
A Hierarchical Formal Framework for
Adaptive N-variant Programs in Multi-core Systems

Li Tan
School of EE and CS

Washington State University
Richland, WA 99354-1641, USA

litan@wsu.edu

Axel Krings
Dept. of Computer Science

University of Idaho
Moscow, ID 83844-1010, USA

krings@uidaho.edu

Abstract—We propose a formal framework for designing
and developing adaptive N-variant programs. The framework
supports multiple levels of fault detection, masking, and re-
covery through reconfiguration. Our approach is two-fold: we
introduce an Adaptive Functional Capability Model (AFCM) to
define levels of functional capabilities for each service provided
by the system. The AFCM specifies how, once a fault is detected,
a system shall scale back its functional capabilities while
still maintaining essential services. Next, we propose a Multi-
layered Assured Architecture Design (MAAD) to implement
reconfiguration requirements specified by AFCMs. The layered
design improves system resilience in two dimensions: (1) unlike
traditional fault-tolerant architectures that treat functional
requirements uniformly, each layer of the assured architecture
implements a level of functional capability defined in AFCM.
The architecture design uses lower-layer functionalities (which
are simpler and more reliable) as reference to monitor high-
layer functionalities. The layered design also facilitates an or-
derly system reconfiguration (resulting in graceful degradation)
while maintaining essential system services. (2) Each layer of
the assured architecture uses N-variant techniques to improve
fault detection. The degree of redundancy introduced by N-
variant implementation determines the mix of faults that can
be tolerated at each layer. Our hybrid fault model allows us to
consider fault types ranging from benign faults to Byzantine
faults. Last but not least, multi-layers combined with N-variant
implementations are especially suitable for multi-core systems.

I. INTRODUCTION

Adaptive software has attracted much research interest
in recent years. Two key features of an adaptive software
are (1) the ability to monitor its own execution and (2) the
ability to reconfigure itself based on the result of runtime
monitoring [6]. Self adaptation is essential to improve sys-
tem survivability for a range of applications from safety-
critical embedded software to mission-critical web services
that shall be resilient to malicious attacks.

Developing adaptive software also raises some challeng-
ing questions. First, in many cases self adaptation adds one
more dimension of complexity to often already complicated
dependable system designs. One question is how one can
specify requirements for adaptiveness and implement them
in a way that facilities orderly and verifiable system recon-

figuration. Second, a system may be subject to a variety of
faults. So a challenge is how one could compartmentalize
and diversify system design so the system can be resilient
to different types of faults. This may be especially relevant
in safety-critical applications. Finally, runtime monitoring
requires additional computation power. Thus, it is important
that our design can make efficient use of the underlying
hardware architecture to minimize overhead.

To address the first challenge, we introduce a formal
model to specify requirements for self adaptation and then
propose a multi-layered assured architecture to realize re-
quirements expressed in the formal model. The Adaptive
Functional Capability Model (AFCM) defines levels of capa-
bilities for each system functionality. AFCM specifies how a
system shall reconfigure itself and scale down its functional
capabilities while still maintaining essential services and
guaranteeing information assurance. Each level of functional
capability in AFCM will then be implemented as a layer
in the proposed Multi-layered Assured Architecture Design
MAAD. Note that we use the term level in the context of
the AFCM and the term layer in the context of the MAAD.
The architecture design embeds a Monitoring and Reconfig-
uration Module (MRM) that uses lower-layer functionalities
as reference to monitor high-layer functionalities and detect
faults. The layered design also implements requirements for
reconfiguration defined in AFCM and provides information
assurance: in case a fault is detected, the system reconfigures
itself by disabling affected layers, while lower layers still
maintain essential services.

To further improve system resilience, we use a diversified
layered design based on N-variant techniques in each layer
[3], [4]. The N-variant techniques use redundant executions
to reduce system vulnerability to common mode faults.
Redundant executions to benefit reliability have been exten-
sively used in fault-tolerant systems design, where the evo-
lution of redundancy schemes has gone from homogeneous
redundancy to heterogeneous redundancy. The latter refers to
components that are functionally equivalent but implemented
dissimilarly. The expectation is that redundant but dissimilar
implementations reduce or eliminate common mode faults.



Dissimilarity is typically discussed in the context of N-
version programming [1] dating back to the late 70s. In
N-version programming it is assumed that several software
development groups derive programs based on the same
specification in isolation. The expectation is that this helps
to reduce common mode faults. An approach inspired by
N-version software is N-variant or multi-variant software,
where different variants are generated in a more automated
fashion. Again, the expectation is that a fault affecting one
variant will not affect another. In both cases a fault is de-
tected if a difference is detected between outputs generated
by two versions or variants.

Redundant executions exercised by multiple variants and
extra work of runtime monitoring requires additional com-
putational power. To reduce overhead, our N-variant-based
implementation takes advantage of recent advances in multi-
core hardware. Most new general-purpose computers incor-
porate dual or quad-core processors and higher numbers of
cores are already implemented in graphics processing units.
Whereas in theory the computational capabilities increase
with the number of cores, it becomes difficult to exploit suf-
ficient parallelism to keep all cores utilized. Most common
applications still allow little parallelism and it is likely that
cores may be underutilized or running idle. In our approach,
unused or underutilized cores are exploited to increase
reliability, security, and survivability. Specifically, multiple
variants execute on different cores, and if they can execute
on idle cores, this overhead can be largely absorbed. This
was also shown in [8] where multi-variant functionalities
executed in multi-core systems. Our approach extends this
by making extensive use of N-variant implementation at each
layer of functional capability. In general, the lower a layer,
the more variants it may have in order to provide a higher
degree of resilience and information assurance for essential
service. Nevertheless, exact number of variants and their
configurations required at each layer depend on the type
and number of faults that are to be detected or masked.

Background and Motivation N-variant executions have
been used in order to detect and mask transient faults [4] and
security related faults [3], [7], [8]. The different executions
are considered to be functionally equivalent. For example, in
[4] the replicas are managed dynamically by a hypervisor (a
virtual machine monitor) inserted between the hardware and
the operating system. The redundant functionalities execute
on replica partitions, where the number of partitions is
dictated by the fault model considered. In [8] multi-variant
executions have very high probability of exposing buffer
overflows, e.g., as would be experienced during a buffer
overflow attack. Here the dissimilarity is mainly affecting
the way memory is allocated. Again the functionalities do
not differ with respect to their functional specifications. The
same holds for the work in [3]. In fact the application of the
principle of N-variant execution is based on the functional

equivalence of executions.
The research presented here departs from this equivalency

assumption. Whereas we still see the system as being
composed of functionalities, we assume that these function-
alities may have different levels of functional capabilities
implemented at respective layers. Intuitively, by applying
the principle of “Occam’s razor” we make the assumption
that lower levels of functionality (and thus capability) will
ultimately result in lower probability of failure, as will be
described in the context of Figure 1.

Fault Model The system is subjected to diverse fault
types arising from diverse fault sources. Faults have been
described in the context of hybrid fault models [2], [9]. The
hybrid fault model in [9] considers three fault types, benign
faults, which are globally diagnosable; symmetric faults,
which imply that values are wrong, but equally perceived
by all components that receive the values; and asymmetric
faults, which have no assumption on the fault behavior. The
latter is often called Byzantine fault. Within the context
of this research we are mostly concerned with the error
produced by the fault, rather than fault sources or types.
For example, a buffer overflow may result in observable
differences in memory management. This in turn can lead
to detection and/or masking/recovery.

II. SPECIFICATION MODEL & ARCHITECTURE DESIGN

In this section we extend and generalize the model de-
scribed in [5], which is a special case of the research below.

A. Adaptive Functional Capability Model

We propose a formal model to specify multiple function-
alities with adjustable levels of capability. The model, i.e.,
the Adaptive Functional Capability Model, attaches each
functionality to layers of capability. The AFCM is used
as part of requirement specification. During requirement
elicitation, a development team works with stake holders of a
project to identify not just functionalities, but also capability
levels for each functionality. These capability levels specify
the plan for graceful degradation in case of faults or when
under attack.

F1F2F3 111 F1F2 22

Figure 1. AFCM for functionality F1 and F2

Assume the system is comprised of functionalities
F1 · · ·Fm. Figure 1 shows the AFCM for two sample func-
tionalities F1 and F2. The requirements for F1 define three
levels of capabilities: F 1

1 defines the set of core operations
that are mission-critical, F 2

1 includes F 1
1 and some non-

critical but value-added operations, and F 3
1 adds some more



value-added operations. We write F 1
1 � F 2

1 � F 3
1 , where

� is a preorder on the capability levels. The semantics of
� is defined and interpreted based on application context.
For instance, in a transaction-based asynchronous system, a
functionality F can be specified as a set of sequences of
operations T (F ) (in requirement elicitation, often referred
to as scenarios or flow of events). We represent a sequence
of operations as (p0(I0), O0), (p1(I1), O1), · · ·, where pi is
the operation at step i, Ii is the input data set, and Oi is
the output dataset. By default, T (F ) also includes a null
sequence τ . In such a system, we can define that F j ≺ F j+1

if and only if T (F j) v T (F j+1), where the piecewise
inclusion relation v is defined as follows:

(i) T (F j) ⊆ T (F j+1); and,
(ii) For each (p0(I0), O0), (p1(I1), O1), · · ·
∈ T (F j+1), there is a sequence of operations
(p′

0(I
′
0), O

′
0), (p

′
1(I

′
1), O

′
1), · · · ∈ T (F j) and a non-

decreasing function g such that g(0) = 0, pk = p′
g(k),

Ik ⊇ I ′
g(k), and Ok ⊇ O′

g(k).

Note that (i) states that every sequence of operations defined
at capability F j shall also be included at capability F j+1.
Furthermore, (ii) states that each sequence of operations in
F j+1 extends a sequence of operations in F j . Note that (ii)
doesn’t prohibit the introduction of a sequence of completely
new operations in T (F j+1). In such a case, the sequence
of new operations can be seen as an extension of the null
sequence τ ∈ T (F j).

As an example, consider an adaptive N-variant imple-
mentation of a secured database system D. Each record
d = {d1, d2} in D contains two sets of data. Set d1 contains
mission-critical data and d2 is a set of non-mission-critical
but value-added data. For a registered client, D stores its
private key K ′

D and each registered user’s public key KU .
A registered user keeps his/her private key K ′

U and D’s
public key KD. Communication between D and a registered
user is encrypted using the public/private key pairs. For
simplicity, we assume that the encryption algorithm in use is
deterministic. Let’s consider a functionality F of D, which
allow a registered user to retrieve a record by its record ID
(RID). F is defined with two levels of capabilities. At level
F 1, a client can retrieve the mission-critical data associated
with a record, and at level F 2, a client may also retrieve
valued-added data associate with the record.

Using our framework, the functional capabilities F 1 and
F 2 are implemented by two layers L1 and L2. Each layer
consists of N-variant modules for required reliability and se-
curity. The Monitoring and Reconfiguration Module (MRM)
decides the operational status of L1 and L2. It also serves as
the interface between a user and D. The underlying database
contains actual records and it can only be accessed by L1 and
L2. The details of architecture design in our framework will
be discussed in Section II-B. The UML sequence diagram in
Figure 2 shows interactions between a registered user and the

user
1: encry(KD, RID)

2: req

3: send (uid, req)

1: send(req)

2: decry(KD’, req)

3: RID1

:L2 :DB

4: query (RID1)

5: {d1
1, d1

2}

:L1

6: encry(KU, {d1
1})

7: {e1
1}

8: cmd (“send”, {e1
1})

1: send(req)

3: RID2

4: query (RID2)

6: encry(KU, {d2
1, d2

2})

7: {e2
1,e2

2}

5: {d2
1, d2

2}

:MRM

8: cmd (“send”, {e1
1,e2

2})

PAR

1: send({e2
1, e2

2})

2: decry(K’U, {e2
1, e2

2})

3: {d2
1, d2

2}

3: decry(K’U, {e1
1})

4: {d1
1}

1: destroy

ALT
[e1

1=e2
1]

[else]

2: decry(KD’, req)

2: send({e1
1})

Figure 2. Sequence diagram for an adaptive secured database system D

database system D. The system’s behavior at capability level
F i is defined by the set of successful interactions T (F i)
among a user, MRM, Li, and the underlying database DB.
If both L1 and L2 operate correctly, then d1

1 = d2
1 and hence

{d1
1} ⊆ {d2

1, d
2
2}. Therefore, T (F 1) v T (F 2) and F 1 � F 2,

i.e., the system D implements the preorder on capability
levels F 1 and F 2.

The purpose of AFCM is to specify not only functional
requirements, but also requirements for reconfiguration and
adaptiveness. It has two features to serve its purpose:

First, the model associates each functionality with ca-
pability levels, which specify reconfiguration requirements
for the functionality. It states that, in the event of a fault,
e.g., when the system has been compromised, a system shall
scale back its services in an orderly manner by following the
capability levels defined in AFCM, e.g., recovery to a lower
level implemented in the next layer down.

Second, the definition of capability levels also facilitates
reconfigurable design. For example, consider the piece-wise
inclusion relation v we proposed for transaction-based sys-



tems. It requires that system behavior at a higher capability
level shall be an extension of behavior at a lower capability
level. Hence, we can use behavior at a lower capability
level as a reference for monitoring behavior at the higher
capability level, and an implementation for capability levels
provides a path for a system to scale back itself.

It shall be noted that AFCM does not require that all the
functionalities in it have the same hierarchy. For example,
F1 and F2 in Figure 1 have different levels of capabilities.
Each functionality in an AFCM has its own hierarchy of
capability levels reflecting its requirement for adaptiveness.

B. Layered N-variant Architecture

To implement the reconfiguration requirements specified
in the AFCM using different levels, we propose a layered
adaptive architecture design. Each layer realizes its corre-
sponding AFCM level using N-variant techniques as shown
in [3], [8]. Figure 3 shows an example of the adaptive N-
variant architecture for two functionalities F 1 and F 2. The
architecture has a layered structure. Each horizontal layer
realizes a capability level, i.e., it implements sequences of
operations specified for its capability level. A layer may
be disabled if it is found not functioning correctly. Fault
detection is the result of redundancy management at the
specific layer, or the layer beneath it, which has the moni-
toring abilities of its capabilities at the layer above it. The
capability level of the entire functionality is decided by its
highest enabled layer. Each layer is a collection of variants
implementing its capability level. Variants are systematically
diversified so that it is unlikely that a common mode fault
can occur [3], [8], e.g., for a given fault model, an attacker
can not compromise all the variants without being detected
and/or the fault being masked. One could argue that a lower
layer should have more variants to improve resilience of
the functionality. Each functionality may have a different
layered structure that reflects its adaptability requirement.
For example, in Figure 3 F1 and F2 are implemented by
(L1

1, L
2
1, L

3
1) and (L1

2, L
2
2), respectively.

III. ADAPTIVE SURVIVABILITY

The layered adaptive N-variant architecture improves sys-
tem resilience by supporting 1) real-time fault detection
through redundancy management and cross-layer monitor-
ing, 2) fault masking, and 3) system reconfiguration. The
architecture design in Figure 3 includes the Monitoring
and Reconfiguration Module (MRM). Critical or sensitive
functionalities are implemented using the layered N-variant
architecture and the MRM acts as a sentry for layered N-
variant components. The MRM monitors and sanctions the
communication in and out of the N-variant components.
Together, the N-variant-based layers and the MRM provide
runtime monitoring and real-time fault tolerance with recon-
figuration, essential for an adaptive system.

N-variant

C
ap

ab
ili

ty
 

V1,1
3

V1,1
1

V1,1
2

V1,2
1

V1,3
1

V1,2
2

L
3

L
2

L
1

F1

N-variant

C
ap

ab
ili

ty
 

V2,1
1

V2,1
2

V2,2
1

L
2

L
1

F2

Monitoring and Reconfiguration Module  (MRM)

Figure 3. A layered adaptive N-variant architecture design for the AFCM
of Figure 1

Runtime monitoring by the MRM The MRM uses ob-
servable behavior of a lower layer to decide whether the
layer above is compromised or not. If a fault is detected, it
reconfigures the system by disabling affected layers while
essential functional capabilities are still provided by the
lower layer(s). In section II-A capability levels in the AFCM
are defined in such a way that a sequence of operations
specified at a higher level is an extension of some sequence
of operations specified at a lower level. In our layered adap-
tive N-variant architecture, all the layers process incoming
requests concurrently. Since a layer Li is an implementation
of an AFCM capability level F i, a sequence of operations
executed by layer Li shall be included in a sequence of
operations executed by layer Li+1. Should this not be the
case it indicates problems (i.e., a fault) in Li+1. The lower
layer Li is realized using N-variants of simpler implemen-
tations and potentially a higher degree of redundancy. It is
argued that lower complexity implementations together with
more stringent analysis/testing at Li is assumed to make
variants in Li more reliable than in Li+1. A larger degree
of N-variants also increases reliability, as it implements a
k-of-N configuration. In general we argue that the number
of components (degree of N-variant) at layer Li should be
larger than that of Li+1 and the fail-rates of the components
at Li are smaller than those at layer Li+1, due to its simpler
implementation. The result is a higher reliability at layer Li.

Real-time reconfiguration The AFCM provides a recon-
figuration plan in which a functionality can scale back
its services in an orderly manner, thus providing graceful
degradation. A layer Li serves as the backup for layer Li+1

above it. A lower layer forgoes some functional capability in
lieu of improved dependability. If the MRM detects a fault
in layer Li+1, it disables Li+1 and the system automatically
scales its capability to the level implemented by Li. For
the sake of completeness it should be noted that capabilities
can not only be decreased, but also extended should the need



arise, e.g., after recovery or repair.
Consider the example of the secured database system in

Figure 2. The design contains two N-variant-based layers,
L1 and L2, that implement capability levels F 1 and F 2

respectively. Each query request is duplicated by the MRM
and routed to both layers for processing. Consequently, each
layer issues the same query to a back-end database and
encrypts the query result. The difference is that L1 only
encrypts the mission-critical portion of the query result as
e11 while L2 encrypts the entire result as {e21, e22}. Requests
to send back encrypted data from both layers are intercepted
and checked by the MRM. Since we assume that the
encryption algorithm is deterministic, e11 = e21 if both layers
operate correctly. Otherwise, the MRM infers that layer L2

has been compromised and hence disables it. Consequently
D scales back its capability to F 1, which is implemented
by L1. This action constitutes a survivability feature with
respect to the functionality F .

The layered adaptive N-variant architecture is designed
for improving system survivability for mission-critical ap-
plications. By implementing functionalities in layers the
capability of shifting to a lower layer (upon detection of a
fault) provides a contingent plan that allows a system to scale
back its services towards essential services as the result of
faults or malicious attacks. However, the layered architecture
is also designed to support information security. As can be
seen in the example above w.r.t. confidentiality, the MRM
ensures that sensitive information in d2 will not be leaked
by a higher layer, even if the latter is compromised by an
attacker. The detection of a fault due to discrepancies of
results in L1 and L2, i.e., if e11 6= e21, will result in MRM
blocking the release of d2.

IV. RELIABILITY AND RESILIENCE

If we look at the multi-variant approach within a single
layer or our architecture, we can see that the N-variant
approaches described in [3], [4], [7], [8] are actually special
cases, i.e., these approaches can be adopted at any layer
within our architecture. It should be noted that they all have
specification and implementation at the same level and layer
respectively. This means that the approaches deal with fault
detection and possible treatment dependent on the degree of
redundancy. However, adaptability and graceful degradation
as described above is not supported. For example, the multi-
variant scheme described in [8] uses two variants of memory
referencing. Both variants implement the same functional
capability. The model in [3] has a similar limitation.

Fault masking using N-variant approaches is actually
more effective than typically observed in redundant systems,
e.g., k-of-N or NMR. For example, in a triple modular
redundant system two faulty modules can produce the
same result and consequently the TMR would vote on the
incorrect value in the majority vote. Given the schemes
described in [8] and [7] it is statistically very unlikely

that two modules produce the same fault. This is very
advantageous when trying to determine thresholds for
non-faulty values and to reduce the degree of N-variants at
each layer.

2

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) λ3 L1
up L2

up L3
up L1

down L2
down L3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) λ3 L1
up L2

up L3
up L1

down L2
down L3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) λ3 L1
up L2

up L3
up L1

down L2
down L3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) λ3 L1
up L2

up L3
up L1

down L2
down L3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) λ3 L1
up L2

up L3
up L1

down L2
down L3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) λ3 L1
up L2

up L3
up L1

down L2
down L3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) λ3 L1
up L2

up L3
up L1

down L2
down L3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

2

Figure 4. Petri-net for F1 in Figure 3

The analysis of the multi-level and multi-layer approach
is described using the example of functionality F1 shown
in Figure 3. F1 has three levels, F 1

1 , F
2
1 and F 3

1 , and their
respective layers L1, L2 and L3 use 3-variant, 2-variant, and
simplex implementations. Given the levels of redundancy at
each layer one can note that at L1 one can mask one value
fault, at L2 one can only detect (but not mask) one fault
and L3 has neither detection nor recovery potential. The
masking and detection capabilities of functionality F 1 is
modeled in the Petri net shown in Figure 4. Note that this
net does not reflect inter-layer monitoring, which will be
addressed separately. The upper subnet models the reliability
of the layers and is controlled by the Petri nets of the triplex,
duplex and simplex of layer L1, L2 and L3 respectively.
Note that only the timed transitions of the triplex and duplex
depend on the markings of their input places, reflected by
the marking functions m(λ1) and m(λ2) respectively. The
simplex at layer L3 has a fail-rate of simply λ3. Furthermore
note that unreliability of individual layers are the probability
of a token in the places Li

down.
Adaptability, and thus fault treatment, are modeled in the

upper part of the net. For example, layer L3 fails either due
to the firing of the transition between places V 3

up and V 3
down,

or if it is “shut down” due to a failure of a lower layer, i.e.,
should a layer at level i fail, it will automatically shut down
layer i+1, implemented by inhibitory arcs in the upper part
of the Petri net.

It is simple to establish the exact reliability of F1 when the
fail-rates are known. However, in the presence of malicious
faults, e.g., hacking attacks or exploits, the assumption of



constant fail-rates does not hold anymore. In that case, the
Petri net stays the same, whereas the formal analysis of the
net becomes much more complicated. The reason is that the
constant fail rates of the timed transitions have to be replaced
by time-dependent hazard functions.

Li

Li+1

Fi

Fi FiF i+1

Li

Li+1
up

up
Li+1

down

i ≠ F  (L    )i i+1F  (L )i

Figure 5. Cross-level monitoring

Figure 5 generalizes monitoring between two adjacent
layers. The left side of the figure shows the relationship
between two levels of requirements for functionality F , i.e.,
between F i and F i+1. Note that F i ≺ F i+1. The respective
implementations are in layers Li and Li+1. Note that layer
Li+1 consists of the implementations of the operations of
the lower layer based on F i as well as the value-added
operations specified by F i+1\F i. Thus monitoring is limited
to operations specified by F i.

The Stochastic Activity Network (SAN) of inter-layer
cross-monitoring is shown on the right side of Figure 5.
The transition is activated when operations specified by F i

differ in layer i and i+1, i.e., if F i(Li) 6= F i(Li+1), where
F i(Lj) indicates the functional specification with respect to
layer Lj . Since F i+1 includes F i the MRM indicates fault-
free behavior if F i(Li) = F i(Li+1).

V. CONCLUSION

This research defined a hierarchical formal model for N-
variant executions especially suitable for systems based on
multi-core architectures. The model has two dimensions to
support fault detection and real-time adaptation. Multiple
levels of functionality are implemented in layers. At each
(horizontal) layer, N-variant implementations support detec-
tion and masking of faults. Individual layers can incorporate
different N-variant solutions, including existing techniques
such as in [3], [4]. Adaptation is introduced in the other
(vertical) dimension. Lower layers, which implement the
essential subset of capabilities of the higher layers, are used
to cross-monitor the higher layers. This is possible due to the
inclusion relationship between functional specifications at
different levels. If discrepancies are detected between layers
the shut-down of the higher layer is initiated. The use of
N-variant executions at individual layers has several advan-
tages. First, lower level functionalities can effectively cross-
monitor higher layers, which has positive implications for
security and reliability. Second, during adaptation executions

can be shifted to lower layers, which increases survivability
and resilience.

REFERENCES

[1] A. Avizienis, The Methodology of N-version Programming,
Software Fault Tolerance, edited by M. Lyu, John Wiley &
Sons, 1995.

[2] M.H. Azadmanesh, and R.M. Kieckhafer, Exploiting Omissive
Faults in Synchronous Approximate Agreement, IEEE Trans.
Computers, 49(10), pp. 1031-1042, Oct. 2000.

[3] B. Cox, et. al., N-Variant Systems A Secretless Framework
for Security through Diversity, 15th USENIX Security Symp.,
Vancouver, Aug. 2006.

[4] C.M. Jeffery, and J.O. Figueiredo, Towards Byzantine Fault
Tolerance in Many-core Computing Platforms, 13th IEEE
International Symposium on Pacific Rim Dependable Comput-
ing, 2007.

[5] A. Krings, et.al., Resilient Multi-core Systems: A Hierarchical
Formal Model for N-variant Executions, Proc. CSIIRW09,
ORNL, April 13-15, 2009.

[6] R. Laddaga, P. Robertson, and H. Shrobe, Introduction to Self-
adaptive Software: Applications, Proc. 2nd Workshop on Self
Adaptive Software, LNCS 2614, pp 275-283, May, 2001.

[7] A. Nguyen-Tuong, et. al., Security through Redundant Data
Diversity, DSN, Anchorage, June 2008.

[8] B. Salamat et. al. Multi-Variant Program Execution: Using
Multi-Core Systems to Defuse Buffer-Overflow Vulnerabilities,
CISIS, pp. 843-848, 2008.

[9] P. Thambidurai, and Y.-K. Park, Interactive Consistency with
Multiple Failure Modes, Proc. 7th Symp. on Reliable Dis-
tributed Systems, Columbus, OH, pp. 93-100, Oct. 1988.


