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Abstract—The task of detecting and mitigating Cognitive
Radios (CRs) operating as constant jammers in a Cognitive Radio
network (CRN) can be very daunting. The CR constant jammers
prey on the adaptable functionalities of CRN so as to cause serious
denial of service to the users of the network. In addition, these
jammers are capable of introducing value faults in pathological
cases as a result of being able to manipulate transmitted data.
In previous research, we have investigated the performance of
CRNs operating in the presence of jamming attacks that are
capable of introducing value faults. The results obtained show
that CR constant jammers are very effective in their operations
and they are capable of bringing down the entire CRN when
their jamming rate is just about 30%. In this paper, we show that
none of the existing anti-jamming solutions are able to mitigate
CR jammers that are capable of manipulating communicated
data. As a result, we propose a hybrid forward error correction
(FEC) code that incorporates data integrity checking into an
efficient forward error correction mechanism. The approach uses
data redundancy to remove the need for retransmission of lost
or detected manipulated data caused by jamming attacks by
exploring the recovery block component of the proposed solution.
We present the algorithm for our proposed solution and evaluate
its performance through simulation. The result of our analysis
using suitable performance metrics shows that the solution is
very efficient and robust against the different rates of jamming
perpetrated by constant jammers.

I. INTRODUCTION AND BACKGROUND

The Cognitive Radio Network (CRN) has been adopted
as a technology that will alleviate the spectrum shortage
problem [1]. The technology allows unlicensed users to share
the unused part of the licensed bands of spectrum with the
incumbents when present (Underlay approach) or during the
incumbents’ OFF period (Overlay approach). The benefits of
CRNs are broad and range from providing low cost Internet
connectivity to providing easy access to government-delivered
services to rural and underserved regions. Accurate detection
of the presence of the incumbents by CRs is a crucial issue as
the CRN standard does not tolerate any level of interference
to the incumbent’s network.

Channel impairments like deep shadowing [16] and multi-
path fading [14] are some of the barriers to adequate sensing
of the spectrum for the presence of an incumbent by a CR.
Therefore, a CR needs the assistance of other CRs operating in
its neighborhood to be able to accurately sense the spectrum.
This is called cooperative spectrum sensing (CSS). Different
CSS architectures were proposed in [2] and [3]. Despite the

expected success and potentials of CSS, the presence of jam-
mers operating as CRs in a CSS Cognitive Radio network is of
great security concern. This is because the CR jammers have
reconfigurable features that make them capable of introducing
value faults along the transmission channels. The legitimate
CR nodes themselves are easy prey to such attackers as they
could be manipulated by their reconfigurable features so as to
cause serious DoS to the entire network. In order to represent
CRN as a network that is capable of exhibiting different types
of faults including value faults, the research in [3] presents
different jamming scenarios in a CRN based on a hybrid fault
model that identifies the possibility of different fault types
including omissive and transmissive value faults. The impact
of these jammers have been investigated in [4] and the effect
of CR jamming, especially the case of constant jammers on
the average throughput of the network is shown to be huge.
Therefore, the need to design a strategy that is capable of
mitigating this category of CR jammers is of great importance.
To the best of our knowledge, none of the existing anti-
jamming mechanism is capable of effectively mitigating CR
jammers that are able to manipulate transmitted data in CRNs.

Based on the hybrid fault model classification in [3] and the
perceived impacts of jamming on this model as quantified in
[4], the main contribution of this paper is a new hybrid forward
error correction (FEC) code that is capable of mitigating
jamming attacks under this classification. Furthermore, we
present the algorithmic design of the proposed solution, its
implementation in Network Simulator 2 (NS-2) and the anal-
ysis of its performance measurement using suitable metrics.

1) Anti-jamming Strategies for CR Networks : Several
authors [5], [6] have investigated jamming in Cognitive Radio
Networks. Some of these authors have proposed the use of
Spread Spectrum Frequency Hopping (FH) and Direct Se-
quence Spread Spectrum (DSSS) as a solution to alleviate
jamming attacks in wireless networks. The popular approach
is to spread the signal over a larger bandwidth, thereby making
it costly for jammers to hinder an on-going transmission. The
combination of Spread Spectrum and Orthogonal Frequency
Division Multiplexing [7] was also considered as an efficient
means of mitigating jamming attacks in wireless networks. In
CRNs based on the Spread Spectrum approach [7], the avail-
able spectrum is divided into several pieces of non-overlapping
channels in which only a small portion of the channels is
used for transmission at a time. The malicious jammer either
jams a large number of the channels with negligible jamming



effect in each channel or jams few channels, which might
not be in use by the CRs. The problem with the Spread
Spectrum approach is that a CR jammer is assumed to have
knowledge of the hopping sequence and therefore could adapt
to the hopping sequence of other CR nodes. Whereas most
research has addressed jamming resulting in benign faults, our
assumption is to include malicious faults.

2) Forward Error Correction (FEC) Codes: FEC schemes
like LT (Luby Transform) code [9], Raptor code [11], and
Low Density Parity-Check Code (LDPC) [10], can be used to
recreate data lost due to jamming attacks in a CRN through
data redundancy. The Raptor code is a type of Fountain code
[10] with linear time encoding and decoding, in which a
message made up of a number of k symbols is encoded into
an infinite series of symbols in such a way that if during
transmission some part of the data is lost, e.g., due to jamming,
the lost data can be recovered with a non-zero probability that
increases as the number of the received symbols increases
beyond k [11]. The shortcoming of an FEC code like the
Raptor code is that it has not been investigated for CRNs
Furthermore, the Raptor code can only deal with benign and
omissive faults.

II. HYBRID FEC CODE FORMULATION

In order to overcome the limitations identified in the
previous section, we propose a hybrid FEC code defined by
the concatenation of the Raptor code and the Secure Hash
Algorithm-2 (SHA-2). SHA-2 [12] is the common name used
for three types of computationally efficient hash functions,
namely SHA-256, SHA-384, and SHA-512, that transform any
set of data elements into 256 bit, 384 bit and 512 bit fixed
length values respectively. The output of SHA-2, known as
message digest, can then be used to verify the integrity of
the original data sent against the message digest of the data
received at the destination.

We therefore propose to use the Raptor code part of the
hybrid code to recover any data loss due to omissive faults
as a result of jamming and SHA-2 part to handle transmissive
(value) faults due to jamming. Any value fault due to malicious
jamming or a bad channel will be detected with SHA-2 if
the message digest generated at the receiver is different from
the message digest generated at the sender. This is because it
is computationally infeasible to find two different messages
having the same message digest or to find a message that
hashes to a given message digest. Detection of value faults can
result in different actions, depending on the CRN application
scenario. We therefore identify these scenarios as the recovery
block [17] for the hybrid code, which is discussed next.

A. Recovery Block

Whenever the hybrid code detects a discrepancy between
the message digest of the data sent and the message digest
of the data received, the line of action to be taken could be
any of the options listed below depending on the application
scenario:

1) The Raptor part of the code can be used to iteratively
correct suspected corrupted bits of the message as if it was
omitted and SHA-2 is used to regenerate the message digest
each time to verify the data received. The iteration process

involves extending the number of encoded symbols received
at the destination beyond k so as to reduce the probability of
a decoding failure of the Raptor code. After a suitable number
of iterations the received encoded symbols are decoded and an
output message is generated for the receiver with the Raptor
code. The SHA-2 is again used to compute the message digest
of the received message, which is compared with that of the
original sent message.

2) The erroneous message is discarded and the system is sus-
pected to be under jamming attack, requiring further actions, (i)
e.g., moving the CR nodes away from the suspected source(s)
of jamming, (ii) re-authenticating all the CR nodes partici-
pating in the CRN activities, (iii) re-validating the activities
of these CR nodes to see if there is any violation of any of
the CR security requirements, and (iv) isolating any suspected
jamming nodes from the CRN.

3) If the channel experiencing jamming is a CR control
channel, the CRN with its adaptable capability switches to
another channel that is not experiencing jamming at that
instance. It then routes control messages through this channel,
thereby making it the new control channel.

4) If all the earlier mentioned options fail, the receiver requests
retransmission of the message as a last resort.

B. Design of the Hybrid Code

The design of the proposed hybrid FEC code is illustrated
with Figure 1, showing the flowchart of the complete process.
The proposed hybrid FEC code operates between the applica-
tion layer and the transport layer. Before a sender’s message is
sent from the application layer to the transport layer, the SHA-
2 module is used to generate the message digest. This message
digest is inserted into the message’s packet header and the
message is passed to the encoder part of the Raptor module. At
the precode stage of the encoder, redundant symbols are added
to the message while at the LT code stage, the LT code is used
to generate the encoded output symbols. These encoded output
symbols are passed down to lower layers of the protocol stack.
At the receiver, when the message arrives at the transport layer,
the Raptor decoder starts the decoding process as soon as it
receives about k(1 + ε) of the encoded output symbols. Once
the decoding process is successful, the decoded message is sent
to the SHA-2 module where the message digest of the decoded
message is generated. The message digest generated is then
compared with the message digest stored in the packet’s header
of the original message. If the two message digests match,
then the message is received with no error and forwarded
to the receiver through the application layer. If there is a
difference between these two message digests, then it means
that the message has been manipulated along the transmission
path. The hybrid code will therefore initiate the recovery block
procedure described in sub-section II-A.

III. THE ALGORITHM FOR THE HYBRID CODE

Since the proposed hybrid FEC code is made up of the
SHA-2 and Raptor code, we first describe the SHA-2 compu-
tation process and later describe the Raptor algorithm part of
the code.
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Fig. 1. Flowchart for the Hybrid FEC Algorithm

A. Algorithm for SHA-2

SHA-256, the 256-bit version of SHA-2 was chosen for the
implementation of the hybrid FEC code. SHA-256 was defined
in the NIST (National Institute of Standards and Technology)
standard [13]. A message, M of length l can be hashed with
SHA-256 to produce a 256-bit message digest provided 0 ≤
l < 264. The SHA-256 algorithm is divided into two stages: (i)
Preprocessing and (ii) Hash Computation. We here present a
summary of the different stages of the algorithm as discussed
in [13].

1) Preprocessing: The preprocessing stage involves three
essential steps which are:

i) Setting the initial hash value, H(0), which consists of eight
32-bit words in hexadecimal. They are obtained from taking
the first thirty-two bits of the fractional parts of the square
roots of the first eight prime numbers.

ii) Padding the message, M . Padding is done to ensure that the
padded message is a multiple of 512 bits. A message, M of
length l bits is padded by appending the bit ”1” to the end of
the message, followed by k zero bits, where k is the smallest,
non-negative solution to the equation l+1+k ≡ 448 mod 512.
Then we append the 64-bit block that is equal to the number
l using a binary representation.

iii) Parsing the message into message blocks. The message
and its padding are parsed into N 512-bit blocks, which can be
expressed as sixteen 32-bit words. The first 32 bits of message
block i are denoted M (i)

0 , ...,M
(i)
15 .

2) SHA-256 Hash Computation: Addition (+) in SHA-256
is performed modulo 232. A list of constants and functions
used in computing the hash is presented in the standard. Each
message block, M (1),M (2), ...,M (N), is processed in order,
using the hash computation procedure described in [13]). After
repeating the steps for a total of N times (i.e., after processing
M (N)), the resulting 256-bit message digest of the message,
M , is H(N)

0 H
(N)
1 H

(N)
2 H

(N)
3 H

(N)
4 H

(N)
5 H

(N)
6 H

(N)
7 .

B. Algorithm for Raptor Code

We here present a brief description of the Raptor code
algorithm. For theoretical details and proof of this algorithm,
the reader is referred to [10]. The algorithm of the Raptor code
could be formulated in matrix representation in which multi-
plication operations performed on the matrices yield solutions
that are equivalent to executing the Raptor code algorithm
[10]. We first present the formal description of the Raptor
code algorithm and then describe the matrix interpretation
equivalent of the algorithm. The Raptor code is made up of two
essential components: (i) Raptor encoder (ii) Raptor decoder.

1) Algorithm for Raptor Encoder: The Raptor encoder is
made up of two stages:
Pre-code stage: This stage is usually done with an LDPC code
but other codes like Gray code [15] can be used as well. The
source or input symbols k are mapped unto l intermediate
symbols such that l < k.
LT-encoding stage: At this stage, the intermediate symbols
from the pre-code stage are used to generate each encoded
symbol by carrying out an eXclusive-OR (XOR) operation on
a subset of symbols randomly selected from the l intermediate
symbols in such a way that it agrees with a certain probability
distribution.

Using the matrix interpretation, the Raptor encoder algo-
rithm can be represented as operations that involve performing
matrix multiplications with vectors with the intent of solving
systems of equations that represent the Raptor encoding pro-
cess. The coefficients of these matrices are either zero or one
and therefore are said to be binary. The vectors are vectors
of symbols, with each symbol represented as a binary digit.
Using this interpretation, the “pre-code stage” of a Raptor code
is defined as the multiplication:

uT = G.xT (1)

where G is an n× k binary matrix representing the generator
matrix of the pre-code and x represents the vector (x1, ..., xk)
made up of the input vectors.

According to [10], to any given set of N output symbols of
the Raptor code, there corresponds a binary N × n-matrix, S.
This implies that matrix S contains rows that are independently
sampled from the distribution Ω(x) and they are vectors that
corresponds to the output symbols of the Raptor code. The
relationship is represented as:

S.G.xT = zT (2)

where z = (z1, ..., zN ) represents the encoded output symbols
of the Raptor code that is made up of the column vector.



2) Algorithm for Raptor Decoder: The decoding algorithm
for a Raptor code is defined as an algorithm of length m that
can regain k input encoded symbols out of any set of m output
symbols and errs with a probability that is at most 1/kc, for
some positive constant c [10]. The decoder can recover the
source symbols from any set of Θ = k(1+ε) encoded symbols,
with Θ slightly larger than k.

Using the matrix interpretation, the Raptor decoding al-
gorithm corresponds to solving for vector x in the system
of equation given in Equation 2 to obtain the input vectors
x1, ..., xk.

C. Validity & Threshold Functions

The validity of both codes of the hybrid FEC code, the
Raptor code and the SHA-2 code, have been established. The
Raptor codes have been described as a potentially strong and
efficient extension of LT codes and it has been proven in [10]
that both its encoding and decoding algorithms are linear in
time. SHA-2 validity is inferred from its ability to generate
a unique value for any set of data with the condition that,
given this generated value, it is computationally infeasible to
get back the original data [12]. A collision is said to have
occurred if two given messages produce the same hash value.
To the best of our knowledge, no collision has been reported
for SHA-2.

Since the effectiveness of the proposed hybrid FEC code
will be constrained by the thresholds of the Raptor code and
SHA-2, we need to establish expressions for these thresholds.
Any manipulation by jamming beyond what these schemes
can tolerate will render the hybrid approach ineffective. The
threshold of Raptor code is given by Θ = k(1 + ε), which
is the minimum amount of the encoded symbols that make
the decoding successful. Any manipulation by a jammer that
reduces this minimum requirement or delays the arrival of
this minimum encoded symbols will adversely affect the
performance of the hybrid code. Unlike the Raptor code, a
hash function having a message digest of length n-bits has two
properties [12]: (i) One Way: It will require 2n evaluations in
order to find a message that corresponds to the given message
digest. (ii) Collision Resistant: Finding two different messages
that produce the same message digest, known as a collision,
requires an average of 2n/2 evaluations. A jammer can only
manipulate the proposed hybrid code if a collision is found for
SHA-2 and also if the jammer is able to satisfy the required
number of evaluations to find a message that corresponds to a
given hash value.

IV. SIMULATION & RESULTS

A. The Hybrid Code as an NS-2 Application

We studied the C++ class hierarchy in NS-2 and specified
the name of the class for the hybrid code application as
“SharapApp” (representing our concatenated code of SHA-
2 and Raptor code) and implement it as a child class of
“Application”. The OTcl (object Tcl) hierarchy name that
matches this is “Application/SharapApp”. The way that both
the sender and receiver behave in the application is imple-
mented in “SharapApp”. We first describe the implementation
of the main components of the hybrid code application in NS-2
before providing a description of other sub-components.

1) Message Digest Generator: The message digest gener-
ator is the SHA-2 component of the hybrid FEC code. This
generator is defined in “MessDigest.cc” and “MessDigest.h”
of our hybrid FEC code implementation in NS2. The message
digest generator is implemented at both sender’s and receiver’s
application layers. A sender’s message is received at the appli-
cation layer and represented as “SharapDATA”. The message
digest generator is applied on the message, i.e., “SharapDATA”,
in order to generate the message digest “messDigest” of the
sender’s message. The hash value in “messDigest” is then
stored in the application layer header of the hybrid FEC
code implementation. We specify a packet header for the
application level communication after the NS2 C++ header
structure as “hdr sharapApp”. This application layer header
structure is the format used whenever the application has a
message to transmit. After storing the message digest of the
message using this header structure, the message is handed
over to the transport layer agent “UdpSharapAgent” in the
“hdr sharapApp” format.

2) Raptor Encoder: The Raptor encoder is defined in “Rap-
torEncod.c” and “RaptorEncod.h” of our NS-2 hybrid FEC
code implementation. An application data (sender’s message
+ header) sent from the application layer and received at the
transport layer of the sender’s network by the “UdpSharapA-
gent” is first broken down into T data blocks. Each block,
having a unique ID “BID”, is then divided into k input symbols
Ω = (x1, .., xk). A symbol is simply a unit of data, meaning
that a block comprises of k number of data units. The size of
each symbol in bytes is l bytes. Every symbol in a block has
unique ID “SID”. A symbol is represented in our application
as “SharapSymb”. To reduce the complexity of fragmenting
and re-assembling of “SharapSymb” packets at the sender and
receiver’s networks respectively, we constrained the size of a
symbol to a maximum size l = 1450 bytes. This is because
the default maximum transmission unit (MTU) of the Ethernet
technology is 1500 bytes. We derived the symbol size of 1450
bytes using the formula:

Ethernet MTU - IP header - UDP header - Ethernet -
Application header = Symbol size

which results in 1500 - 20 - 8 - 14 - 8 = 1450 bytes.

The Raptor encoder is made up of two functional modules:
(i) pre-code and (ii) LT encoder. The pre-code involves the
application of an n × k binary matrix A, representing the
generator matrix of the pre-code on the k source symbols,
to obtain intermediate symbols ρ = (c1, ..., cΘ). Matrix A is
made up of four essential components. The components are
(i) the LDPC generator matrix, (ii) the Gray code generator
matrix, (iii) the LT code generator matrix, and (iv) the Robust
Soliton Distribution (RSD) [9], which is the degree distribution
used for the hybrid FEC code implementation. We used the
RSD as our degree distribution because it satisfies the two
design requirements of a suitable degree distribution stated in
[9]: (i) The degree distribution must ensure that on average few
encoding symbols are required to ensure the success of the LT
encoding process and subsequently the decoding process. (ii)
The degree distribution must ensure that the average degree of
the encoding symbols is as low as possible.

The LT encoder stage involves the random selection of
the intermediate symbols ρ = (c1, ..., cm), with m < k,



by the LT encoder to produce the encoded output symbols
τ = (z1, ..., zΘ). A pseudo random number generator is
used to generate the random values used in the LT encoder.
Each encoded output symbol is generated by the LT encoder
randomly selecting a degree d such that d lies between 1 and
k from the RSD.

The LT encoder also randomly selects a neighborhood
of connected d intermediate symbols. The set of chosen
intermediate symbols is then XORed by the encoder to obtain
an output symbol zx. The header of each encoded symbol
contains information necessary for a successful decoding of
the encoded symbols. The information includes the seed used
by the pseudo random number generator “SPRNG”, the block
identifier “BID”, which uniquely identifies the block from
which the symbol is obtained from, the “SID” representing
the symbol ID, the symbol size l, the degree d of the degree
distribution, and the list of neighbor indices “LNI”.

3) Raptor Decoder: The Raptor decoder, which operates
at the transport layer of the receiver’s network, is defined in
“RaptorDecod.cc” and “RaptorDecod.h” of the hybrid FEC
code implementation in NS-2. The Raptor decoder begins
the decoding of the encoded output symbols sent from the
sender’s network as soon as it receives Θ = k(1 + ε) encoded
symbols. This represents the threshold for the decoding process
of a Raptor code. In order for the Raptor decoder to be able
to decode the received encoded symbols, it will retrieve the
degree distribution d used during the encoding process from
the headers of the encoded symbols. It will also retrieve the
indices of the set of chosen intermediate symbols, which are
also stored in the encoded symbols headers. After retrieving
the necessary information, the decoder applies the pre-code on
the set of symbols that have been received and then applies
the LT code. The decoding process is complete if all the
input symbols in a block have been recovered to generate
back the original block. Where the decoding process fails,
the Raptor encoder waits for more encoded symbols to arrive
and tries again the decoding process. If no more additional
encoded symbol is received, the CRN can be suspected to be
experiencing jamming and the hybrid FEC code recovery block
scheme is used to help the system recover from such an attack.

B. Simulation Parameters

Table I presents the different simulation parameters that
were used in simulating the hybrid FEC code in the NS-2
extension for CRN.

TABLE I. SIMULATION PARAMETERS FOR THE HYBRID CODE

Parameter Value
1 NS2 version used Version 2.31 for CR
2 Type of Packet UDP
3 Simulation time 1000 seconds
4 Propagation Model Shadowing
5 Number of Channels per Radio 2
6 Number of Radios/interface 2
7 Routing Protocol AODV
8 MAC Protocol Macng
9 No of CR Nodes 10
10 Simulation Area Size 1000mx1000m
11 UDP Packet Size 1450 bytes
12 Number of Replications 100

In [8] the authors analyzed the different parameters neces-
sary for the successful implementation of Raptor codes, which
is also relevant for the hybrid FEC code. The objective of their
investigation was to determine the parameters that maximize
the speed of data transmission while at the same time decrease
the time of decoding the encoded symbols. Essentially, the
authors investigated the trade-off between performance, com-
putational complexity and resilience of the Raptor code. These
parameters include:

Number of input symbols k in a block: The analysis in [8]
asserted that small block sizes are beneficial in realizing high
encoding and decoding speed but that block sizes that are too
small, i.e., with k ≤ 32, will cause content switching overhead
for the CPU. As a result of this analysis we use block size
k = 1000 symbols for our simulation.

Length of input symbol l in bytes: In [8] it is stated that the
symbol size l has little or no influence on the encoding and
decoding speed. But it was observed that when the symbol
sizes are significantly large, a slight increase in the speed is
noticed. Since the encoding and decoding speed is slightly
favored by larger symbol sizes, putting into consideration the
Ethernet maximum MTU, we use a length of 1450 bytes, which
is the maximum UDP packet size specified for our simulation.

Number of Repair symbols ε: Using the analysis in [8], the
number of repair symbols that minimizes the overhead for our
chosen block size k = 1000 was discovered to be about 16
repair symbols. The analysis shows that 16 repair symbols used
for a block size of about 1000 symbols reduces the overhead
to about 1.56%. We therefore selected the same number of
repair symbols for our simulation.

C. Performance Measurement of the Hybrid Code

We now describe the simulation result of the hybrid FEC
code in NS-2 and analyze its performance compared with that
of the ordinary NS-2 FEC code with a focus on constant
jamming using as performance metrics throughput, packet
delivery ration, and packet loss ratio.

1) Throughput: The throughput of a network is defined as
the average rate of data successfully delivered by the network.
The average throughput is defined as the sum of packets
received at a layer, e.g., application layer, divided by the total
simulation time. Figures 2 and 3 present snapshots of the plots
of throughput against the simulation time for the fair case,
referring to a constant jamming scenario with a jamming rate
of 10%. Since we generated a large sequence of the same
experiment in our simulation, the cases shown in the figures
are the scenarios that are closest to the computed averages
of the total scenarios resulting from the same experiment.
The case of the ordinary FEC code is depicted in Figure 2,
where the code fails at every instance of transmissive value
fault. This is because any decoded data made up of corrupted
encoded symbols is dropped by the CRN. The ordinary FEC
code also fails whenever there is a decoding failure, i.e., when
the number of encoded symbols recovered at the destination
is less than k.

The impact of the same jamming scenario using the hybrid
FEC code is shown in Figure 3. One can see that the hybrid
FEC code was able to mitigate most jamming caused by the
constant jammer. The instances where the hybrid FEC code



fails, represented by zero throughput in the figure, were results
of one or combinations of the following five factors resulting
from the implementation of the recovery block for the hybrid
FEC code:

• The minimum encoded symbols k(1 + ε) received for a
successful decoding by the hybrid FEC code were corrupted
or manipulated (value fault). Therefore, the hybrid code waited
for more encoded symbols, i.e., increasing the value of ε,
thereby introducing a type of delay we refer to as “Iterative
Decoding Delay” (IDD). This accounts for the failure of the
network to deliver packets to the receiver whenever such delay
is experienced by the CR Network.

• Delay resulting from the time taken by CR nodes to relocate
from a suspected or potential source of jamming.

• Delay resulting from the time used by the CRN to re-
authenticate participating CR nodes in order to isolate a
potential jammer.

• Delay resulting from the time to switch from a jammed CCC
to another channel free of jamming by CR nodes.

• The failure of the recovery block due to non-implementation
of the retransmission procedure when UDP data is corrupted.
This retransmission procedure will only be implemented in an
application that is not delay sensitive.

Fig. 2. NS2 FEC Code Performance against 10% Constant Jamming

Figures 4 and 5 depict the snapshots for the moderate
case of constant jamming. This is when the rate of jamming
was 30%, resulting in increasing instances of value faults. In
Figure 4 it can be seen that the throughput of the ordinary
FEC code dropped significantly as the code fails at every
instance of transmissive value fault and whenever there is
a decoding failure of the FEC code. The hybrid FEC code
significantly outperforms the ordinary FEC code as seen in
Figure 5, where it was able to deliver higher throughput during
constant jamming. Nonetheless, the hybrid FEC code fails in
intervals, seen with zero throughput, due to the actions of the
aforementioned recovery block.

Figure 6 shows throughput during the worst case scenario,
where constant jamming is 100%. This is a total jamming
scenario that resulted into a zero throughput of the CRN

Fig. 3. Hybrid FEC Code Performance against 10% Constant Jamming

Fig. 4. NS2 FEC Code Performance against 30% Constant Jamming

Fig. 5. Hybrid FEC Code Performance against 30% Constant Jamming



Fig. 6. Hybrid FEC Code Performance against 100% Constant Jamming

without the implementation of the hybrid FEC code. The figure
shows that the ordinary FEC code was not able to mitigate
any instance of the 100% constant jamming and as a result,
no packet was delivered at the receivers by the CRN. In the
case of our hybrid FEC code, small spurts of packets were
delivered during the simulation, but fails intermittently as it
tried the recovery block procedures to cope with the high rate
of data corruption or manipulation of the constant jammer.

In summary, we observed that the hybrid FEC code largely
out-performs the ordinary FEC code as it successfully handles
most incidences of omissive and transmissive faults. It is
also noticeable that even when the rate of jamming was
100% characterized by increased rate of data corruption and
manipulation, the hybrid FEC code was still able to recover
some amount of data packets during the jamming, as they were
successfully delivered to the destinations. The hybrid FEC
code out-performs the NS-2 FEC because of the following
reasons: the efficient design of the hybrid FEC code algorithm
together with the recovery block implementation, and the
careful selection of simulation parameters that lead to efficient
performance of the hybrid FEC code.

2) Packet Delivery Ratio (PDR): The PDR is defined as the
ratio of the sum of packets received at a layer to the sum of
packets sent in the same layer. The PDR distinguishes between
a congested network and a network under jamming attack,
as a highly congested network can still produce a high PDR.
The recovery rate of an FEC code is the ratio of the number
of received encoded symbols to the total number of source
symbols. A low recovery rate arises if the number of received
encoded symbols is less than the number of source symbols.
Therefore, the efficiency of a FEC code is characterized by its
recovery rate.

Figure 7 shows the average PDR for the total number
of replications for different jamming rates, comparing the
ordinary FEC code with the hybrid FEC code. The superior
performance of the hybrid FEC code over the ordinary FEC
code is immediately noticeable. The PDR of the ordinary FEC
code drops significantly as the jamming rate increases. At 50%
jamming, the PDR of the ordinary FEC is about 45%. At the
jamming rate of 100%, the PDR of ordinary FEC drops to zero,

Fig. 7. PDR measurement of Hybrid FEC Code Performance against Constant
Jamming

meaning that the ordinary FEC code breaks down completely.
Unlike the ordinary FEC, the hybrid FEC, which maintains
very high PDR of about 70% even when the jamming rate
increases to 90%. It is also noticeable from the figure that at
a worst case jamming rate of 100%, i.e., total jamming, the
hybrid FEC code still maintains a high PDR of about 65%.
These high PDRs recorded by the hybrid FEC code mean that
the hybrid code is robust against DoS activities of constant
jammers as the hybrid FEC code was able to recover and
deliver a high percentage of data that was successfully sent
by the sender. When looking at the 100% jamming scenario
the reader should not get confused by the high PDR and the
sparce throughput in Figure 6, as the network can have a low
throughput but a high PDR.

3) Packet Loss Ratio (PLR): The PLR is defined as Number
of lost packet / (Number of lost packet + Number of packets
received successfully). The PLR is closely related with the
quality of service (QoS) of the hybrid FEC code. It also gives
a more accurate estimation of the recovery rate of the hybrid
code because it does not put into consideration the number of
data packets sent from the sender, but calculates the rate at
which the hybrid code is able to recover successfully encoded
input symbols at the receiver. A high recovery rate implies
that encoding, decoding, SHA-2 hash computation and the
processes through the action of the recovery block for the
hybrid FEC code are computationally efficient in the sense that
most of the encoded input symbols were successfully recovered
without error at the receiver. A low PLR indicates that a high
percentage of the packets were received either uncorrupted
or that the corrupted packets were recovered by the recovery
action of the hybrid code’s recovery block. The relationship
between the recovery rate of the hybrid FEC code and the
PLR can thus be stated as Recovery Rate = 1 - PLR.

Figure 8 is the plot of average packet loss ratio (PLR)
against jamming percentage. The average represents the av-
erage PLR for the total number of simulations for the same
experiment for each rate of jamming. It can be seen in the
figure that the hybrid FEC code maintains a very low PLR
for the different jamming rate of the constant jammers. The



Fig. 8. PLR measurement of Hybrid FEC Code Performance against Constant
Jamming

ordinary FEC code has low PLR up to a jamming rate of
30%, but beyond this the code breaks down significantly as
the PLR increases to close to 70%, even when the jamming
rate is just about 60%. Since low PLR implies a high recovery
rate, it follows that the hybrid FEC code maintains high
recovery rate even when the rate of jamming is 100%. The
high recovery rate of the hybrid FEC code recorded against that
of the ordinary FEC code implies that the algorithms of the
encoding, decoding and SHA-2 hash computation processes
through the action of the recovery block for hybrid FEC
code are computationally more efficient and robust against the
different rate of jamming than that of the ordinary FEC code.

4) Summary of Statistical Analysis: Table II presents the
summary of the statistical analysis of the result of our simu-
lations for constant jamming with respect to PLR. Since PLR
gives a good estimate of the recovery rate of the hybrid FEC
code, and hence the efficiency of its encoding and decoding
algorithms, we only present the PLR analysis for constant jam-
ming. The 10% jamming represents the fair case of constant
jamming, the 30% jamming represents the moderate case of
constant jamming and the 100% represents the worst case of
constant jamming.

TABLE II. SUMMARY OF STATISTICAL ANALYSIS FOR AVERAGE PLR
- CONSTANT JAMMING

Min. Max. Ave. Stand. Dev.
0% Jamming 20.73 25.87 23.24 1.19
10% No FEC 32.15 48.84 36.28 1.67
10% NS FEC 22.02 30.76 23.56 1.22
10% Hybrid FEC 21.18 26.42 22.26 1.40
30% No FEC 50.00 62.73 50.70 1.56
30% NS FEC 32.03 37.53 34.86 1.64
30% Hybrid FEC 22.49 27.86 23.83 1.51
100% No FEC 100 100 100 0
100% NS FEC 100 100 100 0
100% Hybrid FEC 28.54 33.43 30.42 1.61

V. CONCLUSIONS

In this paper, we investigated the performance of CSS CRN
operating in the presence of CR constant jammers that are

capable of introducing transmissive and omissive value faults.
We discovered that existing anti-jamming solutions are not
able to handle these fault types and consequently proposed
a hybrid FEC code capable of mitigating the entire class of
faults identified in this adversarial model. We simulated and
investigated the performance of the proposed solution in NS-2.
The result of our analysis shows that our proposed solution is
efficient and robust against any level of DoS caused by constant
jammers in a CSS CR network. We shall be presenting the
result of our simulation and analysis for other jamming types
in separate papers.
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