
A Prototype for a Real-Time Weather Responsive System*

Axel Krings, Ahmed Serageldin1 and Ahmed Abdel-Rahim2

Abstract— This paper presents a prototype of a secure, de-
pendable, real-time weather-responsive system. The prototype
performs two operations: 1) it accesses weather information
that provides near-real-time atmospheric and pavement obser-
vations and 2) it adapts signal timing in response to inclement
weather. Since this real-time control system operates in a
critical infrastructure, it must be designed with built-in security
and survivability mechanisms. For this purpose a software
architecture is presented that uses real-time monitoring to
detect precedence violations and off-nominal system execution
in order to provide effective contingency management. The
focus of these systems is the autonomous recognition and
reaction to execution patterns that have not been previously
observed and thus fall outside of the known behavior. Because
the described system has very similar requirements to other
traffic control applications, it serves as a milestone in the
development of secure and dependable real-time traffic control
systems.

I. INTRODUCTION

This paper presents the prototype of a real-time weather-
responsive system. The prototype system design incorporates
state-of-the-art secure and dependable software design con-
cepts to ensure accurate execution of two operations. For
the first operation, the system accesses weather information
from the Federal Highway Administration (FHWA) Clarus
data system [2] that provides near-real-time atmospheric and
pavement data from participating states’ environmental sen-
sor stations (ESS). The second operation adapts signal timing
in response to inclement weather. Since these operations
involve communication over the Internet, the application
is subject to the full pallet of Cyber security issues with
generally unknown overall attack vectors. Given that the real-
time system controls part of a critical infrastructure, special
focus on security and survivability is imperative.

The proposed system employs two revolutionary software
design approaches: Design for Survivability [5], [6] and a
Measurement-Based Methodology [4], [8]. The latter was
proposed for critical applications that rely on measurements
of operational systems and on dependability models to pro-
vide quantitative survivability with certain user-defined con-
fidence levels. Furthermore, the software design incorporates
self-monitoring techniques for fault detection and recovery
to maximize the survivability and the security of the system.
Minimal hardware is required for full implementation of the
system as it operates and achieves its potential using current

*This research was supported by grant DTFH61-10-P- 00123 from the
Federal Highway Administration - US DoT

1Axel Krings and Ahmed Serageldin are with the Computer Science
Department of the University of Idaho, USA

2Ahmed Abdel-Rahim is with the Civil Department of the University of
Idaho, Moscow, ID, USA

traffic controller and cabinet standards and technologies. As
a result, it is compatible with future applications within the
FHWAs connected-vehicle (formally IntelliDrive) initiative.

In order to understand the basic philosophy of this research
it is important to understand the concept of survivability.
There is no single agreed-upon definition for system surviv-
ability. Instead, one may use as a starting point the vague
notion that a system has to be able to tolerate diverse
faults. This includes those faults typically considered in the
area of fault-tolerant system design, such as faults resulting
from component failure as a consequence of aging, fatigue
or break-down of materials. These faults may exhibit very
predictable behavior and frequency. Software faults are more
difficult to describe, however, they essentially cause the
system to enter a state that deviates from the specification.
In the last two decades there has been much attention on
(humanly induced) malicious faults, e.g. hacking, denial of
service, virus, Trojan horses, spoofing etc. These kinds of
faults may affect the software and even the hardware and
can be totally unpredictable. They are the main target of
security and survivability considerations.

The many definitions of survivability can be loosely par-
titioned into qualitative and quantitative definitions. Quali-
tative definitions mainly focus on guaranteeing that essential
functionalities of the system are maintained, in a timely
manner, even in the presence of faults and attacks; “the
mission must survive” [3]. Quantitative definitions imply that
survivability can be quantified, e.g., measured, and assume a
formal model. For a closer look at survivability, its definitions
and implications, the interested reader is referred to [6].
The work presented here incorporates both qualitative and
quantitative aspects of survivability as will be shown below.

As indicated before, the source of addressing survivability
is the capability of dealing with faults. There are too many
fault sources to list them individually and exhaustively.
Therefore the notion of fault models is used, capturing the
behavior of a fault, i.e., a fault can produce an error that
then can lead to a failure. The diversity of faults and their
consequences on a system have been the primary motivation
for the definition of fault models. A fault model addresses
the behavior of the faults and specifies the redundancy
levels required to tolerate a single fault type or a mix of
fault types. Many different fault models have been proposed
over the years ranging from the simple models that make
no assumptions about the fault behavior [7], to hybrid
fault models considering multiple fault behavior. The latter
considers a mix of faults ranging from benign, symmetric
to asymmetric faults [Thambidurai 1988], with potential
transmissive and omissive behaviors [1]. The latter fife-fault

model of [1] constitutes the basis for the faults addressed in
the described system. Omission faults will be emphasized,
because communication may be interrupted. Furthermore,
value faults (symmetric and asymmetric) such as infeasible
or incorrect input or output data were also deemed important,
since any of those faults has the potential to decrease safety.

II. REAL-TIME WEATHER RESPONSE SYSTEM

An overview of the real-time weather response system is
shown in Fig. 1. Weather data is collected by the Clarus
system from a network of environmental sensor stations,
ESS, of participating states. This data is accessible via the In-
ternet, and it which undergoes quality and consistency checks
based on their quality checking algorithm. Thus, survivability
considerations are not questioning the quality of the original
Clarus data. A microcontroller (Processing Unit) located in
the traffic signal system in the intersection retrieves the
Clarus System data, analyses the relevant data, and computes
changes of signal timing. Upon approval, the signal timing
changes are made in the Traffic Controllers by the Processing
Unit. Signal timing plan adaptations include changes such as
modified all-red or yellow clearance intervals or traffic signal
efficiency parameters such as minimum green, maximum
green, passage time as well as different coordination param-
eters. Suggested changes depend on multiple factors such as
approach speed, pavement surface conditions, visibility, and
the mode of signal operations.

	

Processing	
 	

Unit

Traffic	

Controller

Processing	
 	

Unit

Traffic	

Controller

Processing	
 	

Unit

Traffic	

Controller

Microwave	
 or	

Bluetooth	

communication	

Users	
 (vehicles,	
 pedestrians,	
 EMS,	

HVs,	
 etc.)

Local	
 area	
 network	

State DOT
RWIS Server

Fig. 1. Overview of the real-time weather response system

A. CLARUS Real-time Weather Data Support

The Clarus System shown in Fig. 1 maintains the location
of the ESS. The ESS most suitable for the specific traffic
signal system, e.g., the one with closest proximity to the
intersection, needs to be identified and a subscription for that
ESS is generated. The subscription, which may include data
from a single or multiple specified ESSs, is made available
via the Clarus System’s Subscription web site in the format
of a comma separated value (CSV) file. It should be noted
that the data is not queried from a data base server, but simply
accessed directly over the web and is, unless protected from

general access by a password, publicly readable. Specifically,
a list of Observations, i.e., the actual CSV files, is given
in regular intervals, which depend on the subscription and
typically range from 5 to 15 minutes. These observation
files follow the file naming convention date time.csv. An
observation file contains data for specific Observation Type
IDs (ObsTypeID). The first line is a header line describing
the values present in each line of data. A relevant subset of
these values is used later by the system to calculate changes
to be made on the traffic controller. Since a subscription
is not limited to contain data from only one ESS, but can
be specified to contain data from multiple sensors, e.g.,
to include neighboring ESS, the control algorithms of the
weather responsive system can take advantage of data fusion,
thus taking advantage of a “larger view”.

B. General System Description

A Rabbit 5700 microprocessor running Dynamic C1 is the
core hardware in the system that communicates with the traf-
fic controller through Ethernet. To facilitate communications,
the controller and microprocessor must follow the National
Transportation Communications for ITS Protocol (NTCIP)
communication standard (AASHTO 2005), a family of stan-
dards for transmitting data and messages between different
devices used in Intelligent Transportation Systems (ITS). The
Dynamic Object STMP/UDP/IP Ethernet protocol stack is
used to facilitate the NTCIP-based communication between
the microprocessor and the traffic controller. A computer,
connected to the microprocessor through the cabinet serial
connection, is used to setup and add the control logic to
the microprocessor. Because the microprocessor is directly
connected to the traffic controller through the Ethernet port,
the connection is not sensitive to the cabinet configuration.
However, the microprocessor requires an additional 110
volt power connection. This connection method should be
possible in any NTCIP compliant controller.

The Rabbit system, which we will refer to simply as
“Rabbit”, executes the software that implements the real-time
weather responsive system, which consists of the Operational
Software System and an Operation Monitoring and Contin-
gency Management System. An overview of the software
system is shown in Fig. 2, where shaded areas refer to
external hardware interfaces. The system connects to either
a Local Clarus Server (LCS), which is simply a local mirror
supplying the Clarus subscription data, or the Clarus System,
using the Network Interface to the Internet. In the regular
intervals specified in the subscription the Clarus data is
read and converted by the Rabbit, the desired sensor data is
extracted, and specific algorithms compute for example the
yellow timing from the critical extracted sensor parameters.
The traffic controller is then updated. All this is monitored
by the Rabbit at run-time.

As the application software is executing on the Rabbit, it
monitors the execution of its software via sensor points in-
jected by instrumentation in real-time. The principle is shown

1Dynamic C and Rabbit are registered trademarks of Digi International
Inc. See documentation at www.rabbit.com

Network
Interface

Clarus Data Conversion
Interface

Algorithm
Engine

Traffic
Controller

Clarus Data
Management

Operation Monitoring and
Contingency Management System

Fig. 2. Overview of the software system architecture

in Fig. 3, where the executing program is monitored via the
instrumentation telemetry by the Operation Monitoring and
Contingency Management System. Due to its complexity the
exact function of this system will be described in a separate
publication. The instrumentation data is analyzed at run-time
and the outcome of the analysis is used to adapt to observed
behavior, or during design time to alter design parameters,
as described in [8]. The general methodology is the basic
mechanisms for “design for survivability” and allows for
real-time reaction, e.g., reconfiguration, state changes, or
entering a fail-save mode.

Contingency Management System

Executing Program

Analysis Engine

Design Sensor Engine

Design Interface Instrumentation

Alter Design
Parameters

Fig. 3. Overview monitoring and contingency management system

III. SURVIVABILITY ARCHITECTURE

We now present the survivability architecture of the sys-
tem, which is based on the general principles shown in [4],
[8]. In the following we subscribe to the general notation
of these papers and partially restate important concepts or
definitions.

A. Formal System Model and Dependencies

During operation of the system, and with proper instru-
mentation of the software, one can get a “life” picture
of how the system is performing in real time, e.g., what

a typical execution looks like, how often functionalities
are invoked, what mix of software modules is instantiated
over a certain window of observation, or how often certain
modules get called during a time interval. All information
related to counting of events or invocations is captured in
profiles, which may also be represented as frequency spectra.
Calling behavior like specific execution sequences, which
represent “who is calling (or invoking) whom”, is captured
in precedence graphs. These graphs are static in an executing
system. However, they may change as the result of design
alterations associated with the design cycle shown in Fig.
3. An example of such graph is the call graph of software
modules as it is generated at compile time.

Just as in [8] the system executes a set of operations
O, e.g., “Get Clarus Data” or “Update Controller”, with
cardinality |O|. These operations constitute the operational
machine. The transition from one operation to another marks
an operational epoch. Each operation oi in O uses one or
more functionalities fj from a set F of functionalities with
cardinality |F |. Similar to the operational epoch the func-
tional epoch is defined by transitions from one functionality
to another. Functionalities are implemented by code modules
written in Dynamic C, which is a C-like language with
a unique multitasking environment as will be described in
subsection III-C. The set of modules M of cardinality |M |
is thus the implementation of the functionalities in code. If
one counts the invocations of operations, functionalities and
modules over a specific period of time one can derive the
respective operational, functional and module profile. These
profiles will be used later in the analysis that may expose
off-nominal executions.

Operations, functionalities and modules are related and
that relationship can be defined in a graph GOFM , where
the superscript simply indicates that the graph maps from
sets O to F to M . The vertex set of GOFM is thus O ∪
F ∪M and the edges define the utilization relation from O
to F to M , i.e., in graph GOFM each operation oi ∈ O is
mapped to the functionalities fj it utilizes, and each fj ∈
F is mapped to the modules mk ∈ M it utilizes, which
are of course the models that implement fj . In Fig. 4 these
dependencies are shown as dotted edges. Mappings can take
on many shapes. For example, a functionality fj may be
part of one or more operations and it may be implemented
by one or many modules. Similarly, a module mk may be
used in several functionalities. Graph GOFM thus allows to
validate at runtime if for example a module is supposed to
be executed in the context of a specific functionality or if
observed calls violate the valid O to F to M dependencies.
A violation could be the result of a buffer-overflow attack
where suddenly the known mappings are violated.

It is not only of interest to know which functionality
is used by an operation or which modules are used by
a functionality, but also to know the dependencies within
operations, functionalities, or modules. Those relationships
can be defined by precedence graphs within the shaded areas
of Fig. 4. Specifically, dependencies between operations
are defined by graph GO = (O,≺), where ≺O defines a

O MF

Fig. 4. Dependencies between operations, functionalities, and modules

precedence relation on the operations in O, i.e., if oj depends
on oi then (oi, oj) is in ≺O. Any violation of the precedence
indicates a problem in the control flow of operations of the
program. We define similar graphs for functionalities and
modules. Thus GF = (F,≺F) and GM = (M,≺M) are the
graphs defining calling relationships between functionalities
and modules respectively. It should be noted that GM is the
static call graph of modules in M created by the compiler.
The operational, functional, and module dependency graphs
are used to detect invalid or previously unobserved transi-
tions.

B. Profiles and Profiling

Leaning on the notation of [8] we will use letters u, q and
p for operational, functional and module profiles respectively.
The notation is introduced using module profiling as an
example. Let pl denote the probability that the system is
executing module ml. Then p = (p1, p2, ..., p|M |) is the
module profile of the system, i.e., it is the probability vector
of the modules in M .

During execution of the system we are interested in
observing the module profile over n epochs. This observed
profile is p̂ = (p̂1, p̂2, ..., p̂|M |), where p̂i = ci/n is the
fraction of system activity due to invocations of module mi

and ci is the count of invocations of mi. As the software
executes, invocations of modules are continuously monitored
and module profiles are generated and analyzed. We want to
keep track of these profiles. Let p̂k denote the kth module
profile. Thus p̂k is the kth observed module profile, observed
over n epochs, which was preceded by p̂k−1, observed over
the previous n epochs, and so forth.

To get a feel for the expected evolving profile of the
system, we want to establish the module profile equivalent
of an “h-day moving average” in financial stock movements,
i.e., we will derive a centroid that will serve as a reference
for observed profiles. For that, just as in [8], we consider
h sequences of n epochs each and define a centroid p =
(p1, p2, ..., p|M |), where

pi =
1
h

h∑
j=1

p̂j
i (1)

Thus p is a |M |-dimensional vector, and using the above
financial metaphor, each element represents the “h-day mov-
ing average” of a specific stock (module), where a day is
measured as n epochs. Furthermore, just as in the stock

market, we don’t know what the future brings but find it
useful to track the past in order to establish “nominal”, i.e.,
expected, behavior.

One can compute the distance of an observed profile p̂k

from centroid p to get a distance scalar dk

dk =
n∑

i=1

(pi − p̂k
i)2 (2)

Given the computational realities of the Rabbit, we actually
use dk =

∑n
i=1 |(pi−p̂k

i)|, rather than the square. The goal is
to analyze the effectiveness of using the distance of observed
profiles from the centroid to detect off-nominal executions.

C. Run-time Model

One of the challenges in monitoring a system is dealing
with the effects of nondeterminism of the executions. Typical
sources of nondeterminism are interrupts, or even more
importantly, context switching in multiprocessing based on
time slicing. The Rabbit system uses a single processor in
which multitasking is not achieved using time slicing; rather
it is implemented using a model defined by costatements.
A costatement is defined as a task in a nonpreemptive mul-
titasking model. In practice, the main program of a control
applications runs costatements (the tasks) in an endless loop,
cycling from one costatement to the next. Each costatement
has a statement counter, i.e., a program counter, which
indicates which instruction of the costatement will execute
when it gets a chance to run. Execution is switched from one
costatement (of the infinite loop) to the next in a round-robin
fashion when the currently executing costatement “yields” to
the next costatement using explicit commands such as yield,
abort or waitfor(event). Note that these yielding mechanisms
represent a model that is based on good behavior. The state
of a costatement is called a costate. We will use the terms
costatement and costate interchangeably.

An execution model in which there are no externally
initiated task switches executes with a low level of non-
deterministism, i.e., a task switch is explicitly demanded
by the currently executing task: the active costatement. On
the other hand this means however that it is possible for a
costatement to cause starvation by not yielding. However,
a special mechanism called watchdog can be used to force
timer interrupts. In this case the system deviates from its
otherwise nonpreemptive execution model.

As operations, functionalities, and modules are called from
within exactly one costatement at a time, it is possible to
precisely determine the functionality and module that are
being executed on behalf of a specific operation. Thus, the
dispatching model results in executions with a low degree of
nondeterminism, which is very desirable when working with
profiles.

With the introduction of costates we can now extend
the definitions of profiles presented in Subsection III-B to
profile on a costate-basis. Thus, the observed profile p̂ =
(p̂1, p̂2, ..., p̂|M |), the kth module profile p̂k, the centroid
p = (p1, p2, ..., p|M |) and dk, i.e., the distance from p̂k

from centroid p, can now be defined on a costate-basis. For

a costate α this leads to notation p̂[α], p̂k[α], p[α] and dk[α]
respectively. Now it is possible for each costate α to have its
own profiling, which is not affected by any non-determinism
due to costate (task) switching, i.e., profiles of costates do
not interfere.

D. Run-time Monitoring and Certified Executions

Run-time monitoring refers to the process of monitoring
the system’s behavior in real-time. The goal is to determine
whether the system performs its specified tasks to specifi-
cations or if there are anomalies in the execution patterns.
The latter could indicate that the system is compromised.
“Has the software experienced a fault, or has the system
been attacked, or is it executing correctly in a fashion
that we just have not observed before?” These questions
have plagued the dependability and security communities for
decades. Fault detection and treatment have been researched
by the dependability and software engineering communities.
Attack recognition, i.e., intrusion detection, is a very complex
problem and detecting patterns or anomalies has been a
constant hot topic in the intrusion detection community, e.g.,
signature-based approaches or anomaly detection. Especially
in anomaly detection the critical issue is where one should
set the threshold for deciding what is normal and what is
not.

Our run-time monitoring employs two approaches:
1) Validation of Dependencies: Given the two types of

dependencies shown in Fig. 4 the system can detect
any violation of mappings from operations to func-
tionalities to modules in GOFM , and any violations of
precedence in each GO, GF and GM .

2) Detection of off-nominal executions: Here observed
profiles are checked to establish if they meet an
expected certified behavior, as will be described in
the rest of this subsection in the context of certifying
nominal profiles.

Detection of off-nominal executions is less precise of a sci-
ence than checking for precedence violations. Our approach
to the first does not attempt to mimic anomaly detection, but
it utilizes the detection of previously observed executions
patterns, e.g., profiles, versus those we have just not seen
before. Instead of focusing on “what is abnormal”, we focus
on “what is normal”. Thus everything outside of previously
identified, i.e., nominal, behavior is simply assumed off-
nominal. Nonimal behavior can be refined to a costate level.
Thus, given that different parts of the system execute in
different costates, e.g., the application control loop is in one
costate, the granularity of run-time monitoring is that of a
costate, and thus more accurate than that of a system lacking
that refinement.

The specifics of the instrumentation and how simple data
structures can be used to achieve costate-based profiling is
described in [4]. Using the data from the instrumentation,
i.e., the profiles, one can detect off-nominal executions.
However, rather than identifying off-nominal behavior, we
“certify” nominal executions. Here we describe a new dual-
bound approach to execution certification by extending the

certification of [4]. The result is a more stringent view of
nominal executions.

Certifying behavior per costate is now possible and will
again be described using module profiles, p̂k[α]. The dis-
tance of the observed costate profiles p̂k[α] from p[α] can
be used so that departure beyond it indicates non-certified
behavior of costate α. Specifically, we define two threshold
vectors

εmax[α] = (εmax
1 [α], ..., εmax

|M | [α]) (3)

εmin[α] = (εmin
1 [α], ..., εmin

|M | [α]) (4)

where εmax
i [α] and εmax

i [α] are the upper and lower thresh-
old values of mi, representing a dual-bound threshold. Every
observed profile that is in the region between the two vectors
is assumed nominal. Thus we certify a profile p̂k[α] to be a
nominal profile if

εmin[α] ≤ p̂k[α] ≤ εmax[α] (5)

i.e., if εmin
i [α] ≤ p̂k

i [α] ≤ εmax
i [α] for every 1 ≤ i ≤ |M |.

The values of threshold vectors εmax[α] and εmin[α] are
experimentally determined while the system is in test mode.
Test mode here assumes a controlled environment in which
the system runs normal and is closely observed while no fault
occurs and no attacks on the system take place. In practice
this means that, while in normal operation, the profiles are
tracked over time to derive (or calculate) the desired thresh-
old vectors. In the simplest case this could be the minimal
and maximal observed values of each p̂k

i [α]. Alternatively,
one could introduce weight functions w, defined per costate,
to be multiplied with the threshold vectors. Then a nominal
profile would satisfy wεmin

i [α] ≤ p̂k[α] ≤ w′εmax
i [α]. For

completeness sake it should be noted that the “threat vector”
of a system is of course unknown, but it appears realistic
to make the assumption that in a controlled environment no
unobserved faults or malicious act can sneak in.

E. Experimental Results

A prototype has been built based on a Rabbit 5700 running
Dynamic C version 10.5.4, which has been instrumented to
allow operation, function and module profiling. Initially all
Dynamic C modules were instrumented, including library
modules. However, not having the Dynamic C library source
code we did not instrument the library assembler routines.
That in itself would have been fine, had it not been for the
fact that some of the non-instrumented assembler routines
called C modules, thereby breaking out precedence viola-
tion detection capability. We therefore had to eliminate the
instrumentation to those modules. A total of 71 modules
furnished the data for the observed profiles, the centroid
and the dual-bound threshold vectors. For the figures shown
below a subset of only 56 relevant modules was used.

Fig. 5 shows an actual observed profile which encapsulates
the data transmission from the Clarus systems. The x-axis
indicates the module ID and the y-axis shows the frequencies
in logarithmic scale. The figure depicts profile p̂k[α] for four
costates: 1) System Configuration, 2) Application Control, 3)

1	

10	

100	

1000	

10000	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	
 25	
 26	
 27	
 28	
 29	
 30	
 31	
 32	
 33	
 34	
 35	
 36	
 37	
 38	
 39	
 40	
 41	
 42	
 43	
 44	
 45	
 46	
 47	
 48	
 49	
 50	
 51	
 52	
 53	
 54	
 55	
 56	

Costate1	

Costate2	

Costate3	

Costate4	

Fig. 5. Typical observed profile of 4 costates (module IDs and frequencies on the axis)

1	

10	

100	

1000	

10000	

100000	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	
 25	
 26	
 27	
 28	
 29	
 30	
 31	
 32	
 33	
 34	
 35	
 36	
 37	
 38	
 39	
 40	
 41	
 42	
 43	
 44	
 45	
 46	
 47	
 48	
 49	
 50	
 51	
 52	
 53	
 54	
 55	
 56	

MIN	

MAX	

Average	

Fig. 6. Centroid, and dual-bound threshold vectors (module IDs and frequencies on the axis)

Monitoring and 4) Utilities. As expected, costate 2 with its
application control dominates the spectrum, i.e., p̂k[2]. The
magnitude of the frequencies is of course highly dependent
on the size of the Clarus subscription.

An example of the average, minimum and maximum
frequencies are shown in Fig. 6. The average constitutes
centroid p̂k[α], in this case p̂k[2] for costate 2. For this
specific Clarus subscription the certification space between
εmin[2] and εmax[2] appears rather tight. However, the fre-
quency count is shown as log-scale. For example, if we look
at module m25, which is filter clarus data, the actual value
for the centroid p[α] is p25[2] = 3873. The minimum and
maximum number of invocations, which we used for the
dual-bound threshold functions, were εmin

25 [2] = 1564 and
εmax
25 [2] = 9665 respectively.

As indicated before, threshold vectors are generated by
observing the system in a learning mode over time, thereby
letting observed executions affect what is considered a
nominal execution. In our example, over the time of the
observations the specific values indicated arose. For m25 this
meant that as long as p̂k

25[2] was in the interval [1564, 9665]
the execution was considered nominal.

IV. CONCLUSIONS

A prototype of a real-time weather responsive system
has been described. This system can take real-time weather
data and modify traffic signal timing within safety standard.
The design of the system employs a state-of-the-art design
methodology that incorporates design for survivability. It
allows to monitor its executions to detect 1) violations of

dependencies of operations, functionalities, and modules, and
2) the detection of off-nominal observed execution profiles.
The latter is established by checking if the observed profiles
are within a dual-bound threshold space that defines nominal
profiles. Current efforts are to test the effectiveness of the
detection of off-nominal executions in preparation for field
tests.

REFERENCES

[1] M.H. Azadmanesh, and R.M. Kieckhafer, Exploiting Omissive Faults
in Synchronous Approximate Agreement, IEEE Trans. Computers,
49(10), pp. 1031-1042, Oct. 2000.

[2] The Clarus System: http://www.clarus-system.com/
[3] R. J. Ellison, D. A. Fisher, R. C. Linger, H. F. Lipson, T. Longstaff and

N. R. Mead, Survivable Network Systems: An Emerging Discipline,
Technical Report CMU/SEI-97-TR-013, November 1997, Revised:
May 1999.

[4] A. Krings, V. Balogun, S. Alshomrani, A. Abdel-Rahim, and M.
Dixon, A Measurement-based Design and Evaluation Methodology
for Embedded Control Systems, 7th Annual Cyber Security and
Information Intelligence Research Workshop, CSIIRW’11, Oak Ridge
National Laboratory, October 12 - 14, 2011.

[5] Axel Krings, Design for Survivability: A Tradeoff Space, Proc. 4th
Cyber Security and Information Intelligence Research Workshop, Oak
Ridge National Laboratory, May 12-14, 2008.

[6] Axel Krings, Survivable Systems, Chapter 5 in: Information Assurance:
Dependability and Security in Networked Systems. Morgan Kaufmann
Publishers, Yi Qian, James Joshi, David Tipper, and Prashant Krish-
namurthy Editors), in press, 2008.

[7] L. Lamport, et.al., The Byzantine Generals Problem, ACM Transac-
tions on Programming Languages and Systems, Vol. 4, No. 3, pp. 382-
401, July 1982.

[8] John Munson, Axel Krings and Robert Hiromoto, The Architecture of a
Reliable Software Monitoring System for Embedded Software Systems,
ANS 2006 Winter Meeting and Nuclear Technology Expo, 2006.

