Conf. on Advances in Infrastructure for Electronic
Business, Science, and Education on the
Internet,L’Aquila, Italy, Aug 06 - Aug 12, 2001.

[4] A. Krings, Survivable Systems, Chapter 5, Information
Assurance: Dependability and Security in Networked
Systems, Morgan Kaufmann Publishers, ISBN:
978-0-12-373566-9, 2008.

[5] A. Krings, V. Balogun, S. Alshomrani, A.
Abdel-Rahim, and M. Dixon, A Measurement-based
Design and Evaluation Methodology for Embedded
Control Systems, Proc. 7th Annual Cyber Security and
Information Intelligence Research Workshop,
CSIIRW’11, Oct. 12 - 14, 2011, ORNL.

[6] A. Krings, A. Serageldin and A. Abdel-Rahim, A
Prototype for a Real-Time Weather Responsive System,
Proc. Intelligent Transportation Systems Conference,
ITSC2012, Anchorage, Alaska, 16-19 September, 2012.

[7] John Munson, Axel Krings and Robert Hiromoto, The
Architecture of a Reliable Software Monitoring System
for Embedded Software Systems, ANS 2006 Winter
Meeting and Nuclear Technology Expo, 10 pages, 2006.

[8] Brian Randell, and Jie Xu, The evolution of the
recovery block concept, In Software Fault Tolerance,
John Wiley & Sons, pp.1-22, 1994.

[9] Whittaker James A., and J.H. Poore, Markov Analysis
of Software Specifications, ACM Transactions on
Software Engineering and Methodology, Vol.2, No.1,
January 1993, pp. 93-106.

