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ABSTRACT 

Biological populations are dynamic in both space and time, that is, 
the population size of a species fluctuates across their habitats 
over time. There are rarely any static or fixed size populations in 
nature. In evolutionary computation (EC), population size is one 
of the most important parameters and it received attention from 
EC pioneers from the very beginning. Despite many attempts to 
optimize the population sizing, the prevailing scheme in EC is still 
possibly the simplest — the fixed size population. This is in 
strong contrast with population entities in nature. In this paper, we 
explore the effects of dynamic (fluctuating) populations on the 
performance of genetic algorithms (GA). In particular, we test 
five dynamic population-sizing patterns: random fluctuating 
population, increasing population, decreasing population, bell-
shaped population, and inverse bell-shaped population and 
compare them against the fixed size population. Our experiment 
shows very promising results that the dynamic populations 
perform more efficiently than the traditional fixed size 
populations, in terms of the number of fitness function evaluations 
and memory space requirements.  We also analyze why the 
dynamic populations should perform superior to the fixed size 
populations from the biological perspective.  
 
Categories and Subject Descriptors 
Evolutionary Computation, Genetic Algorithms. 
 
General Terms Algorithms.   
 
Keywords: Dynamic Population, Fluctuating Population, 
Genetic Algorithms, Evolutionary Computation, Ecological 
Computation.   

 

1. INTRODUCTION 
One of the trademark features of evolutionary computation is  
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the use of a group of operators, rather than a single operator, to 
search the solution space. These operators are termed individuals, 

and they form a population. Both the concepts of individual and 
population are inspired by biology. Obviously, population sizing 
is a hardly escapable issue for any evolutionary computation 
paradigms.  Therefore, it comes as no surprise that the pioneers of 
evolutionary computing, such as De Jung (1975) [1], Holland 
(1975) [6], Goldberg (1989) [3], already studied the population 
sizing issues from the very beginning of EC. What is perhaps 
surprising is that more than three decades later, we still largely 
depend on the experience or ad hoc trial-and-error approach to set 
the population size. In their recent monograph for evolutionary 
computing, Eiben and Smith (2003) indicated: “In almost all EA 
applications, the population size is constant and does not change 
during the evolutionary search” [2]. Multiple factors may have 
contributed to the establishment of the status quo ante. We 
believe two of those factors are particularly worthy of mentioning. 
The first is the dominant influence of population genetics. Darwin 
founded the evolutionary theory, but it was the population 
geneticists, such as Fisher and Wright, who first developed the 
mathematical theory of evolution and united the evolution theory 
with genetics. Two of the earliest population genetics models, the 
Wright-Fisher population model and the Hardy-Weinberg law, 
assumed population size is constant or infinite. The reality is that 
the fixed size in early population genetics models is nothing more 
than a mathematical convenience.  We believe the next reason for 
the status quo is that the population sizing is deceivingly simple. 
In reality, it is an extremely complex issue.  
 
It seems to us that to address the first factor, evolutionary 
computation should be more active in embracing ecological 
aspects of evolutionary theory.  Genetics is only one of the 
foundations of evolutionary theory, and Darwin actually formed 
his evolution theory unbeknownst to the genetic materials. The 
mathematical theory of evolution can be derived from ecological 
perspectives without explicitly invoking genetics. For the second 
factor, we believe that new approaches and thinking might be 
necessary to achieve breakthroughs in the field.  
 

In this paper, we report our preliminary experimental exploration 
of population sizing. In section 2, we argue that dynamic 
(fluctuating) populations should be more appropriate for 
evolutionary computation than fixed size populations, based on 
the ecological principles of natural population dynamics.  We then 
present test results of our hypothesis with the schemes that mimic 
the population dynamics in nature. 

2.  ECOLOGICAL PRINCIPLES OF 
POPULATION DYNAMICS AND 
EXPERIMENT DESIGN. 
2.1. Ecological Principle 



Biological populations are dynamic in both space and time. In 
other words, the population size of a species fluctuates across 
their habitats over time.  There are hardly any static or fixed size 
populations in nature. The closest to static or fixed size 
populations in the biological world are the populations that reach 
the so-called steady equilibrium states, a concept many biologists 
consider only exists in simplified mathematical models. On the 
contrary, biological populations frequently demonstrate stochastic 
fluctuations, and catastrophic or chaotic jumps and falls in many 
field animal populations are the norm rather than the exception.  

 
It is believed that population dynamics is regulated by extremely 
complex mechanisms. Many mathematical models have been 
proposed to study population dynamics, from Sigmoid curve, 
which originated in population study and later found numerous 
applications in other fields, Power Law and Chaos theory models, 
to more realistic large-scale stochastic simulation models.  If we 
can conceive the different time scales between "ecological time" 
(tens or hundreds of years) and "evolutionary time" (in thousands 
or millions of years), population dynamics (or size changes) is 
probably the most appropriate parameter to measure the "fitness" 
of a species. This is because population dynamics demonstrate the 
population's capability in   exploring and exploiting their potential 
habitats.  Furthermore, the interaction between populations and 
their environment are frequently instantaneous.   
 

It is recognized that evolutionary computing is a precise subject 
dealing with algorithms, and it does not have to map or mirror the 
biological realities exactly, to be an effective algorithm. However, 
the fact that both nature and evolutionary computing follow 
Darwin's evolution principles, and that population dynamics is the 
most fundamental property of a species (especially in ecological 
time), makes one wonder what implications may be generated 
when the  dynamics mechanisms exhibited by natural populations 
are introduced into evolutionary computing. Based on this 
consideration, we try to seek inspirations from insect population 
dynamics in nature.  
 

We adopt the following five simple schemes to mimic the natural 
insect population dynamics. These are: the random fluctuating 
population, increasing population, decreasing population, “bell-
shaped” population (also named "mountain-shaped) and inverse 
“bell-shaped” population (also named "valley-shaped" 
population). Their meanings are largely self-explanatory, and our 
motivation for choosing them will become clear when we 
introduce the experiment results in the next section.  
  
A comprehensive and comparative study of the implications of 
biological population dynamics in evolutionary computing is 
beyond the scope of this paper. Therefore, in the paper, we 
directly focus on one central issue of the population sizing, that is, 
do fluctuating populations perform better than conventional fixed 
size populations in evolutionary computing?  We generally use 
the terms “fluctuating populations”, “dynamic populations”, 
“variable populations”, and population dynamics interchangeably 
in this article. Although these terms are not exactly the same in 
biology and each of them has a precise definition (in biology), we 
found that it is still premature to define them accurately in the 

context of evolutionary computing. We believe that this 
interchangeable usage will not cause undue confusion.  
 

2.2. Test Problem and Experiment Design 
Assume a problem is represented as a string of bits of size L=32.  
This string is broken up into blocks of length B.  The problem is 
to find blocks in which all bits are set to one.  The fitness function 
is the number of blocks satisfying this requirement.  If B does not 
divide L evenly, the leftmost block will be of different size.  The 
following are four examples of bit streams and their 
corresponding fitness values (F).  The first and third have 
optimum solutions.   

  
L = 32, B = 4, F=8: 1111 1111 1111 1111 1111 1111 1111 1111   
L = 32, B = 4, F=2: 0000 1111 0110 0100 0111 1010 1111 1010   
L = 32, B = 7, F=5: 1111 1111111 1111111 1111111 1111111  
L = 32, B = 7, F=2: 1111 0000110 0001000 1111111 0011010   
 
The hypothesis we try to test in the experiment with the standard 
Genetic Algorithm (GA) is whether the fluctuating populations 
(dynamic population sizes) outperform the conventional fixed-size 
populations.  Although complex mathematical models can be used 
to simulate the population dynamics between generations, for 
simplicity, we choose to implement a set of simple schemes that 
characterize population dynamics as three stages: beginning, 
intermediate, and ending periods.  We also characterize a 
population size-type (or simply type) as small, medium or large, in 
terms of the   population size. We assign various population types 
to different stages.  Within each combination of the stage and 
type, the population fluctuates randomly within controlled ranges. 
The controlled range is an interval between 2 and the range-
ceiling, [2, range-ceiling].  The floor of the interval 2 represents 
the minimum population size, that is, two individuals. The range-
ceiling is the maximum size the population can reach in the 
interval.  The population fluctuation is designed to follow the 
uniform distribution with parameters, a = 2 and b = range-ceiling. 
Therefore, the mathematical expectation or mean equals (b+a)/2, 
or (range-ceiling+2)/2, according to the statistics of the uniform 
distribution.  

The small, medium and large size types are quantified as follows: 
[2, psize/3] for small population, (psize/3, 2*psize/3] for medium 
population, and (2*psize/3, psize] for large population, 
respectively. That is, the whole population size interval [2, psize] 
is divided equally into three segments or sub-intervals. Obviously, 
each of the three sub-intervals has its own ceiling; they are 
psize/3, 2*psize/3, psize for small, medium, and large, 
respectively.  
 

With the stage and size-type defined, we devise five dynamic 
population schemes as well as the fixed population size, which 
acts as the default control treatment.   
(1) Fixed Size Population. This is the default in standard GA. Let 
p-size be the size of population, which is fixed throughout 
generational iterations.  
(2) Random Fluctuating Population.  This is the basic mode for 
our fluctuating population schemes. The population fluctuates 
randomly in the interval of [2, psize], following the uniform 
random distribution. Therefore, the mean population size in this 
scheme is equal to (psize+2)/2. It is noted that the interval ceiling 



psize here is set to equal the psize in the fixed population size in 
our experiment. This does not have to be the case, as we will 
explain later.  

(3) Increasing Population is characterized by the initial small 
population in the beginning, medium sized population in the 
intermediate stage, and large sized population in the ending stage.  
As pointed out previously, within each stage, population 
randomly fluctuates in a range determined by the range-ceiling of 
specific size-type. The maximum population size of this scheme is 
psize, which takes the same value of psize as in the standard GA 
in our experiment, but this does not have to be the case either.  

 (4) Decreasing Population is characterized with the initial large 
population in the beginning, medium sized population in the 
intermediate stage, and small population in the ending period. 
This is in contrast with the "increasing population" scheme; all the 
other characteristics are the same as in the increasing populations.  
(5) Bell-shaped Population (also named as "Mountain-shaped" 
population) is characterized by the medium population sizes in the 
beginning and ending periods, and large population size in the 
intermediate stage.  The other characteristics can be inferred 
similarly to the previous ones.  

(6) Inverse Bell-shaped Population (also named as "Valley-
shaped" population) is characterized by the large population sizes 
in the beginning and ending periods, and medium population size 
in the intermediate stage. The other characteristics can be inferred 
similarly to the bell-shaped population as mentioned above.  
 

In summary, with the above schemes, the scheme (1) acts as 
control treatment, with the fixed size population, psize.  In the 
dynamic population schemes, (2)-(6), the population size 
fluctuates randomly, but the maximum size will never exceed the 
psize, the size set for the fixed size population in (1).  The mean 
population sizes can be computed from the above definitions of 
stage and size-type and should vary from scheme to scheme, 
ranging from approximately 33% to 50% of the psize. In addition, 
each of the fluctuating population schemes has different patterns 
of fluctuation, as characterized by the unique combination of the 
stage (beginning, intermediate, or ending) and the size-type 
(small, medium, or large).   

 
2.3.   Why adopt such a complex experiment design? 
One may wonder why we use such a complex experiment design. 
Besides mimicking the natural populations, the other major 
objective is to devise valid comparisons between the fixed size 
populations and the dynamic populations. The design we take 
might be somewhat counter-intuitive. Many of the previous 
studies on population-sizing focused on searching for the 
optimum population size, or a simple procedure or formula. We 
consider that this might be one of the important reasons for the 
status quo in the population sizing, since we doubt whether there 
is a simple answer. Even if there is an optimum population size, it 
may be a "moving" target and may not be easily captured by a 
straightforward formula. Most of the existing studies often test 
multiple population sizes, say, 16, 32, 64, 128, ..., and then try to 
find the optimum one. The problem with this methodology is 
obvious. For example, there may not be a fixed optimum size and, 
even if there is one, it may not be in the range being tested. 
Furthermore, there are potentially infinite numbers of candidates 

of optimum values to test. Given these recognized difficulties, our 
strategy is to set a fixed task, and then test which scheme is more 
efficient. The smaller the population size is, the more efficient the 
scheme is, since a small population requires fewer fitness 
evaluations and memory storage space.    
 

For example, to compare the fixed size population with the 
random fluctuating population, let the population size for the 
standard fixed-size population GA be, psize = 100.  Accordingly, 
let the population size for the random fluctuating population be 
controlled by a random variable with uniform distribution in the 
range [2, psize]. That is, the maximum population size the random 
fluctuating scheme may ever reach is equal to the fixed population 
size, psize = 100, in this case. The mean size of the fluctuating 
population is therefore, (psize+2)/2 = 51 ≈ 50 = psize*50%.   
Similarly, we can compute the mean population sizes for the other 
schemes, which range from 33% to 50% of the psize. We hope, by 
controlling the interval ceiling, which equals psize in this case, 
that the random fluctuating populations can still be comparable 
with the fixed size populations.   
 
It is obvious that the maximum fitness evaluations for the 
randomly fluctuating population are only 1/2 of those in the fixed 
size population.  One may immediately notice that the fluctuating 
populations are artificially disadvantaged in the comparisons by 
our schemes. That is, the mean size of the randomly fluctuating 
population is at most 50% of the fixed size population.  An 
alternative, which would be fair to both the fluctuating and fixed 
size populations, is to set the ceiling in random fluctuating 
population to double the size of the fixed-size population 
(2*psize), since then the mean population size for the fluctuating 
population would be equal to the psize.  We were concerned that 
the artificial disadvantage against the fluctuating population may 
turn out to be an advantage for it.  We found that the counter-
intuitive scenario is unlikely for two reasons: (1) Although the 
scheme limits the average population size in fluctuating 
population to only 1/2 of the fixed size population, our 
comparison is based on the actual count of the number of fitness 
evaluations, not on the pre-assigned ceilings. In other words, we 
counted and compared the accumulated population size before the 
all 1-bits string is found, or the actual number of individuals 
“mobilized” in the search for optimum solutions. (2) In pre-
testing, we tried to estimate the approximate threshold of psize, 
the size at which fixed population can find the solution in a 
reasonably short time.  In other words, if we set psize smaller than 
the threshold psize, with the fixed-size population scheme we may 
fail to obtain the solution at all within a reasonable period. This 
also explains our choices of test values reported in Table 2. On the 
other hand, the fluctuating population rarely needs more than 1/2 
of the psize to find solutions. This pre-testing is similar to what 
many existing studies have adopted, such as setting psize to 32, 
64, 128, ..., from which we get the approximate threshold values 
for further testing.   
 

3.  RESULTS AND DISCUSSION  
3.1 Results  
The experimental results are summarized in Tables 1 and 2. In 
Table 1, max trials refers to the maximum number of tests run. 
Each test is an independent experiment; the multiple trials are run 



to calculate the statistics of performance parameters.  The other 
parameters are standard GA parameters. Max Generations refer to 
the total number of generations iterated per trial.   

Table 1. The GA Parameters Except for the Block  
 and Population Sizes.  
 

Max Trials 100 
Max Generations 1000 
Crossover Prob. 0.9 (2-pt crossover) 
Mutation 1/32 (bit flip) 
Initial Population 32-bits random strings 
Selection  best 2 elitism  
Halting  find optimum or exceed 

the maximum (105) 
 
Each experiment starts with a population of randomly generated 
32-bits strings of 0 and 1, or the chromosomes. The program stops 
whenever the optimum solution, all 1-bits string (111...111), is 
found, or reaches the maximum evaluations set by the product of 
maximum trials and the generations per trial.  In the latter case, it 
may fail to find the optimum solution.  

 
We define the parameter PopuEvalIndex as the product of 
(psizeReal)*(meanGenerations), that is,  

 
PopuEvalIndex = [(psizeReal)*(meanGenerations)]   
 
As explained previously, due to the additional complexity with the 
fluctuating populations, we actually count the population sizes in 
the program and compute the mean population size per 
generation, psizeReal. Similarly, the parameter meanGenerations 
is the mean of the generations iterated per trial, before it finds the 
optimum all 1-bits string. It is computed as the total generations 
divided by the total number of trials.  
 

We therefore use the parameter PopuEvalIndex, defined above, 
as a measure to compare dynamic population schemes with the 
standard fixed-size populations.  The small PopuEvalIndex 
indicates that fewer evaluations of fitness functions and other 
associated computations (mutations, crossovers) are needed.  In 
addition, it also implies that less memory space is needed for 
storing the individual information.  Although the exact 
quantification of the savings may be complex, the difference in 
the magnitude of PopuEvalIndex should be a good indicator for 
the performance of each scheme.    Table (2) is a summary of the 
values of the PopuEvalIndex from our experiments.    . 

  

Table 2. Comparisons of Fitness Evaluations (PopuEvalIndex) for Various Population Sizing Schemes.   
Treatment 
(B, psize) 

Fixed 
Population 

Random  
Population 

Increasing 
Population 

Decreasing 
Population 

"Mountain"- 
Shaped P. 

"Valley"- 
Shaped P. 

(1, 64) 59171 29779 [50%] N/A* 22560 [38%] 26470 [45%] 27072 [46%] 

(4, 64)  N/A* 32035 [N/A] N/A* 24269  26734 29123  

(7, 128) 124474 61503 [49%] N/A* 47088 [38%] 53468 [43%] 56698 [46%] 

(8, 256)  247424 125537 [51%] 93185 [38%] 94152 [38%] 101826 [41%] 114748 [46%] 

(14, 512) 504960 252567 [50%] 191000 [38%] 190168 [38%] 213000 [42%] 230777 [46%] 

(17, 1024) 982497 N/A* 377254 [38%] N/A* N/A* N/A* 

* N/A, Failed to find the optimum fitness with the fixed population. Consequently, the comparisons (%) cannot be computed.  
 

In Table 2, the first column displays the various treatments we 
tested.  The first element in the pair is the block size (B), and the 
second element is the psize. As explained in detail in section 2, 
psize is the population size for the fixed populations, but for the 
fluctuating populations, it serves as the ceilings for the 
population-sizing interval [2, psize]. The percentage, e. g, [38%], 
following each PopuEvalIndex, is computed as the 
PopuEvalIndex for the specific scheme divided by the 
PopuEvalIndex for the corresponding fixed size population in the 
same treatment. It indicates the relative performance difference.   
From Table 2, we draw the following preliminary conclusions:  

(1) The results reveal that the fluctuating populations consistently 
outperform the fixed size populations, except for some cases of   
the increasing population scheme.  The improvement percentages 
range from 38% to 50% approximately. The increasing 
population scheme failed to find the optimum solution in the three 
smaller block sizes (B = 1, 4, 7), but performed equally well in the 
three larger block sizes (B = 8, 14, 17), compared with the other 
fluctuating populations.  The fixed size population also failed in 

the case of block size B=4. Whenever there is a failure to find the 
optimum solution, we skip the comparisons. In every case that the 
comparison is made, the fluctuating population prevails.   
(2) The failure to find the optimum solution with the "increasing 
population" scheme is interesting to note. Although this is in 
contrast with the natural populations, it may indeed make sense in 
EC, at least with some problems such as the one we experimented 
with. This implies that at the beginning, more individuals (a large 
population size) are needed when the search space is huge. 

What is also noteworthy is that, in the case of block size = 17, the 
increasing population indeed found the optimum solution, but the 
other fluctuating schemes failed. This is in strong contrast to the 
phenomenon that the increasing population failed in the three 
smaller block sizes.  It also suggests that, for the large block size 
(B), the large population size has advantage. We re-ran the failed 
cases with the increased range-ceiling, but still bounded by the 
constraint, range-ceiling ≤ 2*psize. The constraint guarantees that 
the mean population size in fluctuation populations will still not 
exceed the psize, the value set for the fixed size population to be 



compared.  With the increased size, but still bounded by the 
constraint, we were able to find the optimum solutions.  This 
means that under a fair condition — both fixed and fluctuating 
populations are of the same size — fluctuating populations can 
perform just as well as fixed populations.  In other words, in these 
cases our experiment design disadvantages the fluctuating 
population too severely by restricting their average size to only 
1/2 of the fixed population size (psize).  

(3) At this stage, we do not draw definite conclusions about the 
differences among the various fluctuating population schemes. 
The focus of this preliminary experiment is to test whether the 
fluctuating or dynamic populations generally outperform the 
traditional fixed size populations. We are continuing the study to 
further characterize the fluctuating populations.   

    
3.2 Discussion  
Despite the consistent and promising test results, we are not 
overly optimistic about the potential of devising a universally 
applicable procedure or formula for sizing the populations in EC.  
Given the establishment of the no-free-lunch theorem (NFL) [7], 
we tend to think that the fluctuating populations may simply push 
the "bounds" tighter. In other words, the traditional fixed size 
populations simply waste resources and new schemes are more 
efficient because they adjust population sizes dynamically.  What 
happens here, and perhaps in large part of the evolutionary 
computation, may be that we are simply trying to push the 
obstacles as far away as possible from the boundary. 
Nevertheless, the improvement in tightening the bounds is still of 
significant practical values.  
 

We suggest that one of the most convenient approaches to taking 
advantages from the fluctuating populations can be using it as a 
more natural survival selection mechanism. This is also consistent 
with the ecological principles in nature in the ecological times.  
Nature never assigns an exact quota to a population or a species.  
A species' global population size on earth, in space and time, is 
determined by its fitness. The fitness itself is dynamic, depending 
on its adaptability to the environment.  Some species become 
extinct, but others prosper. The most obvious demonstration of the 
prosperity of a species is the size of its populations. Nature has 
both positive and negative feedback mechanisms to regulate 
population size, which leads to constant fluctuations. If we accept 
the notion that, in nature, the selection that occurred in ecological 
times, can simply be expressed as the fluctuation of population 
numbers, then the principle that the fittest survives means that a 
species' populations accumulate more individuals. This may be a 
more natural selection mechanism than what is currently adopted 
in the survivor selection in evolutionary computing. The problem 

with some of the current survivor selection mechanisms, which 
keep the fixed size population from generation to generation, is 
arguably analogous to using the same number of soldiers in 
different stages or battles of a war.  The ideal situation is to adjust 
the numbers based on strategies, tactics, logistics, etc.  We hope 
that this study will stimulate the efforts to use the fluctuating 
population as a more natural survival selection mechanism.   

 

Finally, it should be pointed out that there exist some excellent 
studies on population sizing, both experimentally and 
theoretically, such as [4][5], besides the early research conducted 
by EC pioneers such as [1][3][6]. Due to the space constraints, we 
can only focus on reporting our preliminary exploration on this 
issue. Regrettably, we have to delay the literature review to a 
follow-up research on the same topic. 
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