
Dynamic Populations in Genetic Algorithms
 Zhanshan (Sam) Ma
 University of Idaho
 Computer Science Dept.
 Moscow, ID 83843, USA
 sam@cs.uidaho.edu

 Axel W. Krings
 University of Idaho
 Computer Science Dept.
 Moscow, ID 83843, USA
 krings@cs.uidaho.edu

ABSTRACT

Biological populations are dynamic in both space and time, that is,
the population size of a species fluctuates across their habitats
over time. There are rarely any static or fixed size populations in
nature. In evolutionary computation (EC), population size is one
of the most important parameters and it received attention from
EC pioneers from the very beginning. Despite many attempts to
optimize the population sizing, the prevailing scheme in EC is still
possibly the simplest — the fixed size population. This is in
strong contrast with population entities in nature. In this paper, we
explore the effects of dynamic (fluctuating) populations on the
performance of genetic algorithms (GA). In particular, we test
five dynamic population-sizing patterns: random fluctuating
population, increasing population, decreasing population, bell-
shaped population, and inverse bell-shaped population and
compare them against the fixed size population. Our experiment
shows very promising results that the dynamic populations
perform more efficiently than the traditional fixed size
populations, in terms of the number of fitness function evaluations
and memory space requirements. We also analyze why the
dynamic populations should perform superior to the fixed size
populations from the biological perspective.

Categories and Subject Descriptors
Evolutionary Computation, Genetic Algorithms.

General Terms Algorithms.

Keywords: Dynamic Population, Fluctuating Population,
Genetic Algorithms, Evolutionary Computation, Ecological
Computation.

1. INTRODUCTION
One of the trademark features of evolutionary computation is
__
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ACM SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.
Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

the use of a group of operators, rather than a single operator, to
search the solution space. These operators are termed individuals,

and they form a population. Both the concepts of individual and
population are inspired by biology. Obviously, population sizing
is a hardly escapable issue for any evolutionary computation
paradigms. Therefore, it comes as no surprise that the pioneers of
evolutionary computing, such as De Jung (1975) [1], Holland
(1975) [6], Goldberg (1989) [3], already studied the population
sizing issues from the very beginning of EC. What is perhaps
surprising is that more than three decades later, we still largely
depend on the experience or ad hoc trial-and-error approach to set
the population size. In their recent monograph for evolutionary
computing, Eiben and Smith (2003) indicated: “In almost all EA
applications, the population size is constant and does not change
during the evolutionary search” [2]. Multiple factors may have
contributed to the establishment of the status quo ante. We
believe two of those factors are particularly worthy of mentioning.
The first is the dominant influence of population genetics. Darwin
founded the evolutionary theory, but it was the population
geneticists, such as Fisher and Wright, who first developed the
mathematical theory of evolution and united the evolution theory
with genetics. Two of the earliest population genetics models, the
Wright-Fisher population model and the Hardy-Weinberg law,
assumed population size is constant or infinite. The reality is that
the fixed size in early population genetics models is nothing more
than a mathematical convenience. We believe the next reason for
the status quo is that the population sizing is deceivingly simple.
In reality, it is an extremely complex issue.

It seems to us that to address the first factor, evolutionary
computation should be more active in embracing ecological
aspects of evolutionary theory. Genetics is only one of the
foundations of evolutionary theory, and Darwin actually formed
his evolution theory unbeknownst to the genetic materials. The
mathematical theory of evolution can be derived from ecological
perspectives without explicitly invoking genetics. For the second
factor, we believe that new approaches and thinking might be
necessary to achieve breakthroughs in the field.

In this paper, we report our preliminary experimental exploration
of population sizing. In section 2, we argue that dynamic
(fluctuating) populations should be more appropriate for
evolutionary computation than fixed size populations, based on
the ecological principles of natural population dynamics. We then
present test results of our hypothesis with the schemes that mimic
the population dynamics in nature.

2. ECOLOGICAL PRINCIPLES OF
POPULATION DYNAMICS AND
EXPERIMENT DESIGN.
2.1. Ecological Principle

Biological populations are dynamic in both space and time. In
other words, the population size of a species fluctuates across
their habitats over time. There are hardly any static or fixed size
populations in nature. The closest to static or fixed size
populations in the biological world are the populations that reach
the so-called steady equilibrium states, a concept many biologists
consider only exists in simplified mathematical models. On the
contrary, biological populations frequently demonstrate stochastic
fluctuations, and catastrophic or chaotic jumps and falls in many
field animal populations are the norm rather than the exception.

It is believed that population dynamics is regulated by extremely
complex mechanisms. Many mathematical models have been
proposed to study population dynamics, from Sigmoid curve,
which originated in population study and later found numerous
applications in other fields, Power Law and Chaos theory models,
to more realistic large-scale stochastic simulation models. If we
can conceive the different time scales between "ecological time"
(tens or hundreds of years) and "evolutionary time" (in thousands
or millions of years), population dynamics (or size changes) is
probably the most appropriate parameter to measure the "fitness"
of a species. This is because population dynamics demonstrate the
population's capability in exploring and exploiting their potential
habitats. Furthermore, the interaction between populations and
their environment are frequently instantaneous.

It is recognized that evolutionary computing is a precise subject
dealing with algorithms, and it does not have to map or mirror the
biological realities exactly, to be an effective algorithm. However,
the fact that both nature and evolutionary computing follow
Darwin's evolution principles, and that population dynamics is the
most fundamental property of a species (especially in ecological
time), makes one wonder what implications may be generated
when the dynamics mechanisms exhibited by natural populations
are introduced into evolutionary computing. Based on this
consideration, we try to seek inspirations from insect population
dynamics in nature.

We adopt the following five simple schemes to mimic the natural
insect population dynamics. These are: the random fluctuating
population, increasing population, decreasing population, “bell-
shaped” population (also named "mountain-shaped) and inverse
“bell-shaped” population (also named "valley-shaped"
population). Their meanings are largely self-explanatory, and our
motivation for choosing them will become clear when we
introduce the experiment results in the next section.

A comprehensive and comparative study of the implications of
biological population dynamics in evolutionary computing is
beyond the scope of this paper. Therefore, in the paper, we
directly focus on one central issue of the population sizing, that is,
do fluctuating populations perform better than conventional fixed
size populations in evolutionary computing? We generally use
the terms “fluctuating populations”, “dynamic populations”,
“variable populations”, and population dynamics interchangeably
in this article. Although these terms are not exactly the same in
biology and each of them has a precise definition (in biology), we
found that it is still premature to define them accurately in the

context of evolutionary computing. We believe that this
interchangeable usage will not cause undue confusion.

2.2. Test Problem and Experiment Design
Assume a problem is represented as a string of bits of size L=32.
This string is broken up into blocks of length B. The problem is
to find blocks in which all bits are set to one. The fitness function
is the number of blocks satisfying this requirement. If B does not
divide L evenly, the leftmost block will be of different size. The
following are four examples of bit streams and their
corresponding fitness values (F). The first and third have
optimum solutions.

L = 32, B = 4, F=8: 1111 1111 1111 1111 1111 1111 1111 1111
L = 32, B = 4, F=2: 0000 1111 0110 0100 0111 1010 1111 1010
L = 32, B = 7, F=5: 1111 1111111 1111111 1111111 1111111
L = 32, B = 7, F=2: 1111 0000110 0001000 1111111 0011010

The hypothesis we try to test in the experiment with the standard
Genetic Algorithm (GA) is whether the fluctuating populations
(dynamic population sizes) outperform the conventional fixed-size
populations. Although complex mathematical models can be used
to simulate the population dynamics between generations, for
simplicity, we choose to implement a set of simple schemes that
characterize population dynamics as three stages: beginning,
intermediate, and ending periods. We also characterize a
population size-type (or simply type) as small, medium or large, in
terms of the population size. We assign various population types
to different stages. Within each combination of the stage and
type, the population fluctuates randomly within controlled ranges.
The controlled range is an interval between 2 and the range-
ceiling, [2, range-ceiling]. The floor of the interval 2 represents
the minimum population size, that is, two individuals. The range-
ceiling is the maximum size the population can reach in the
interval. The population fluctuation is designed to follow the
uniform distribution with parameters, a = 2 and b = range-ceiling.
Therefore, the mathematical expectation or mean equals (b+a)/2,
or (range-ceiling+2)/2, according to the statistics of the uniform
distribution.

The small, medium and large size types are quantified as follows:
[2, psize/3] for small population, (psize/3, 2*psize/3] for medium
population, and (2*psize/3, psize] for large population,
respectively. That is, the whole population size interval [2, psize]
is divided equally into three segments or sub-intervals. Obviously,
each of the three sub-intervals has its own ceiling; they are
psize/3, 2*psize/3, psize for small, medium, and large,
respectively.

With the stage and size-type defined, we devise five dynamic
population schemes as well as the fixed population size, which
acts as the default control treatment.
(1) Fixed Size Population. This is the default in standard GA. Let
p-size be the size of population, which is fixed throughout
generational iterations.
(2) Random Fluctuating Population. This is the basic mode for
our fluctuating population schemes. The population fluctuates
randomly in the interval of [2, psize], following the uniform
random distribution. Therefore, the mean population size in this
scheme is equal to (psize+2)/2. It is noted that the interval ceiling

psize here is set to equal the psize in the fixed population size in
our experiment. This does not have to be the case, as we will
explain later.

(3) Increasing Population is characterized by the initial small
population in the beginning, medium sized population in the
intermediate stage, and large sized population in the ending stage.
As pointed out previously, within each stage, population
randomly fluctuates in a range determined by the range-ceiling of
specific size-type. The maximum population size of this scheme is
psize, which takes the same value of psize as in the standard GA
in our experiment, but this does not have to be the case either.

 (4) Decreasing Population is characterized with the initial large
population in the beginning, medium sized population in the
intermediate stage, and small population in the ending period.
This is in contrast with the "increasing population" scheme; all the
other characteristics are the same as in the increasing populations.
(5) Bell-shaped Population (also named as "Mountain-shaped"
population) is characterized by the medium population sizes in the
beginning and ending periods, and large population size in the
intermediate stage. The other characteristics can be inferred
similarly to the previous ones.

(6) Inverse Bell-shaped Population (also named as "Valley-
shaped" population) is characterized by the large population sizes
in the beginning and ending periods, and medium population size
in the intermediate stage. The other characteristics can be inferred
similarly to the bell-shaped population as mentioned above.

In summary, with the above schemes, the scheme (1) acts as
control treatment, with the fixed size population, psize. In the
dynamic population schemes, (2)-(6), the population size
fluctuates randomly, but the maximum size will never exceed the
psize, the size set for the fixed size population in (1). The mean
population sizes can be computed from the above definitions of
stage and size-type and should vary from scheme to scheme,
ranging from approximately 33% to 50% of the psize. In addition,
each of the fluctuating population schemes has different patterns
of fluctuation, as characterized by the unique combination of the
stage (beginning, intermediate, or ending) and the size-type
(small, medium, or large).

2.3. Why adopt such a complex experiment design?
One may wonder why we use such a complex experiment design.
Besides mimicking the natural populations, the other major
objective is to devise valid comparisons between the fixed size
populations and the dynamic populations. The design we take
might be somewhat counter-intuitive. Many of the previous
studies on population-sizing focused on searching for the
optimum population size, or a simple procedure or formula. We
consider that this might be one of the important reasons for the
status quo in the population sizing, since we doubt whether there
is a simple answer. Even if there is an optimum population size, it
may be a "moving" target and may not be easily captured by a
straightforward formula. Most of the existing studies often test
multiple population sizes, say, 16, 32, 64, 128, ..., and then try to
find the optimum one. The problem with this methodology is
obvious. For example, there may not be a fixed optimum size and,
even if there is one, it may not be in the range being tested.
Furthermore, there are potentially infinite numbers of candidates

of optimum values to test. Given these recognized difficulties, our
strategy is to set a fixed task, and then test which scheme is more
efficient. The smaller the population size is, the more efficient the
scheme is, since a small population requires fewer fitness
evaluations and memory storage space.

For example, to compare the fixed size population with the
random fluctuating population, let the population size for the
standard fixed-size population GA be, psize = 100. Accordingly,
let the population size for the random fluctuating population be
controlled by a random variable with uniform distribution in the
range [2, psize]. That is, the maximum population size the random
fluctuating scheme may ever reach is equal to the fixed population
size, psize = 100, in this case. The mean size of the fluctuating
population is therefore, (psize+2)/2 = 51 ≈ 50 = psize*50%.
Similarly, we can compute the mean population sizes for the other
schemes, which range from 33% to 50% of the psize. We hope, by
controlling the interval ceiling, which equals psize in this case,
that the random fluctuating populations can still be comparable
with the fixed size populations.

It is obvious that the maximum fitness evaluations for the
randomly fluctuating population are only 1/2 of those in the fixed
size population. One may immediately notice that the fluctuating
populations are artificially disadvantaged in the comparisons by
our schemes. That is, the mean size of the randomly fluctuating
population is at most 50% of the fixed size population. An
alternative, which would be fair to both the fluctuating and fixed
size populations, is to set the ceiling in random fluctuating
population to double the size of the fixed-size population
(2*psize), since then the mean population size for the fluctuating
population would be equal to the psize. We were concerned that
the artificial disadvantage against the fluctuating population may
turn out to be an advantage for it. We found that the counter-
intuitive scenario is unlikely for two reasons: (1) Although the
scheme limits the average population size in fluctuating
population to only 1/2 of the fixed size population, our
comparison is based on the actual count of the number of fitness
evaluations, not on the pre-assigned ceilings. In other words, we
counted and compared the accumulated population size before the
all 1-bits string is found, or the actual number of individuals
“mobilized” in the search for optimum solutions. (2) In pre-
testing, we tried to estimate the approximate threshold of psize,
the size at which fixed population can find the solution in a
reasonably short time. In other words, if we set psize smaller than
the threshold psize, with the fixed-size population scheme we may
fail to obtain the solution at all within a reasonable period. This
also explains our choices of test values reported in Table 2. On the
other hand, the fluctuating population rarely needs more than 1/2
of the psize to find solutions. This pre-testing is similar to what
many existing studies have adopted, such as setting psize to 32,
64, 128, ..., from which we get the approximate threshold values
for further testing.

3. RESULTS AND DISCUSSION
3.1 Results
The experimental results are summarized in Tables 1 and 2. In
Table 1, max trials refers to the maximum number of tests run.
Each test is an independent experiment; the multiple trials are run

to calculate the statistics of performance parameters. The other
parameters are standard GA parameters. Max Generations refer to
the total number of generations iterated per trial.

Table 1. The GA Parameters Except for the Block
 and Population Sizes.

Max Trials 100
Max Generations 1000
Crossover Prob. 0.9 (2-pt crossover)
Mutation 1/32 (bit flip)
Initial Population 32-bits random strings
Selection best 2 elitism
Halting find optimum or exceed

the maximum (105)

Each experiment starts with a population of randomly generated
32-bits strings of 0 and 1, or the chromosomes. The program stops
whenever the optimum solution, all 1-bits string (111...111), is
found, or reaches the maximum evaluations set by the product of
maximum trials and the generations per trial. In the latter case, it
may fail to find the optimum solution.

We define the parameter PopuEvalIndex as the product of
(psizeReal)*(meanGenerations), that is,

PopuEvalIndex = [(psizeReal)*(meanGenerations)]

As explained previously, due to the additional complexity with the
fluctuating populations, we actually count the population sizes in
the program and compute the mean population size per
generation, psizeReal. Similarly, the parameter meanGenerations
is the mean of the generations iterated per trial, before it finds the
optimum all 1-bits string. It is computed as the total generations
divided by the total number of trials.

We therefore use the parameter PopuEvalIndex, defined above,
as a measure to compare dynamic population schemes with the
standard fixed-size populations. The small PopuEvalIndex
indicates that fewer evaluations of fitness functions and other
associated computations (mutations, crossovers) are needed. In
addition, it also implies that less memory space is needed for
storing the individual information. Although the exact
quantification of the savings may be complex, the difference in
the magnitude of PopuEvalIndex should be a good indicator for
the performance of each scheme. Table (2) is a summary of the
values of the PopuEvalIndex from our experiments. .

Table 2. Comparisons of Fitness Evaluations (PopuEvalIndex) for Various Population Sizing Schemes.
Treatment
(B, psize)

Fixed
Population

Random
Population

Increasing
Population

Decreasing
Population

"Mountain"-
Shaped P.

"Valley"-
Shaped P.

(1, 64) 59171 29779 [50%] N/A* 22560 [38%] 26470 [45%] 27072 [46%]

(4, 64) N/A* 32035 [N/A] N/A* 24269 26734 29123

(7, 128) 124474 61503 [49%] N/A* 47088 [38%] 53468 [43%] 56698 [46%]

(8, 256) 247424 125537 [51%] 93185 [38%] 94152 [38%] 101826 [41%] 114748 [46%]

(14, 512) 504960 252567 [50%] 191000 [38%] 190168 [38%] 213000 [42%] 230777 [46%]

(17, 1024) 982497 N/A* 377254 [38%] N/A* N/A* N/A*

* N/A, Failed to find the optimum fitness with the fixed population. Consequently, the comparisons (%) cannot be computed.

In Table 2, the first column displays the various treatments we
tested. The first element in the pair is the block size (B), and the
second element is the psize. As explained in detail in section 2,
psize is the population size for the fixed populations, but for the
fluctuating populations, it serves as the ceilings for the
population-sizing interval [2, psize]. The percentage, e. g, [38%],
following each PopuEvalIndex, is computed as the
PopuEvalIndex for the specific scheme divided by the
PopuEvalIndex for the corresponding fixed size population in the
same treatment. It indicates the relative performance difference.
From Table 2, we draw the following preliminary conclusions:

(1) The results reveal that the fluctuating populations consistently
outperform the fixed size populations, except for some cases of
the increasing population scheme. The improvement percentages
range from 38% to 50% approximately. The increasing
population scheme failed to find the optimum solution in the three
smaller block sizes (B = 1, 4, 7), but performed equally well in the
three larger block sizes (B = 8, 14, 17), compared with the other
fluctuating populations. The fixed size population also failed in

the case of block size B=4. Whenever there is a failure to find the
optimum solution, we skip the comparisons. In every case that the
comparison is made, the fluctuating population prevails.
(2) The failure to find the optimum solution with the "increasing
population" scheme is interesting to note. Although this is in
contrast with the natural populations, it may indeed make sense in
EC, at least with some problems such as the one we experimented
with. This implies that at the beginning, more individuals (a large
population size) are needed when the search space is huge.

What is also noteworthy is that, in the case of block size = 17, the
increasing population indeed found the optimum solution, but the
other fluctuating schemes failed. This is in strong contrast to the
phenomenon that the increasing population failed in the three
smaller block sizes. It also suggests that, for the large block size
(B), the large population size has advantage. We re-ran the failed
cases with the increased range-ceiling, but still bounded by the
constraint, range-ceiling ≤ 2*psize. The constraint guarantees that
the mean population size in fluctuation populations will still not
exceed the psize, the value set for the fixed size population to be

compared. With the increased size, but still bounded by the
constraint, we were able to find the optimum solutions. This
means that under a fair condition — both fixed and fluctuating
populations are of the same size — fluctuating populations can
perform just as well as fixed populations. In other words, in these
cases our experiment design disadvantages the fluctuating
population too severely by restricting their average size to only
1/2 of the fixed population size (psize).

(3) At this stage, we do not draw definite conclusions about the
differences among the various fluctuating population schemes.
The focus of this preliminary experiment is to test whether the
fluctuating or dynamic populations generally outperform the
traditional fixed size populations. We are continuing the study to
further characterize the fluctuating populations.

3.2 Discussion
Despite the consistent and promising test results, we are not
overly optimistic about the potential of devising a universally
applicable procedure or formula for sizing the populations in EC.
Given the establishment of the no-free-lunch theorem (NFL) [7],
we tend to think that the fluctuating populations may simply push
the "bounds" tighter. In other words, the traditional fixed size
populations simply waste resources and new schemes are more
efficient because they adjust population sizes dynamically. What
happens here, and perhaps in large part of the evolutionary
computation, may be that we are simply trying to push the
obstacles as far away as possible from the boundary.
Nevertheless, the improvement in tightening the bounds is still of
significant practical values.

We suggest that one of the most convenient approaches to taking
advantages from the fluctuating populations can be using it as a
more natural survival selection mechanism. This is also consistent
with the ecological principles in nature in the ecological times.
Nature never assigns an exact quota to a population or a species.
A species' global population size on earth, in space and time, is
determined by its fitness. The fitness itself is dynamic, depending
on its adaptability to the environment. Some species become
extinct, but others prosper. The most obvious demonstration of the
prosperity of a species is the size of its populations. Nature has
both positive and negative feedback mechanisms to regulate
population size, which leads to constant fluctuations. If we accept
the notion that, in nature, the selection that occurred in ecological
times, can simply be expressed as the fluctuation of population
numbers, then the principle that the fittest survives means that a
species' populations accumulate more individuals. This may be a
more natural selection mechanism than what is currently adopted
in the survivor selection in evolutionary computing. The problem

with some of the current survivor selection mechanisms, which
keep the fixed size population from generation to generation, is
arguably analogous to using the same number of soldiers in
different stages or battles of a war. The ideal situation is to adjust
the numbers based on strategies, tactics, logistics, etc. We hope
that this study will stimulate the efforts to use the fluctuating
population as a more natural survival selection mechanism.

Finally, it should be pointed out that there exist some excellent
studies on population sizing, both experimentally and
theoretically, such as [4][5], besides the early research conducted
by EC pioneers such as [1][3][6]. Due to the space constraints, we
can only focus on reporting our preliminary exploration on this
issue. Regrettably, we have to delay the literature review to a
follow-up research on the same topic.

4. ACKNOWLEDGMENTS
We wish to thank Dr. Robert Heckendorn for reviewing the early
draft of this paper and his comments. We also wish to thank Dr.
Robert Hiromoto for engaging in stimulating discussions on this
topic. We appreciate three anonymous reviewers for their
insightful comments and suggestions.

5. REFERENCES
[1] DeJung, K. A. 1975. An analysis of the behaviors of genetic
 adaptive systems. Ph.D. Thesis, University of Michigan, MI.

[2] Eiben, A. E. & J. E. Smith 2003. Introduction to
 Evolutionary Computing. Springer.

[3] Goldberg, D. E. 1989. Sizing populations for serial and
 parallel genetic algorithms. in "Proceedings of the Third
 International Conference on Genetic Algorithms", ed. by
 David Schaffer. Morgan Kaufman Publishers, pp70-79.

[4] Goldberg, D. E. et al. 1992. Genetic algorithms, Noise, and
 the Sizing of Populations. Complex Systems, 6:333-362.

[5] Harik, G., E. Cant˘u-Paz, D. E. Goldberg, and B. L. Miller.
 1999. The Gambler’s ruin problem, genetic algorithms, and
 the sizing of populations. Evol. Comput., vol. 7(3):231–253.

[6] Holland, J. H. 1975. Adaptation in Natural and Artificial
 Systems. University of Michigan Press.

[7] Wolpert, D. H. and W. G. Macready. 1997. No free lunch
 theorems for optimization. IEEE Trans. Evol. Comp.
 1(1):67-82

