Neighborhood Monitoring in Ad Hoc Networks

Axel Krings
University of Idaho
Moscow, ID 83844-1010
krings@uidaho.edu

ABSTRACT

Much research in ad hoc networks utilizes monitoring mech-
anisms to detect maliciously acting nodes. The faults that a
system is exposed to range from simple omissions to packet
manipulations and misrouting. Several monitoring tech-
niques have been presented that address malicious behav-
ior in specific environments, but each has their restrictive
assumptions about detection and mitigation in hostile envi-
ronments. We generalize the notion of malicious behavior of
related research and outline a k-hop monitoring approach
that allows us to drop many assumptions limiting previ-
ous work. Specifically, we include collaboration of malicious
nodes, the presence of malicious nodes during neighborhood
exploration, and misrouting. However, the approach exposes
also the associated overhead in providing detection and cor-
rection thresholds.

1. INTRODUCTION

Wireless technology has found its way into many applica-
tions such as LAN, wireless control, SCADA, fast deployable
emergency communications systems, UAV communication,
not to mention a wide range of consumer products. Many
protocols are used, e.g., bluetooth, zigbee or 802.11.

Wireless technology is a mixed blessing. On one side it
is very convenient and flexible, as its communication media
is the ether. On the other side there are many concerns
related to reliability, security and survivability. Due to the
wireless broadcast, packets can be received by any node that
can receive the signal. Furthermore, nodes may move out
of range, get captured, unwanted nodes may try to join or
signals may be jammed. The attack space is large and diffi-
cult or impossible to enumerate. However, one can say that,
in general, all attacks in the end amount to manipulation of
packets, such as delaying, dropping, modifying, fabricating,
misrouting, or sniffing of packets.

The goal is of course to resolve issues related to the above
manipulations and the first step is to understand the impact
of faults, i.e., a common model is needed that allows for the
identification of what faults can occur and be tolerated. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee. CSIIRW’10, April 21-23, 2010, Oak Ridge,
Tennessee, USA.

Copyright 2010 ACM 978-1-4503-0017-9 ...$5.00.

Stephan Muehlbacher-Karrer
University of ldaho
Moscow, ID 83844-1010
stephanm@cs.uidaho.edu

key issues are the fault model and fault detection/masking
mechanisms.

1.1 Background

A wireless network can be represented as a digraph G =
(V, E), where V is a finite set of all wireless communication
nodes n; and FE is the set of edges e;; representing commu-
nication capability between nodes n; and n;. The left part
of Figure 1 [6] depicts a wireless network consisting of four
nodes, and for each node the range of the broadcast is in-
dicated by the associated oval. The network graph for the
four nodes is shown on the right side. Node n; can receive
the signal from ny and vice versa. Thus ej2 and e2; are in
E. Node nsz can only receive from n; but its signal is not
strong enough to reach it, indicated by e13. Node n4 can nei-
ther receive nor be received by any other node. Note that
this graph presentation captures the nature of any antenna
behavior, e.g., omni directional or directed.

o .
%@‘% o

Figure 1: Network graph

Since our primary concern is packet manipulation within
the network, we are interested in any mechanism that al-
lows us to identify such manipulations in the hope to detect
and mitigate. The key mechanism for detecting faults is
redundancy, which can be information, time or spacial re-
dundancy. For example, cyclic redundancy checks can iden-
tify bit errors. Timeout mechanisms can initiate resending
of packets and “redundant packets” can be used to detect
manipulation. It is the latter that is of special interest, as
packet redundancy in wireless networks has no extra cost
and it can be effectively exploited by monitoring. Specifi-
cally, any node in range can see a packet. When a node n,,
monitors another n; it suffices for n., to buffer a packet sent
to n; to determine if n; forwards it modified, or forwards
it at all. Such simple cross-monitoring in wireless networks
has been addressed in the context of watchdogs [7], a mech-
anism where one node is a watchdog for certain behavior
of another node, e.g., to see if a node actually forwarded a
packet it had received.

The first issue in monitoring is to determine the scope of
monitoring. We will introduce k-path monitoring, in which
a monitor monitors the interaction of nodes over k hops.
The second issue is the subgraphs that neighborhoods span,
e.g., cliques versus partially connected subgraphs.

1.2 Related work

The first question about faults in wireless network is: which
faults are to be addressed? This brings up fault models.
One description of fault model is that of [1] where benign
faults and transmissive & omissive versions of symmetric and
asymmetric faults are discussed. Whereas a benign fault is
globally verifiable, a symmetric fault is a value fault, and an
asymmetric fault is a Byzantine fault. The notions of trans-
missive and omissive for the last two fault types addressed
whether the fault behavior was due to an actual manipula-
tion or an omission.

The simplest case of monitoring is the watchdog mech-
anism described in [7], where “misbehaving” nodes causing
omission faults were detected by so-called “watchdogs”. The
concept was extended in [8] where collaborating groups of
malicious nodes were considered. In [2] the effectiveness of
various watchdog schemes was investigated. Their results
suggest that watchdog schemes are indeed able to detect a
number of attacks such as omissions and certain symmetric
faults but expose limitations, e.g., fabrication of false route
error messages. Wormhole attacks were addressed in [9],
where statistical analysis was used for detection of nodes
which launch them. Detection of malicious behavior due to
observation of monitoring nodes operating in promiscuous
mode was shown in [3]. Watchdogs are not limited only to
forward monitoring. For example in [4] an extended watch-
dog mechanism was presented that implemented backward
monitoring based on CTS and RTS messages at the MAC
layer.

The concept of monitoring can be extended to neighbor-
hood monitoring, in which groups of monitors form a neigh-
borhood. In [5] and [6] the impact of neighborhood monitor-
ing was exploited. In [5] authenticated neighborhoods were
considered. However, the work assumes an attack-free envi-
ronment during neighbor discovery, i.e., no malicious nodes
exist before the completion of the neighbor discovery. Fur-
thermore, no misrouting attacks are considered. It does not
address network dynamics nor collaboration between mali-
cious nodes, i.e., the probability of framing due to collabo-
rating nodes is assumed small and based on statistical ar-
guments. We diverge from this assumption and consider
pathological behavior as likely. The impact of neighbor-
hood watching was considered in [6] to analyze the impact
of topology on reliability. However, this was based only on
the general structure of the neighborhood, i.e., the width of
adjacent neighborhoods represented as a join-graph, in order
to determine the reliability and survivability of a link.

1.3 Contributions

This work has several contributions: (1) It extends the no-
tion of neighborhood monitoring of [5, 6] to general k-path
monitoring (for k¥ = 1,2), which makes no restrictions on
the capability of malicious nodes. (2) It introduces a moni-
toring approach able to capture the assumptions of previous
work in one model, thereby allowing comparison between ap-
proaches. (3) It addresses fault detection and recovery for
specific identified fault types. (4) It outlines the protocol
that achieves the above.

2. MULTI-HOP NEIGHBORHOOD WATCH

In this section we define a graph-based neighborhood watch
mechanism which extends the neighborhood described in [5]
as will be identified. A neighborhood is a collection of nodes
involved in monitoring their neighbors. In order to avoid
malicious nodes from uncontrolled involvement in neighbor-
hoods, one could assume that neighborhoods are authenti-

cated, e.g., by using the neighborhood authentication meth-
ods used in [5]. However, contrary to [5] we assume that
malicious nodes may be admitted into a neighborhood. Au-
thentication would simply disallow “just any node to attack
out of the dark”.

2.1 Attack Model

An attack may originate within a node that is part of
the authenticated neighborhood or not. We consider the
following attacks:

1. Attack from outside of the authenticated neighbor-
hood, i.e., non-authenticated nodes. Any involvement
from such nodes will be discarded and carries no weight.

2. Attack from a good node gone bad within an authenti-
cated neighborhood. Here the node was authenticated
as part of a neighborhood discovery.

3. Attack from a malicious node that joint the neighbor-
hood.

Malicious nodes may exhibit two kinds of behavior, i.e.,
passive and active. A passive mode does not cause packets to
be manipulated, but it accuses other nodes, thereby trying
to frame them. An active node will cause the following prob-
lems: omission (o), delay (d), routing (r), fabrication (f),
and content manipulation (m). Denial of service or jamming
can be addressed by naturally expanding the concept here to
disjoint paths. Thus the set of fault types F = {o,d, r, f,m}.

2.2 Evolving Neighborhoods

Figure 2 shows the evolution of primitives used in neigh-
bor monitoring schemes in four graphs. A simple watchdog?,
e.g., [7], is shown in Figure 2a), where node n, can monitor
ns to detect F = {o,d,m}. This allows for backward re-
covery but not forward recovery, i.e., backward notification
allows n, to resend or send the message via another path.
Also, to satisfy F = {d,m} the packet under observation
needs to be buffered at n, sufficiently long. For delayed
packets this of course puts restrictions on the buffer size.
The backward monitoring of [4] uses the primitive in Fig-

O—Oa) O
b) “
O—E—0® (—=—D
Figure 2: Evolution of Monitoring Schemes

ure 2b), where n; can detect {o,d}, of n,’s packet at ng,
and n, can detect {o,d, m}. The neighborhood monitoring
scheme of [5] uses primitive Figure 2¢). Under their “fault-
free neighborhood discovery” assumption monitors n, and
nm allow detection of {o,d, f,m}. Node n,, is drawn thick
to indicate that it can be expanded to represent multiple
monitors. The monitoring primitive used in this research is
k-hop monitoring. For k = 1 and k = 2 the primitives are
depicted in Figure 2¢) and d) respectively. The fault sets of
this approach will be discussed below.

2.3 Neighborhood Discovery

Each node n; has a neighborhood set N; which contains
its 1-hop and 2-hop neighbors. Let H(k, N;) be a function
that returns the subset of nodes n; of N; with hop count k.

!The original watchdog in [7] focussed on omissions.

(%] [n] e
1 s |1 ST
1 t| 1 T

Table 1: Neighborhood lists for n.,,n, and n.,

Thus H(1, N;) and H(2, N;) represent the sets of 1-hop and
2-hop neighbors of n; respectively.

Neighborhood discovery is extended from [5]. Note that
we do not explicitly describe neighbor authentication, but if
desired it can be adapted via the mechanism shown in [5]. In
general, when a node v wants to join the network it sends a
1-hop HELLO message. Each node v; receiving this message
replies with its 1-hop neighbor list N} = H(1,N;). Now
vy, constructs its neighborhood set Nj from those replies it
received from n; during some pre-defined timeout tgiscovery-
Thus it adds each n; as a 1-hop neighbor, and each n; € N}
as a 2-hop neighbor, unless it is already in N; as a 1-hop
neighbor. This latter case indicates to ny that n; and n; are
neighbors themselves. When Ny is assembled, ny, broadcasts
it to its neighbors n;, which in turn have to inform their
neighbors about the new 2-hop neighbor ny.

The 2-hop neighbors are useful when we use the assump-
tions of [5], i.e., authentication and the assumption that
no malicious nodes are present during discovery. However,
since we do not limit ourselves to the assumptions of [5],
a simple 1-hop discovery actually suffices, i.e., each node v;
that receives a HELLO message from v; sends a simple reply
message. We present the 2-hop discovery only to maintain
compatibility with [5] if we should opt to use their assump-
tions with authentication, and in case we would like nodes
to be able to establish neighborhood awareness.

Table 1 shows several table entries for the 1-hop neigh-
borhood discovery in Figure 3. Only direct neighbors, those
with distance 1 are in the tables.

Figure 3: Neighborhood discovery

2.4 Multi-hop Monitoring

Monitor nodes monitor other nodes in a 1-hop or 2-hop
fashion. How does a node know what to monitor and what
to make of what it sees? A monitor “sees” the world though
what it hears, i.e., from messages it hears from its direct
(1-hop) neighbors. It may be topology-aware, in which case
it can relate what it hears, or topology-unaware. A monitor
can operate in a passive or active mode. A passive monitor
just observes, but does not take action. An active monitor
reacts by sending notification messages. We will now present
several scenarios using Figure 4. For simplicity sake only
node indices are used.

Ezxample 1 — omission at node r1l: Assume that rl fails
to forward a packet from ¢ to sl. The monitors for r1’s
behavior are ¢, 72 and 3. Node ¢ detects the omission using

RIS
0%0%0

oRo

Figure 4: 2-hop monitoring

the monitoring primitive of Figure 2a. It would have seen
the message forwarded out of r1. Similarly, »2 and r3 notice
the omission using the 1-hop primitive of Figure 2c. Now
one monitor will be the first to become an active monitor
by informing its neighbors of r’s omission via a broadcast
message. If this was ¢ then msgq = (7 did not forward packet
with ID) would be broadcast. Note that g does not need
confirmation about what it saw, it witnessed the omission
first hand, and could initiate a resend. Now 71 or r2 will
become active first and forward the packet to s. The other
will hear this and stay passive. Faults: {0} was detected
and recovered.

Ezxample 2 — manipulation at node r1: This case is similar
to Example 1. Nodes ¢, 72 and r3 all detect the manipulation
(value fault), and r1 and r2 both send the correct packet to
s1. Receiving multiple packets, sl uses a majority vote and
keeps the correct one. Since g gets the same messages it is
aware of the two corrections of the other monitors. Note
that the clique r1,7r2,r3 outvoted the value fault. Faults:
{m} was detected and recovered.

Ezample 8 — manipulation at node rl, collaborator at s2:
Just as in Example 2 monitors r2 and r3 detect the ma-
nipulation and initiate mitigation by forwarding the correct
packet to s1. However, now s2 may collude with 1 sending a
false mitigation message with r1’s manipulated packet. Now
s1 gets two correct and two identically manipulated versions
and voting does not resolve the problem. Faults: {m} was
detected at g but no forward recovery is possible.

The problem exposed in Example 3 is that two malicious
nodes collaborated, r1 was active faulty and s2 was passive.
Whereas the act of an active faulty node can be observed
by monitors, passive framing leaves no detectable trace. Re-
member that in topology-unaware monitoring a node does
not have a complete picture of its neighbor’s monitoring ca-
pabilities, e.g., s1 does not know that s2 could not be a
monitor for r1’s manipulation. This complicates matters.
All a node can do is to use a voting function, e.g., majority,
to mitigate against conflicting information. However, the
threshold for voting in Example 3 was too high.

2.5 Neighborhood Thresholds

The examples of the previous subsection showed the im-
portance of voting and the impact of the threshold of good
and bad nodes. Wireless communication cannot produce
asymmetric faults within the broadcast domain. Thus sim-
ple majority can be used to mask faults, e.g., N = 2e 4+ 1
is the number of nodes needed to mask e malicious nodes.
Different threshold values for e can be used to deal with ma-
licious nodes depending on the presence and the number of
active and passive nodes assumed in the neighborhood.

If we view Figure 4 as a join graph we get Figure 5. Infor-
mally, a join graph is defined as a collection of neighboring
cliques C;, where every vertex in the left clique C; is con-
nected to every vertex in the right clique C;4+1. The cliques

N 2 N

e \ / \ / NN
7 \ 0 \ 0 AN
o 0] !] ' .
S ! \ ! \ e

\ / \ / \ 4

RN N7 7

Figure 5: Join graph for Figure 4

are shown as shaded ovals, the join operation is indicated by
dotted lines. See [6] for a formal definition of join graphs.

The mechanism for fault detection and mitigation differ
if nodes are topology-aware or topology-unaware. Further-
more, in reference to Figure 5 it matters in which clique the
faulty nodes are. For example, an observable fault in C, will
initiate the responses of all of its monitors. Passive faults
in other cliques, e.g., Cs, will not initiate such responses.
Therefore, the impact of these passive faulty nodes has to
be masked by the active monitors in C,.

Now the following can be said about monitoring and re-
covery from F = {o,d,r, f,m}. We use Figure 4 for specific
examples and Figure 5 for the general case:

1. F = {m}: Assume the only faults are in C,. Then a
node s € Cs can recover if it receives N > e identi-
cal notifications from clique C,. This is true for the
topology-aware and also for tolopogy-unaware cases,
since with no colluders outside of C,. there will not be
any additional notifications.

An example of this scenario is r1 in Figure 4 as the
sole malicious node.

2. F = {m}: Assume there are e, faults in C, and es, e;
passive colluders in Cs and C} respectively. In the
topology-aware case s € (s needs to deal only with
faults in C,, as the others can be ignored. Thus s can
recover if it receives N > e identical notifications from
clique C,.

In the topology-unaware case the passive colluders have
to be considered, since s does not know which clique
nodes belong to. Therefore, it is the burden of C,
to produce enough notifications to compensate for the
notifications for the e;+e¢ colluders. This is only guar-
anteed if C) is of size N > 2e, with e = e, + e5 + e,
i.e., at least e + 1 monitors in C respond.

Example 3 in subsection 2.4 describes such a case.

3. F = {m}: Assume scenario 2 above and assume that
the colluder in Cs is on the forwarding path. An ex-
ample of this scenario is 1 in Figure 4 as a malicious
node and sl as its colluder. As in scenario 2 monitors
in C, provide a majority of notifications about r1’s
manipulated packet to s1. However, just like sl all
monitors in Cs received the same majority of notifica-
tions and thus have the right packet. Therefore, they
will be able to detect if s1 colludes by forwarding r1’s
manipulated packet. This triggers all monitors in Cj
to notify t1, which is also received by all nodes in C}.

Thus, each clique has to resolve the impact of mali-
cious nodes via the respective threshold described in
scenario 2 for topology-aware and unaware monitoring.
The only difference is the notification scheme that al-
lows forwarding the correct packet into Ct.

Due to spatial limitations we cannot present the scenarios
for the remaining faults F = {o,d,r, f}. It should be noted
however that the cases of {o} are special cases of {m}, i.e.,
an omission is a special case of a manipulation. Similarly,
the cases of {o} are special cases of {d}, which have higher
buffer demand. As for fabrications {f} at a node, this is
detected by the monitor, since the outgoing packet does not
have a corresponding packet in the monitors buffer. Mis-
routing attack {r} can be detected by the nature of 2-hop
monitoring, since the monitor sees all nodes involved in the
forwarding.

3. CONCLUSIONS

This research presented k-hop monitoring as a possible so-
lution to most common packet manipulations in ad hoc net-
works. The key issue is that no assumptions are made about
the behavior of malicious nodes and possible collusions. The
monitoring scheme depends on the type of faults considered,
which also dictate the thresholds of monitors necessary for
attack detection and survivability for topology-aware and
topology-unaware implementations. Current focus is on the
analysis of the overhead associated with different faults.

4. REFERENCES

[1] M.H. Azadmanesh, and R.M. Kieckhafer, Ezploiting
Omissive Faults in Synchronous Approximate
Agreement, IEEE Trans. Computers, 49(10), pp.
1031-1042, Oct. 2000.

[2] S. Buchegger, et.al., A test-bed for misbehavior
detection in mobile ad-hoc networks - how much can
watchdogs really do?, Sixth IEEE Workshop on
Mobile Computing Systems and Applications,
WMCSA 2004, pp. 102-111, 2-3 Dec. 2004.

[3] C. Chigan, and R. Bandaru, Secure node
misbehaviors in mobile ad hoc networks, IEEE 60th
Vehicular Technology Conference, VT'C2004, Vol. 7,
pp. 4730-4734, 26-29 Sept. 2004.

[4] Lei Huang, and Lixiang Liu, Eztended Watchdog
Mechanism for Wireless Sensor Networks, Journal of
Information and Computing Science, Vol. 3, No. 1,
pp. 39-48, 2008.

[5] Issa Khalil, Saurabh Bagchi, Cristina N. Rotaru,
Ness B. Shroff, UNMASK: Utilizing neighbor
monitoring for attack mitigation in multihop wireless
sensor networks, Ad Hoc Networks, Vol. 8, pp.
148-164, 2010.

[6] A. Krings, and Z. Ma, Fault-Models in Wireless
Communication: Towards Survivable Ad Hoc
Networks, Military Communications Conference,
MILCOM 2006, pp. 1-7, 23-25 Oct. 2006.

[7] Sergio Marti, T. J. Giuli, Kevin Lai and Mary Baker,
Mitigating routing misbehavior in mobile ad hoc
networks, Mobile Computing and Networking, pp.
255-265, 2000.

[8] A. Patcha, and A. Mishra, Collaborative security
architecture for black hole attack prevention in mobile
ad hoc networks, Proc. Radio and Wireless
Conference, RAWCON ’03, pp. 75-78, 10-13 Aug.
2003.

[9] N. Song, L. Qian, and X. Li, Wormhole attacks
detection in wireless ad hoc networks: a statistical
analysis approach, Proc. 19th IEEE Intl. Parallel and
Distributed Processing Symposium, 8 pages, 4-8
April, 2000.

