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Abstract—The latest advances in survival analysis have 
been centered on multivariate systems. Multivariate survival 
analysis has two major categories of models: one is multi-
state modeling; the other is shared frailty modeling. Multi-
state models, although formulated differently in both fields, 
have been extensively studied in reliability analysis in the 
context of Markov chain analysis. In contrast, shared frailty 
modeling seems little known in reliability analysis and 
computer science. In this article, we focus exclusively on 
shared frailty modeling. Shared frailty refers to the often-
unobserved factors or risks responsible for the common risks 
dependence between multiple events. It is well recognized 
as the most effective modeling approach to address common 
risks dependence and, more recently, the event-related 
dependence. The only exclusion of dependence modeling 
for the frailty approach is the common events type, which is 
best addressed by multi-state modeling. We argue that 
shared frailty modeling not only is perfectly applicable for 
engineering reliability, but also is of significant potential in 
other fields of computer science, such as networking and 
software reliability and survivability, machine learning, and 
prognostics and health management (PHM).   
 
INDEX TERMS:  Multivariate Survival Analysis, Shared 
Frailty Model, Dependent Failure, Common Risks Failure, 
Common Events Failure, Event-Related Dependence, 
Network Survivability, Prognostic and Health Management 
(PHM), Software Reliability.  
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1.  INTRODUCTION 
Survival analysis has a history of nearly four decades and 
has become the de facto standard in biomedical research. 
Survival analysis and reliability theory have the exact same 
mathematical models in their basic definitions. For example, 
survivor function and reliability have identical probability 
definitions, and both fields use the same term and definition 
formula for the hazard function. However, the two fields 
have diverged gradually over the years and relatively little 
interaction has happened between them.  This lack of 
interaction is unfortunate in our opinion, since reliability 
and survival analysis essentially address the same 
mathematical problems—the study of time-to-event random 
variables in the more general abstraction. Whether the event 
is the failure of a device, the death or survival of a patient, 
or simply the occurrence of any time-to-event, the 
underlying mathematical model should be very similar.  
 
This article is the third in a four part series, in which we 
review state-of-the-art research in survival (univariate) 
analysis, competing risks analysis and multivariate survival 
analysis as well as their applications to engineering 
reliability and computer science. The other three areas, 
univariate survival analysis, competing risks analysis, and 
multi-state modeling (Part-II of multivariate survival 
analysis) are addressed in Ma and Krings 2008a, 2008b & 
2008c, respectively. The present paper intends to briefly 
introduce the essential concepts, models and methods of 
shared frailty modeling and present our suggestions and 
opinions on their potential applications to engineering and 
computer science fields.  
  
As indicated by Hougaard (2000) in the very first 
monograph of MSA, which is certainly a significant 
milestone in the field, MSA is still in its infancy and its 
advancement has been closely related to the demands 
arising from biomedical and public health research. One 
should expect significant complications in MSA, compared 
with standard multivariate analysis. For example,  unlike 
standard multivariate statistical analysis that can often be 
characterized by an mxn matrix as its basic data structure, 
there are at least five data structures (models or formats) in 
MSA. Data censoring and dependence between variables 
further complicate the analysis significantly.  
 
Although the topic of MSA was raised as early as the 1980s  
(e.g., Cox 1984), major research activities in MSA were  
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started in the middle 1990s. Like survival analysis, the 
application papers of MSA spread over all major medical 
journals such as JAMA, New England Journal of Medicine, 
and Surgery. The methodologies of MSA are mostly 
published in Biometrics, Biometrika, Statistics in Medicine, 
Statistical Methods in Medical Research, Biomedical 
Journal, Lifetime Data Analysis, and several statistical 
journals.  Houggard's (2000) Analysis of Multivariate 
Survival Data is still the only monograph in MSA if we 
treat competing risks analysis as a separate field. The 
following is a far from complete list of the review papers on 
multivariate survival analysis in last few years: Aalen 1994, 
Lin 1994, Harrell et al. 1996, Wei and Glidden 1997, 
Commenges 1999, Hougaard 1999a, 1999b, 2000, Oakes 
2001, Monaco et al. 2005, and Escobar and Meeker 2006. 
While most of the afore-mentioned review papers are 
outside the field of engineering reliability, Lisnianski and 
Levitin's (2003) monograph reviews the multi-state models 
in reliability theory.  The major monographs on univariate 
survival analysis also often contain a comprehensive chapter 
on multivariate survival analysis (Andersen et al. 1993, 
Fleming and Harrington 1991, Cox and Oakes. 1984, 
Kalbfleisch and Prentice 2002, Lawless 2003, Klein and 
Moeschberger 2003, and Ibrahim et al. 2005). Unlike 
univariate survival analysis, standard software packages, 
such as SAS® or SPSS®, have implemented very few 
procedures for performing MSA. The most common 
practice seems to be programming with S-plus or its open-
source counterpart R.  
 
One notion is that MSA is needed whenever the dependence 
between survival times cannot be ignored (Houggard 2001); 
this clearly demonstrates the central importance of the 
dependence issue in MSA. As Aven and Jensen (1999) 
summarized, dependence modeling is one of the most 
challenging works in reliability engineering. Therefore, the 
applicability of survival analysis in reliability engineering is 
beyond question. Although the application potential in 
reliability is often mentioned by survival analysis 
theoreticians, few actual applications of MSA have surfaced 
in engineering reliability.  
 
To get a glimpse of the status of the applications of survival 
analysis in computer science and IEEE related engineering,   
we recently (in the July of 2007) conducted an online search 
of the IEEE Digital Library with the relevant keywords. 
Regarding univariate and competing risks analysis, we 
found approximately 40 papers with the keyword survival 
analysis, and 20 papers with competing risks in IEEE digital 
library, respectively.  However, we did not get any paper in 
IEEE digital library with the keywords of either multivariate 
survival analysis or frailty model.  Given this situation, the 
format of this paper is somewhat different from the previous 
two (Ma and Krings 2008a, b) where we had a dedicated 
section to review papers from IEEE digital library and 
selected papers from MMR-2004 (International Conference 
on Mathematical Methods in Reliability). Here, we 
introduce essential concepts in MSA and major frailty 
models (but skip multi-state models), based on the only 

monograph (Hougaard 2000), the latest review papers, and 
selected research papers in biomedical fields. We also try to 
present our opinions and suggestions on the potential 
applications of those concepts and models in computer 
science and engineering reliability.   
 
 

2.  DATA MODELS AND COVARIATES 
2.1 Parallel and Longitudinal Data.  
 
The basic notations, concepts and classifications follow 
Hougaard (2000). The so-called parallel data arise from 
research in which one follows several individuals or objects 
simultaneously. The lifetimes of a group of twins would be 
one of the simplest parallel data sets. An example in 
reliability would be the system consisting of parallel 
components. The data set then consists of a nxk matrix of Tij, 
with i = 1, 2, ..., n, j = 1, 2, ..., k, where i denotes group, and 
j denotes an individual within the group. A corresponding 
set of failure indicators is needed, Dij, i = 1, 2, ..., n, j = 1, 2, 
..., k. As pointed out in Hougaard (2000), it is usually 
assumed that the groups are independent, but no restriction 
is imposed within a group. The number of times (k) in a 
group should be pre-specified. However, as some of the 
times correspond to failures and some to censoring, the 
number of events (∑jDij) is not specified. Certainly, the 
maximum number of events is k. Furthermore, there is no 
ordering requirement for the data, for example, Ti1 > Ti2 is 
not required. The ordering restriction is only imposed on 
longitudinal data.   
 
The meaning of parallel in MSA is obviously broader than 
that in engineering reliability, and it could be significantly 
different in both fields. Lifetimes of twins, failure times of 
similar organs (e.g., eyes, kidneys) are the most typical 
parallel data in biomedicine (Hougaard 2000). This type of 
data may be hard to get in biomedicine, but it is much more 
common in engineered systems. Perhaps this type of parallel 
data can be considered as the orthodox parallel model in 
reliability modeling. 
 
Longitudinal data arise from the observations of stochastic 
processes (Hougaard 2000). One follows a collection of 
stochastic processes, one for each value of i, and observe the 
events or transitions over time.  In biomedical research, 
there is one process for each person. Longitudinal data is 
also called life history data. Similar to parallel data, one 
assumes independence between groups. Thus, the times of 
transitions forms an increasing sequence of times. In the 
simplest cases, only the last time can be censored.  All the 
others are events (times of transitions). The number of times 
(Ki) is random.   
 
More precisely, in longitudinal data, one observes the 
process i over the interval (0, Ci), where Ci is a fixed or 
random time.  The times of events are in the form of Tij, i = 
1, 2, ..., n,  j =1, 2, ... Ki.  Depending on the situations, one 
may let the times be the pure event times, using Ci as the 
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end of the observation. Alternatively, one may distinguish 
times as events times and a censoring time (Ci).  The 
definition imposes the ordering requirement, that is,  
Tij ≤ Ti, j+1. The key difference from parallel data is then the 
imposition of the data ordering in longitudinal data 
(Hougaard 2000). 
 
One type of longitudinal data is recurrent events. When a 
single individual experiences the same event multiple times, 
we can observe and record the recurrent events. Recurrent 
events may be widespread in software testing 
measurements, such as the discovery of 1, 2,...,n bugs or 
potentially infinite bugs and ultimately the observation is 
truncated due to the stop of the testing.  The study of 
recurrent events has received very significant attention in 
the last few years. Peña (2006) presented an excellent 
review about this topic. As Peña (2006) indicated, the study 
of recurrent events data is complicated by several unique 
features, for example, the effects of accelerating number of 
events, covariates, dependence, and/or intervention after 
each occurrence, etc.   
 
One interesting and extremely important phenomenon to 
note is that recurrent event is often ended with a terminal 
event, for example, the recurrence of cancer and the ultimate 
death of a patient. Liu et al. (2004) considered frailty 
proportional hazards models for the recurrent and terminal 
event processes. The dependence between recurrent events 
and terminal event is captured by conditioning on the shared 
frailty in both hazards functions.   
 
Repeated measurements are often obtained from the 
carefully designed experiment. The individuals in the 
experiment are observed to experience the same type of 
event for a fixed number of times, and the times to the event 
are recorded. It is similar to the recurrent events in the sense 
that the same type of event is observed at longitudinal time 
points. Nevertheless, the data structure is parallel because 
the number of observation times is fixed. This data model 
assumes that the event an individual experiences does not 
harm the individual. Multi-state model does not work for 
this data model, since a given time point may correspond to 
several different points in calendar time. However, the 
shared frailty model is well suited for the repeated 
measurements data (Hougaard 2000). The repeated 
measurements model does not seem useful for hardware 
reliability analysis, since there is only one failure in 
hardware, which is often damaging or absorbing. However, 
there are two apparent application potentials in computer 
science. One is the software reliability analysis, for 
example, the repeated occurrences of same bug observed 
within a time period. Another application can be the 
analysis of the adaptive machine learning.  
   
Different events data model: In previous data models, the 
events in observation are either the same or similar. There is 
certainly the need for more general multiple events data 
model.  For example, a network server may have three 
states: healthy, infected (with virus) but still functional, and 

down states. One may be interested in one individual's states 
or the states of individuals in a population. One is 
particularly interested in how the various events influence 
the future course of an individual. For example, different 
events such as OS memory leaks, which become worse with 
time, potential hacker attacks, second infestation by virus, or 
even the increasing traffic load, could influence the course 
of the evolution of server states. Multi-state modeling is 
often the best option for representing this data model. 
 
In biomedical research with animals, a well-known 
experiment is the survival-sacrifice experiment, where some 
animals are killed in order to assess the probability of 
experiencing a tumor at selected time points (Hougaard 
2000). Similarly, in a large-scale Grid computing network, a 
sampling scheme can be used to estimate the states’ 
distribution over time (Jafar and Krings et al. 2008).   
 
Competing risks data refers to several potential or latent 
failure risks competing for the ultimate cause of the failure. 
Only one of the latent risks turns into the failure cause after 
the failure occurs, and the other latent risks lose their 
identities. What is observable is the failure time and 
corresponding failure cause, but either time or cause, or 
both, may be censored. Competing risks data is also called 
multiple decrement data in population demography and 
actuarial science (Crowder 2001, Hougaard 2000, Ma and 
Krings 2008b).     
 
2.2 Covariates 
 
Covariates are explanatory variables that influence failure or 
survival times. Some covariates are intrinsic such as 
treatments in drug trials; others are external factors, which 
may not be the focus of the study but, nevertheless,    
influence failures (Hougaard 2000). In software reliability 
analysis, covariates may be usage profiles, which are often 
beyond the control of the software developer but certainly 
influence whether or not a bug would be exposed. Operating 
system platforms and network environments, patch 
maintenance, and usage intensity might be characterized by 
the usage behaviors, which may stretch the design limits of 
software and be treated as external covariates.  Other factors 
such as extreme file size and open file numbers, critical 
section access contentions, multiple and distributed access 
may be treated as intrinsic covariates since they should be 
considered by software designers.   
 
In the parallel data model, covariates are represented as a p-
dimension vector [zij]m for the i,j-th object and its 
component would be zijm. There are two special cases that 
are of particular significance: the common covariates and 
matched-pairs covariates. For parallel data, common 
covariates are the same for all members of the group.  In the 
case of longitudinal data, they do not change as the process 
proceeds. In other words, common covariates depend on 
group (i) only.  In contrast, matched pairs covariates are 
only dependent on j. They apply to parallel data, but are not 
applicable to the longitudinal data model, because one 
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cannot guarantee the same number of observations for each 
individual in the longitudinal model (Hougaard 2000).  In 
network reliability analysis, matched pairs may be used to 
model hot standby vs. primary or hot standby vs. cold 
standby. In software reliability analysis, the idea may be 
used to model the options such as launching a plug-in 
application in a separate environment or embedded within 
the application.  
 
In longitudinal data model, covariates can be constant over 
time but individual-specific, or be time-dependent. In some 
studies, one can adopt covariates to make the hazard model 
depend on the evolution history of the process, or may 
introduce covariates that depend on the external factors not 
considered in the statistical model (Hougaard 2000).  
Neglected or unobserved covariates bring forward an issue 
of critical importance in MSA. Unobserved common 
covariates may be responsible for dependence between the 
individuals in a group. This can be captured with shared 
frailty; the ability to capture unobserved covariates effects is 
one of the most attractive features of shared frailty models.      
 
2.3. First Hitting Times and Threshold Regression.  
 
The first hitting times (FHT) is a mathematical concept with 
extensive research and wide implications in many stochastic 
processes, such as Wiener process, Markov chain, and 
counting process.  The examples of FHT include lifetime, 
duration, and time-to-event (Lee and Whitemore, 2004, 
2006).  Survival data is apparently one of the FHT. In a 
recent survey, Lee and Whitemore (2006) reviewed this 
field and one of the key statistical modeling techniques for 
studying FHT, threshold regression.  Actually, many of the 
familiar models in survival analysis, such as accelerated 
failure time, proportional hazards, competing risks analysis 
can be formulated as special cases of threshold regression of 
FHT.  According to Lee and Whitemore (2006), a first 
hitting time model, FHT, consists of two parts: (i) A parent 
stochastic process TttX ∈),({ , x }X∈ with initial value 
X(0)=x0,  where T is time space and X is state space of the 
process. (ii) A boundary set B ∈ X. It is also called 
threshold or barrier. Assume that initially the process is 
outside boundary set B, the FHT is then a random variable 
(S), which is defined by the definition: })(:inf{ BtXtS ∈= .  
Both the parent process and boundary set of FHT generally 
depend on covariates; this is the area that the threshold 
regression structure is developed.   
 
Lee and Whitemore (2006) formulated the following 
stochastic processes as FHT models: Bernoulli process as 
negative binomial first hit time, Poisson process as Erlang 
first hitting time, Wiener process as inverse Gaussian first 
hitting time, Gamma process as inverse gamma hitting time, 
Ornstein-Uhlenbeck process as Riccicardi-Sato first hitting 
time, Markov (semi-Markov) chain as first hitting time of 
the absorbing state.  Obviously, almost all of these models 
are used in survival analysis. In addition, the competing 
risks analysis can be formulated as the latent FHT. The 

threshold regression is more flexible than the regression 
models used in survival analysis. For example, the so-called 
marker process, which is an external stochastic process that 
“accompanies” the changes of the parent process, can be 
incorporated into the threshold regression.  The parent and 
marker process then form a bivariate stochastic process 
[X(t), M(t)]. Several marker processes may be combined as a 
single composite market process.  
 
In reliability modeling, apparently, the shock damage model 
may be formulated as an FHT model.  Marker processes 
should be very useful for modeling computer networks. For 
example, network reliability, performance, bandwidth, etc, 
can be treated as marker processes since they co-vary with 
network reliability. Of course, both parallel and longitudinal 
data models can be used in the threshold regression 
modeling.   
 
 
3.  OBSERVATION CENSORING AND TRUNCATION 

 
Hougaard (2000) contrasted the censoring in univariate and 
multivariate survival analyses. The following discussion 
mainly draws from this reference. In univariate survival 
analysis, left, right, and random censorings are studied, with 
right censoring as the standard type. Right censoring is 
further distinguished as Type-I and Type-II. There is also 
interval censoring vs. point censoring. In MSA, the standard 
practice is to observe processes from 0 until some time C, 
which may be different from process to process.  For the 
parallel data model, homogenous and heterogeneous 
censorings are possible. Homogenous censoring, also 
termed univariate censoring, may happen when the whole 
group is treated as a stochastic process. This is the standard 
for studying similar organs in biomedicine.  For example, 
observation termination or death causes simultaneous 
censoring for both eyes. Given the similarity between 
reliability parallel systems with the studies of  similar 
organs in biomedicine, the homogenous censoring should be 
important in reliability modeling.  In heterogeneous 
censoring, each individual object may have a different 
censoring time.   
 
Often censoring times and failure times are assumed 
independent. In some complex models, the so-called 
process-dependent censoring is considered.  Process-
dependent censoring implies that censoring at time t is 
dependent on the observed process up to time t. For 
example, in a quality assurance test for electronic bulbs, the 
observation is continued until a pre-specified number of 
bulbs are burned out. This termination time is the censoring 
time and is failure process dependent.  Of course, in 
process-dependent censoring, the failure time and censored 
time may be positively correlated or dependent. This is the 
Type-II censoring (Hougaard 2000).  
 
In recurrent events data modeling, process-dependent  
censoring may occur in the following manner: each 
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recurrence may have a negative effect on the individual, for 
example, each event may induce a probability p of exit from 
the study and hence censoring. This negative effect may be 
more common in reliability modeling of computer networks, 
where each occurrence of malicious attack increases the 
vulnerability of the system and thus the probability of 
failure. Positive effect may also be possible, this could occur 
in software testing processes, where the discovery of a bug 
may reduce the probability of the discovery of the next one. 
In computer networks, some events may not cause 
immediate failures, but lead to the performance degradation. 
For example, the down of an on-demand routing link only 
exposes the downstate when a routing request is sent. One 
potential use of the censoring in analyzing network faults 
can be to treat omission faults in hybrid fault models as 
process-dependent censoring.  Another potential application 
could be the behavior modeling of the Trojan horse 
software. Once the event that triggers Trojan occurs, the 
software enters into a state that is of fatal damage to the 
system, but the consequence is not necessarily the 
immediate failure of nodes.  
 
Data truncation in MSA can have more varieties than in 
univariate survival analysis. The simplest truncation type 
would be the assumption that there have been no events 
until the relevant time. For example, in a two components 
parallel system, both components are operating at the start 
time of observations; one ignores their previous failure or 
repair history. In other cases, either truncation can be due to 
our standards for picking individuals in the study explicitly 
or implicitly (Hougaard 2000).  For example, an insurance 
company may set the life insurance premium so high for 
terminally ill persons to exclude them essentially.  For 
longitudinal data, one may or may not know the histories of 
the individual objects, for example, the exposure to 
environment contamination. Another type of truncation is 
the unobserved or unobservable covariates; capability to 
considering this type of censoring is a unique feature of 
shared frailty modeling, one of the key motivations that 
inspired the development of the approach.     
 
 
4.  DEPENDENCE STRUCTURES AND MEASURES  
 
Dependence is often the central focus of MSA, and together 
with censoring, they complicate the survival analysis most 
significantly. In MSA, there are several dependence 
mechanisms, and each may have different causes and 
consequences. Hougaard (2000) reviewed three mechanisms 
of dependence and we introduce each type based on this 
review: (i) common events, (ii) common risks, and (iii) 
event-related dependence.   Common events are equivalent 
to common mode failures in reliability analysis, for 
example, failure events due to accidents or natural disasters.  
Usually, different objects may have different endurances to 
a natural disaster; otherwise, the modeling would be simple 
if all objects were destroyed.  The common risks mechanism 
describes the scenario that the individuals are dependent due 

to some common unobserved risks, such as common genes 
in siblings or a bug in the operating system that may affect 
all the software running on it. Again, different individuals 
may be affected differently by the common risks because of 
individual differences. The third mechanism, event-related 
mechanism, refers to the phenomena that the actual event 
itself changes the risk, such as virus infection of a computer 
node. The risks for neighbor nodes of a virus infected 
computer would increase because the possibility of virus 
penetration via network. The first and third mechanisms are 
often dealt with by multi-state models and the second by 
frailty models in MSA.  Since this article is focused on 
shared frailty models, which seem to lack counterparts in 
the engineering reliability field, the common risks 
dependence and frailty models are naturally the main 
concern in this article.  
 
4.1. Probability Mechanisms  
 
The term probability mechanism might be a misnomer in the 
sense that it does not specify the distributional assumptions 
that are part of the model itself. Instead, probability 
mechanism refers to the fashion data is generated by 
processes with a biological interpretation, and it actually 
avoids specific distributional assumptions. As explained by 
Hougaard (2000), probability mechanism is simply a set of 
structural assumptions that specify how a model with some 
features behaves, such as independence or conditional 
independence. The structural assumptions are often 
qualitative rather than quantitative to allow for the 
biological interpretations (Hougaard 2000).   The more 
relevant term for the structural assumptions might be the 
biological mechanisms in biomedicine or design 
assumptions in engineering reliability.  
 
Hougaard (2000) summarized the standard techniques of 
building models for multivariate random variables. One way 
is to formulate them as a random effects model. This 
corresponds to the common risks models. An alternative 
approach is by successive conditioning, constructing a 
multivariate distribution by means of the univariate 
distribution of T1, the conditional distribution of T2 given T1 
and so on. The conditional distribution approach applies to 
the recurrent data set, but it does not fit well with parallel 
data since the ordering of failure time is not specified in 
parallel data. Furthermore, including the time aspect 
introduces the event-related dependence Hougaard (2000).  
 
4.1.1. Common Events 
 
The term common event is often preserved for parallel data; 
for longitudinal data, the term multiple simultaneous events 
is often used. It is defined as a single cause that leads to 
simultaneous failures for several individuals (Hougaard 
2000).  In survival analysis, the most relevant are natural 
disasters or accidents. In software reliability, a hidden 
compiler bug may potentially affect all the software 
programs compiled with it. In semi-conductor 
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manufacturing, ESD (electric static damage) may damage a 
number of chip components simultaneously.  
 
A practical concern for studying common events is to 
choose a proper time scale that corresponds to physical time 
for each group (Hougaard 2000). For example, to study the 
simultaneous deaths of married couples from accidents, a 
proper time scale could be the time since marriage, rather 
than their ages. The common events dependence does not 
make sense for matched-pairs data (such as those collected 
in a drug trial) or repeated measurements data. 
 
4.1.2. Common Risks 
 
Common risks model in survival analysis is the counterpart 
of variance components model for normally distributed data. 
Hence, it is a random effects model. For parallel data, the 
assumption is that there are some unobserved risk factors 
that exist across various courses from which parallel data 
are collected.  For longitudinal data, common risks imply 
that the common risks factors are constant over time 
(Hougaard 2000).  When these common risks are known, 
the conditional independence is assumed or conditional 
dependence disappears. The models are also called latent 
risks models, they are mixed models where the mixture term 
is common for several individuals or constants over time 
(for repeated events). The most common type of model for 
common risks is the frailty model based on a common factor 
in the hazards, which are expanded in later sections.     
 
The key point with the model is that one does not know the 
risks deterministically, and therefore assumes that their 
effects are random and this creates dependence between the 
lifetimes. In other words, the dependence between the 
individuals within a group is "created" by the common risks. 
However, once the common risk is identified, the 
dependence ceases to exist, that is, the conditional 
independence.  Consider the following example.  The 
system administrator for a company often hesitates to 
upgrade the installation of their customer relations software 
to the latest release, because the software vendor is 
notorious for releasing products with bugs, especially the 
first release of a new version. The company CEO, however, 
is concerned that its major competitor may upgrade the 
software before his company. Therefore, the CEO leaves the 
decision to the system administrator but requires that no 
disadvantages arise from the software update decision.  If 
both companies take the same actions, the vulnerabilities of 
their software installations are dependent, because they are 
exposed to the same risks from the software vendor. Since 
when the software is just released, one does not know the 
risk level and can only assume the risk is random, that is, 
the random effects create the dependence between two 
companies.  However, if the system administrator has the 
ability to either predict or get the information by whatever 
reason (e.g., industrial espionage) about the status of the  
software release, then, conditional on the information, the 
software installations vulnerabilities between the two 
companies become independent, because the administrator 

can make a smart decision with the information and the 
information eliminates the dependence.   
 
In general, common risks is assumed to follow a continuous 
distribution to reflect the notion that several risks factors 
exist behind the unknown risks (Hougaard 2000). In this 
model, the failure of one entity does not alter the risk of the 
others, but it influences the perception of the risks by 
increasing the knowledge.  For example, if the system 
administrator's prediction is not reliable, the company may 
be disadvantaged. If the administrator prediction is 50/50, 
the information is useless.  
 
As indicated by Hougaard (2000), it is crucial to have 
accounts for the known covariates. In other words, one 
needs to know whether a given covariate accounts part or 
the whole of the dependence between the individuals.  The 
common risk may be constant over a lifetime, or be time-
variant, leading to remarkably different dependence models. 
In some cases, an independent increments model may lead 
to simultaneous failures due to the introduction of time-
dependence (Hougaard 2000).   
 
4.1.3. Event-related dependence.  
 
In this dependence model, the actual event changes the risks 
for future events. In computer networks, the clustered server 
nodes would be a typical example, since loss of one node 
may affect the failure probability of the other nodes in a 
cluster. In reliability engineering such as aerospace 
engineering design, the loss of redundancy is a very 
common issue.  All event-related dependencies are not 
negative. For example, some diseases may induce immune 
responses from the patient. The chain-reaction may be a 
vivid description for the event-related dependence. Event-
related dependence may also be used to model learning in 
computer science.  
 
4.2. Dependence timeframe.   
 
What makes dependence even more complex is that it may 
change with time. Furthermore, dependence changes the 
timeframe for individuals to be dependent (Hougaard 2000). 
Common events can lead to an instantaneous dependence, 
since failures happen at the same time. The common risks 
dependence typically occurs in a relatively long timeframe. 
In contrast, the time-dependent dependence is typically in a 
relatively short timeframe.  In reliability analysis, the notion 
of time-dependent hazards is characterized by the overall 
bathtub curve consisting of:  DFR (Decreasing Failure 
Rates), CFR (Constant Failure Rates), and IFR (Increasing 
Failure Rates). Nevertheless, there is no dependence 
consideration in the bathtub curve, since only one variable is 
involved.  
 
In MSA, various dependence timeframes can be identified.   
For example, early and late dependencies refer to scenarios 
in which dependence happens in the early or late stages of 
lifetimes, respectively. Intermediate and more symmetric 
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dependence is also possible.   A more detailed description is 
whether the dependence timeframe is instantaneous, short 
term, or long term.  Instantaneous dependence means that 
there are multiple events happening at exactly the same 
time. Common events failure is often instantaneous. The 
multiple instantaneous failures can be treated as a single 
event in multi-state modeling (Hougaard 2000).    
  
The short-term dependence is often associated with common 
risks dependence. Both multi-state and frailty models may 
be built to describe this type of dependence.  In the long-
term dependence interactions, the whole history is 
important. The long-term dependence has been formulized 
as a Markov extension model with limited success 
(Hougaard 2000). Therefore, shared frailty is particular 
important for studying long-term dependence.   
 
4.3. Dependence Measure.  
 
In univariate survival analysis, there are two types of 
dependences. The first type, which is often ignored, is the 
dependence between censoring times and survival times. 
The second is the dependence of failure time on the 
covariates, which is modeled via the proportional hazards 
models and its various extensions. The dependence problem 
in MSA is fundamentally different from that of traditional 
multivariate analysis. In traditional multivariate analysis, 
when multivariate normal distribution is assumed, the 
Pearson correlation (product moment correlation) only 
measures the linear dependence. For survival data, the 
marginal distributions are not normal and the dependence 
structure is often nonlinear. In addition, small sample 
experiments and semi-parametric models are the norm, 
rather than exceptions in survival analysis (Hougaard 2000).   
There are at least six dependence measures often used in 
MSA. Most of the measures can be defined with 
multivariate survivor functions and some can be estimated 
non-parametrically. For a detailed description of the 
dependence measures, one should refer to Hougaard (2000).  
These six dependence measures are:  
 
(1) Pearson Correlation Coefficients. This is only useful for 
linear dependence and multi-normal distribution. It is rarely 
useful for MSA, but can act as a measure of deviation from 
the normality or linearity.   
 
(2) Kendall's Coefficient of Concordance (τ).  It seeks to 
compare the orders of survival times in the same group.   
For example, if one assumes that males and females have 
different expected lifetimes, one never directly compares 
male with female. One only compares individuals of the 
same sex. Under independence within couples, and p = 1/2, 
then τ = 0.  However, τ is invariant with both linear and 
nonlinear transformations.   
 
(3) Spearman's Correlation Coefficient.  The standard 
estimate of Spearman's correlation with complete data is 
based on the marginal ranks of survival times. This index 
requires continuous marginal distributions.   

(4) Median Concordance.  The idea is to avoid the 
conceptual shortage of Kendall's coefficient, which requires 
two pairs (e.g., males, females) to interpret. Instead of 
comparing with a second pair, one evaluates the 
concordance of a single observation (T1, T2) in relation to a 
fixed bivariate point. One option is to choose median 
lifetimes as the fixed point, and one gets the concept of 
median concordance.  The median Concordance is:  
 

))}())(({( 2211 TmedianTTmedianTsignE −−=κ  (1) 
 
or defined with bivariate survival function [S(t1, t2)] as,  
 

1)]2/1(),2/1([4 1
2

1
1 −= −− SSSκ     (2) 

 
Median concordance satisfies the same simple properties as 
the previous two coefficients. It ranges from −1 to 1 and is 0 
under independence.  
  
It should be cautioned that for all the above coefficients, a 
value of zero is not sufficient to conclude independence 
(Houggard 2000).  
 
(5)  Integrated Hazard Correlation. It is similar to 
Spearman's coefficient and often requires numerical 
integration. Given f(u, v) is the p.d.f of (u, v),  

 ∫ ∫ −=
1

0

1

0
1),())(log(log dudvvufvuhρ  (3)  

 
(6)  Local Dependence Measures. All above measures 
evaluate the global dependence and they do not address the 
dependence timeframes discussed earlier: the concepts of 
early/late, short term, long-term dependences.  The 
following formula defines the dependence at time t, which is 
useful for addressing the dependence timeframes.  
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Another similar research area to the dependence measure is 
statistical tests of multivariate survival functions. Li and 
Lagakos (2004) investigated the properties of several 
important statistical tests based on the marginal analysis of 
multivariate survival data.   
 
 

5.   SHARED FRAILTY MODELS FOR  
PARALLEL DATA 

In this section, we introduce the essential concepts, models 
and procedures of shared frailty models primarily based on 
Hougaard (2000) and supplemented with advances in the 
last few years. Frailty is a term used to describe the common 
risks, acting as a factor modifying the hazard function. The 
shared frailty models therefore address the common risks 
dependences. The approach has been developed for both 
parallel data and recurrent events data.  This section is 
restricted to the parallel data. Various extensions to other 
data models will be discussed in sections 6 and 7.  



 8  

Shared frailty can be considered a mixture model, and 
frailty (denoted as Y) can be treated as a mixture term. 
Common risks are assumed random. The model is a 
conditional independence model, in the sense that, given the 
values of the frailties, all lifetime observations become 
independent (Hougaard 2000). In the previous example of 
software updates, the dependence between the two 
companies is created by the common risks. However, once 
the common risk is identified, the dependence disappears. 
This is what is meant by conditional independence. 
 
As introduced in subsection 2.1, parallel data consists of 
two sets of observations, one for the response times Tij and 
the other for the individual failure indicators, Dij, where i = 
1, ..., n, and j = 1, ..., k.  The number of individuals k may 
vary between groups, that is, k1, ..., kn, but most formulae 
are derived for single groups, making indexing of k  
unnecessary. Censoring is assumed arbitrary, either 
homogenous or heterogeneous.    
 
In shared frailty modeling for parallel data, the value of Y is 
constant over time and common to all entities within the 
group. Therefore, Y is attributable to the creation of 
dependence, which is why the term shared is used. 
However, Y varies between groups as a random variable, 
which leads to different risks for the groups and the 
dependence between groups. A shared frailty model can be 
considered as a random effects model with two sources of 
variation: the group variation described by the random 
variable Y (the frailty), and the individual variation, 
described by the hazard function, which is denoted by μ(t) 
(by λ(t) in univariate survival analysis).   
 
As indicated by Hougaard (2000), when the frailty is strictly 
positive, the shared frailty model leads to absolute 
continuous distributions.  This implies that the shared frailty 
model is not applicable to the common-events dependence 
because the common events failures create discontinuities in 
multivariate distributions. It is also not relevant for event-
related dependence, because an event in frailty modeling 
may only change the information available on perceiving 
frailty but not the risk itself (Hougaard 2000).  However, the 
latter point seems to be changing.  Box-Steffensmeier and 
De Boef (2006) indicated that in the recurrent events, 
dependence (correlation) could result from two sources: 
heterogeneity across individuals and event dependence. 
They further suggested that the conditional frailty model of 
joint event-dependence and heterogeneity is very useful in 
modeling recurrent data.    
 
5.1. Unspecified Frailty.  
 
In the unspecified frailty model, the frailty is simply used to 
separate groups. A researcher considers to what extent Y 
can be freely specified—permitting each group to have a 
parameter specifying the risk for that group. This approach 
is used when the problem is to examine the effects of 
covariates that vary between the individuals in a group, for 
example, scenarios such as the repeated measurements 

study or a clinical trial with matched pairs. As we explained 
previously, in a repeated measurement, the time to same 
type of event is studied for a fixed number of times for the 
individuals in the experiment. In computer science, the 
example of repeated measurements could be the recurrences 
of the same type of software bugs within a specified period. 
The matched pairs covariates scheme is used in a drug trial 
where sets of two individuals are created on the basis of 
common values of some covariates (race, family), and then 
the members of the pair are assigned with one of the two 
different treatments (drug pills vs. placebos). Pairing is done 
by their values of key factors, in particular by the risk 
factors for which it is difficult to assign relevant numerical 
values. Similarly, the paired analysis could be designed to 
study the reliability of server nodes in various geographical 
locations. Another pairing factor could be the types of 
operating systems.  
 
An intuitive idea is to treat the group factor as a regression 
variable, that is, define z2, ..., zn as indicator functions for 
the n−1 last groups. Then include them in the model, 
together with z1, the indicator of the treatment group. Group 
1 is excluded as a covariate, because the corresponding 
parameter acts as a scale parameter. Then a standard Cox's 
model (e.g., Cox 1972, Cox and Oakes 1984) can be 
formulated. The hazard for an individual with treatment 
variable z1 is λ0(t)exp(β1z1) in group 1, and λ0(t)exp(β1z1+ξi) 
in group i,  i = 2, ..., n.  However, it was found by Holt and 
Prentice that the standard Cox model is not appropriate; 
instead, the stratified Cox model by group i is more 
appropriate, )exp()()( 110 ztt ii βλλ = , for each group, i = 1, 
..., n. There are several shortages associated with the 
unspecified frailty model (Hougaard 2000). In particular, the 
artificial designation of group 1 makes the model awkward. 
However, its derivation is simple and intuitive. The 
remainder of the section is essentially various natural 
extensions of frailty models to make them more realistic.  
The first extension is to treat ξi as a random variable, rather 
than as a parameter for each group.  This is discussed in the 
following subsection.   
 
5.2. General Shared Frailty Model.  
 
In this subsection, it is assumed that there is a distribution to 
the frailty. The random frailty implies that one can integrate 
the frailty out of the expressions and thus evaluate the 
multivariate distribution of the response times. This is the 
main approach for parallel data frailty modeling. The major 
computation can be done via Laplace transform (Hougaard 
2000).  
 
Instead of attaching a fixed parameter ξi to each group 
(labeled as i-th group), the quantity attached is considered as 
a random variable in the general shared frailty model. To 
simplify the model, let us denote the quantity as Y = exp(ξi), 
which will become clear later. For the individuals within a 
group i, the members possess independent lifetimes 
conditional on the values of Yi.  This is similar to the 
unspecified frailty case in the previous subsection, that is, 
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no frailty variation within a group.  The key difference from 
the unspecified frailty model is obviously the replacement 
of parameter ξi with the random variable Yi. The extension 
allows one to quantify the difference between groups readily 
and makes it possible to predict the responses of other 
individuals. Another difference is that more general 
regression covariates can be included to study common 
covariates and determine whether they are responsible for 
the group differences. This makes it possible to test the 
hypothesis that the responses times are independent when 
those common covariates are explained (known). The third 
difference is that the extension removes that unnatural 
treatment in the previous unspecified frailty model, 
measuring all risks relative to the group 1.  In the general 
frailty model, it is unnecessary to specify a reference group 
1 any more, actually it is not permitted to do so, because the 
assumption of independent groups.   
  
To preserve the validity of the independence between 
groups, the scale parameter of the distribution Y must be 
fixed. This has been a focus of significant research 
(Hougaard 2000). One simple solution is to eliminate the 
scale parameter, but it is only useful in very limited 
occasions.  An alternative approach is to start by fixing the 
scale parameter in the distribution of Y. 
 
Two-parameter Gamma distribution has been the dominant 
frailty model used in frailty modeling. However, recent 
research of three-parameter generalized gamma frailty 
models may change this. It is a power generalization of 
gamma distribution and includes other frailty distribution 
such as Weibull and lognormal frailty as special cases 
(Balakrishnan and Peng. 2006).  Cox and Chu et al. (2007) 
presented a comprehensive tutorial on the survival analysis 
based on the generalized gamma distribution.  
 
5.2.1. The mixture model and the parameterization  
 
Mixture model— When only a single group is considered 
(thus group index i is omitted), the shared frailty model is a 
common risks model conditional on the shared frailty Y.  
The hazard function for individual j, conditional on the 
shared frailty Y is,  

  )(tY jμ     (5) 
 

This is a mixture model, also known as mixture distribution 
and it is one way to make parametric models (that are based 
on some standard statistical distributions, such as 
Exponential or Weibull) fit to data better (Hougaard 2000).  
A mixture model is based on a chosen parametric model, 
and assumes that one of its parameters varies between 
individuals. The parameter value is assumed to be random 
and follow some distribution. Furthermore, as the value is 
unknown, it has to be integrated out (in the terms of 
calculus). In univariate survival analysis, this approach 
serves two purposes. One is to generate more general 
distribution models, and the other is to serve as a 
heterogeneity model, where the population is interpreted as 

a mixture of individuals with different risks. The latter is 
also known as compounding (Hougaard 2000). 
 
There are two simple ways to derive such mixture models 
for survival data. One is to impose a scale factor on the 
hazard (function), often denoted as λ.  The other way is to 
impose the scale factor on the survival time (T), often 
denoted as c, rather than on hazard. One interesting fact is 
that with Weibull distribution, the two approaches produce 
the same result, but in all other cases, the results are 
different.  The scale factor itself may be treated as a random 
variable, rather than parameter; then often Y is used directly, 
rather than using λ.   
 
The mixture model is extremely useful for studying 
heterogeneous population, such as HIV carriers or some 
genes in a population, since separating the individuals into 
sub-populations may be infeasible. In reliability analysis, 
factors such as mixture of components from different 
suppliers or codes from individual programmers, etc, may 
be the good candidates for adopting mixture models.  
 
To explain the two approaches, two examples are presented 
below. The first example is to impose scale factor on the 
hazard function. It is assumed that Y is a random variable 
representing the scaling factor. The μ(t) is determined by the 
standard pure hazard function. The hazard conditional on Y 
is expressed as the same equation as (5), )(tY jμ , where μ(t) 

is 1 in the exponential case and 1−γγ t  in the case of Weibull 
distribution. The scaling factor Y is the frailty in this case, 
describing the individual’s unobserved risk.  
 
There are quite a few confusing terminologies for Y in the 
literature, depending on the stage or the information 
available. Generally, the distribution of Y is termed the 
mixture distribution. The distribution of )(tjμ  is termed 
conditional distribution, when Y is fixed. The observed 
distribution, that is, when Y is integrated out, is called the 
marginal distribution.  The hazard in this distribution is 
called the marginal hazard and is denoted as ω(t).  A 
general formula for the marginal distribution can be derived 
by using the Laplace transform of the mixture distribution, 
that is,    

  )].[exp()( sYEsL −=   (6) 
 
The conditional survival function S(t|Y) is:  
 

  )}(exp{)|( tYMYtS −=   (7)   

  ∫=
t
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The marginal survival function can be evaluated by: 
 

)],([)}]([exp{)]|([)( tMLtYMEYtSEtS =−==  (9) 
 
where L[M(t)] is the Laplace transform.  
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Another very important concept is the updating of the 
distribution of Y under heterogeneity interpretation of the 
mixture model. Since different individuals have different 
frailty risks, the composition or heterogeneity of a 
population may change over time with the progression of 
failure process.  For example, the high-risk individuals exit 
the system faster than low-risk individuals do.  One of the 
relationships between the marginal and condition hazard is, 
 

 ],|[)()( tTYEtt >= μω     (10) 
 
which indicates that the observed hazard (marginal) is equal 
to the mean hazard, when evaluated among the survivors at 
the time of study.  
 
The second way to build a mixture model for survival data 
is to scale the failure or response times. This is also known 
as time-scale mixture model.  The following is an example. 
Let   γ/1−= Yc .  The lifetime T can be described as cW, 
where W is Weibull ),1( γ distributed. This relation can be 
immediately used to evaluate moments and other properties, 
for example, E[T] = E[c].E[W]=E[Y-1/ϒ]E[W].  
 
A more general time-scaled mixture model can be defined 
simply as: T = ZW, where Z and W are positive valued 
random variables, with Z acting as a random variable for the 
scale factor c.  
 
Conditional parameterization—refers to the relaxation that 
allows the conditional hazard [μj(t)] to take on arbitrary or 
non-parametric expressions. That is, in the )(tY jμ , μj(t) is 
allowed to be non-parametric, and the values of Y is 
common to individuals within a group.  
 
The approach needs to be extended to multivariate survival 
distributions. Independence of the lifetimes implies no 
variability in the distribution of Y, that is, when Y has a 
degenerate distribution. When the distribution is not 
degenerate, the dependence is positive. In a few cases, the 
model can be extended to allow for negative dependence. 
For simplicity, let us begin with the bivariate case to explain 
the extension.   
 
Conditional on shared frailty Y, the bivariate survival 
function is: 
 

)}],()({exp[)|,( 221121 tMtMYYttS +−=   (11) 
 

where 2,1,)()(
0

== ∫ jduttM
t

jj μ  are the integrated 

conditional hazards.  From (11), one derives the bivariate 
survival function by integrating out Y.  

)]()([)}]()({exp[),( 2211221121 tMtMLtMtMYEttS +=+−=

      (12) 
E(.) is the expectation and L[.] is the Laplace transform of 
the distribution of Y. The bivariate survival function is then 
expressed via the Laplace transform of the frailty 

distribution, evaluated at the total integrated conditional 
hazard.  Similarly, let   

  ,)(),...,(
11 ∑ =

=
k

j jjk tMttM   

the multivariate survival function for k observations is: 
 

 )],...,([),...,( 11 kk ttMLttS =   (13) 
 
From the survival function, the p.d.f. can be derived by 
differentiation with respect to t1,...,tk, and the likelihood 
function can then be built. As to the hazard function μj(t), 
various choices can be made, and the simplest choice is the 
symmetry μj(t) = μ(t), all hazards are equal. Another option 
is that they are unrelated, or arbitrary, independent of each 
other. There is also a compromise between the all equal and 
arbitrarily independent, that is, the proportional hazards, 

)()( 0 tt jj μρμ = , where the ρj is a set of parameters for j=1, 
..., k observations.  Finally, the Cox's proportional hazards 
form can be used, with, )()exp()( 0 tzt jj μβμ = .  
 
Furthermore, various frailty distributions from exponential, 
Gamma, Weibull, PVF (power variance function) family 
may be utilized for different applications.  
 
Geoffrey and Rocke (2002) found that when double 
censorings exist, the commonly used partially likelihood 
estimation cannot be used.  They suggested using the 
conditional independence in the model as much as possible.  
The survival function for an individual with frailty Yi is 
defined as: ])(exp[)|( jk

jiij tYYtS ρ−=  for the control group 

and ])(exp[)|( jk
jiij tYYtS ρτ−=  for the treatment group.  

Therefore, the treatment is assumed to have a multiplicative 
effect on the conditional hazards, hj(t|Yi). (Here, we changed 
Geoffrey and Rocke's (2002) notation for frailty from Zi, to  
Yi to keep consistent with the rest of the article).    
 
Marginal parameterization— Marginal parameterization is 
an alternative to the conditional parameterization. That is, 
all formulae are expressed with the marginal distributions. 
The advantage for the alternative is that there is an 
approximate orthogonality between parameters, which 
makes it easier to estimate the quantities (Hougaard 2000). 
The derivation can be conducted via the marginal survival 
functions Sj(t)=Pr(Tj>t), defined by S1(t)=S(t, 0),  S2(t)=(0,t), 
..., etc, or the model can be based on the marginal hazard 
function, that is the hazard in the marginal distribution, 
ωj(t), with integrated hazard Ωj(t). The marginal survivor 
function and hazard are related in the traditional definition 
fashion, )}(exp{)( ttS jj Ω−= . From the relation, 

)]([)( tMLtS jj = , it can be derived that, 

)]([)( 1 tSLtM jj
−= . The bivariate survival function, 

corresponding to Equation (12) is:  
 

 ))](())(([),( 22
1

11
1

21 tSLtSLLttS −− +=  (14)  
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The multivariate version of survival function is drawn 
similarly as, corresponding to (13),  
 

 )})]((exp{[),...,( 1
1 ∑ Ω−= −

j jjk tLLttS  (15) 

 
The Equation (15) can be differentiated to obtain 
multivariate p.d.f., which can be used to build likelihood 
function for parameter estimations.  
 
5.2.2. Frailty Distribution Updating 
 
Similar to the discussion in the mixture model section, the 
updating for frailty distribution is necessary. The underlying 
reason for updating is that after a period of observations, 
either with or without some events occurred, one gets more 
information about the frailty Y. This is due to the 
heterogeneity phenomenon, which implies that high-risk 
group experienced some events, while low-risk groups have 
experienced fewer or no events. The updating is essentially 
the re-evaluation procedure for the conditional distribution 
of Y, given the observed quantities since the start of the 
experiment (Hougaard 2000).  
 
Updating can be used to assess the effects of truncation 
since truncation may influence the distribution of events in a 
population with heterogeneous frailty.  Updating can also be 
harnessed to evaluate conditional distributions, if the 
objective is to make individual forecasting. The so-called 
dynamic evaluation, where the hazard at each time instant is 
calculated based on all the information known up to that 
time, or the filtration (Ft-), is obviously extremely 
meaningful.  Under the dynamic approach, the hazard of 
death for the j-th individual given the individual is alive at 
time t is: 

 )|()()|( −= tjtj FYEtFt μλ   (16)  
 
This is actually a generalization of the Equation (10).  
 
Truncation may alter the measure of dependence (e.g., 
Kendall's τ). The updating model can be used to quantify the 
change (Hougaard 2000).  Updating mechanism can be used 
to simulate the effects of malicious truncation on 
survivability of computer networks.   
 
5.2.3. Quantification of dependence.  
 
According to Hougaard (2000), generally, three ways of 
expressing dependence can be used in a frailty model. 
Firstly, some measure of frailty variability should be 
adopted, given that the dependence itself is possibly time-
variant due to the frailty heterogeneity. Often the variance 
of Log(Y) is used, if the objective is to evaluate dependence 
via some measure of variability of the frailty distribution. 
The second approach is to evaluate dependence by a 
correlation type measures as defined in section 4.  The third 
approach is to evaluate the conditional distributions.  In the 
traditional multivariate analysis, this corresponds to 
analyzing the linear regression relation.  In the multi-state 

models, a dynamic version of the relation is used. In frailty 
models, it is handled by the dynamic updating formulae as 
discussed in previous paragraph. The third approach offers 
the result as a whole curve, rather than a single number, due 
to the including of dynamic updating scheme (Hougaard 
2000).    
 
5.2.4. Regression models 
 
In frailty modeling, it is required to consider explanatory 
covariates because the frailty describes the effects of 
common unknown factors.  If some common covariates are 
incorporated in the model, the variation owing to unknown 
covariates should drop (Hougaard 2000).  
 
Assume there are p observed covariates zijm, i = 1,..., n, 
j=1,...,k, m=1,...,p, for each individual.  Often, they are 
denoted as p vectors zij. Generally, they depend on i and j in 
an arbitrary way. Two special cases are the common 
covariates and the matched-pairs covariates. Common 
covariates are common for all members of the group, that is, 
depends on i only.  Matched pairs covariates are covariates 
that only depend on j.  
 
The traditional proportional hazards model can be used to 
incorporate covariates, but need to express as conditional on 
the distribution of frailty Y.  In fact, the frailty can be 
interpreted as a common but unobserved risk factor, which 
produce the following conditional hazard function for the 
(i,j)-th individual,  
 

 )exp()( ''
iijj zt ωψβμ +    (17)  

 
where ωi is the vector of common unobserved covariates 
and the hazard term μj(t) may or may not depend on j.  Let 

)exp( '
iiY ωψ= , a conditional hazard of  

 
 )()exp( ' tYz jiij μβ     (18) 

 
is obtained as the standard formulation.  
 
5.3. Shared Frailty with Specific Frailty Distribution  
 
In previous section, the general frailty model is introduced. 
We only stated that frailty follows some distribution, but did 
not give specific distribution. In this section, we mention a 
few distributions that have been used frequently.  
 
Gamma Frailty model: — The two parameters Gamma (δ, 
θ) distribution, with θ as scale parameter has been utilized 
in frailty modeling to generate mixtures distributions from 
the very early days of frailty modeling. It possesses quite a 
few advantages, such as the simplicity of the derivatives of 
the Laplace transform, easy computation of the Kendall's τ 
[τ = 1/(1+2δ)]. In addition, updating with Gamma 
distribution is easy, since the distribution of Y among the 
survivors at time t is also Gamma-distributed with the 
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parameter δ unchanged and θ changed to ∑+ j j tM )(θ . It 

is the original distribution modified by a scale parameter. 
This is a unique property of Gamma distribution. Under 
Gamma frailty distribution model, if the conditional hazard 
follows Weibull distribution, the bivariate survival function 
takes the form of Burr distribution that is a generalization of 
the well-known Pareto power distribution.  
 
The gamma frailty model can be extended to describe 
negative dependence, which may be rare but does occur in 
practice. The negative dependence implies that the death of 
one individual may actually lower the risk of the other 
individual. One example in computer networking would be 
the death of a node that is being utilized as the base for 
attacking other nodes or a node that has become the source 
of virus spreading.  
  
PVF (Power Variance Function) frailty distributions —
The PVF family of distributions is a natural exponential 
family and has the property that variance and mean satisfy 
power-law model. The previous mentioned Gamma, 
positive stable distributions, and the inverse Gaussian 
distributions are the special cases of PVF family.  The PVF 
has three parameters, α, δ, θ. In the case of 0<α≤1, it can be 
obtained as the distribution of Y in a stable frailty model 
after truncation. The special case α=δ, θ=0 leads to positive 
stable model. The case of α = 0 derives the gamma 
distribution.  When α = 1/2, the mixture distribution is an 
inverse Gaussian distribution. For α < 0, there is a point 
mass at zero, implying that some groups correspond to zero 
risk. It is a desirable feature for capturing the individuals of 
immunity or that some groups being unable to experience 
the event considered (Hougaard 2000). For example, in 
computer network modeling, one may use the feature to 
capture the cross-platform immunity—a virus written for 
Windows® may not affect a Linux node.   
  
Other frailty distributions — Theoretically, any distribution 
of positive random variables may be utilized as frailty 
distribution models. One key point is the simplicity of the 
Laplace transform. Others distributions that have been 
studied for frailty modeling include: positive stable frailty, 
lognormal, inverse Gaussian, generalized inverse Gaussian, 
Frank's distributions. In particular, recent studies suggest 
that the positive stable frailty distribution should be 
preferred to the Gamma model in scenarios when the 
correlated survival data exhibit a decreasing association 
with time (Martinussen and Pipper 2004).  Martinussen and 
Pipper (2004) developed a likelihood estimation procedure 
for the positive stable shared frailty Cox model. 
Ravishanker and Dey (2000) used the finite mixtures of 
positive stable frailty distributions to form a multivariate 
survival model. They used the cross-ratio function as a local 
measure of dependence.   
 
5.4. Statistical inference for shared frailty models.  
 

Despite the omission of the statistical inference of the frailty 
models here, its importance is self-evident. Without feasible 
estimation procedures, the models simply cannot be applied 
to the practical data. One basic notion is to integrate out the 
random frailties, but there are other alternatives. As 
reviewed by Hougaard (2000), one alternative is to interpret 
the frailty as unobserved random variables, similar to the 
best linear unbiased predictor (BLUP) method for normal 
distribution models, and then EM-algorithm can be used. 
The challenge with EM-algorithm, which is reasonably 
simple, is the possibly excessive number of iterations 
required. The EM-algorithm includes both the frailty (Y) and 
the observed quantities (T, D) into estimation procedure, 
giving a full likelihood of L(T,D)|YLY, where the first term is 
the standard survival likelihood given the frailties and the 
second term is the likelihood from frailty density  
(Hougaard 2000).  
 
The so-called three-stage approach described by Houggard 
(2000) is another major methodology.  This method is 
advanced to address the problems that a parametric model 
may not give satisfactory fit to the marginal distribution, the 
alternative semi-parametric approach, which combines 
parametric models for dependence with classical non-
parametric estimates for the marginal distribution.  Markov 
chain Monte Carlo (MCMC) has also been used for the 
gamma frailty model, which simulate the distributions of 
frailty values, avoiding the difficulty in handling the 
complex likelihood functions. Besides the parameter 
estimation procedures, goodness-of-fit testing methods are 
also necessary.  Asymptotic theory for these models is still 
not fully developed.  Commercial software packages such as 
SAS®, SPSS®, have not yet released programs for all frailty 
modeling. Vu and Knuiman (2002) proposed an approach 
based on maximum likelihood and EM to address the 
parameter estimations in the semi-parametric marginal 
shared gamma frailty models.  Gorfine et al. (2006) 
developed a so-called pseudo full likelihood approach that is 
able to handle general frailty distribution with finite 
moments and achieved similar efficiency as the widely used 
EM algorithm.  Ripatti et al. (2002) devised a maximum 
likelihood inference procedure for multivariate frailty 
models based on an automated Monte Carlo EM algorithm.  
 
5.5. Spatial Frailty Modeling.   
 
Back to 2001, Li and Ryan (2001) indicated that, "there has 
been, however, virtually no literature dealing with models 
for spatially correlated survival data".  This seems still 
largely true. They proposed was a new class of semi-
parametric frailty models extended to process the spatially 
correlated survival data. Spatially correlated data exist 
widely in practice, despite the lack of statistical methods 
specifically tailored for them. For example, epidemiological 
data in public health or the animal population dynamics data 
in fields are full of spatial dependence or correlations.  
 
The following is an extremely brief sketch of Li and Ryan's 
(2001) model. Assume there are M geographical regions, 
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and each region has ni objects being observed. For each of 
the objects, there are: Xij = min (Tij, Cij), where Tij are failure 
times and Cij are censored times.  There is also a 
corresponding covariates Zij for each individual object. In 
addition, each region is assigned a region-specific random 
effect r(pi), where pi represents the specific region. When 
survival time Tij is assumed independent, the conditional 
hazards function (termed intensity function in original 
paper) is of the following form: 
 

 )](exp[)()}(,|{ 0 iijiijij prZtprZt +′= βλλ  (19) 
 
where β is the fixed effects vector and r(.) assumes the form 
of stationary Gaussian process with zero mean.  
 
In a very recent study, Bastos and Gamerman (2006) 
proposed what they called dynamic model with spatial 
variation, and the model is not limited by the proportional 
hazard assumption. The model is expressed with the hazard 
function h(t, X, s) , 
 

 )]()(exp[),,( sWZtXsXth ++′= β    (20) 
 
where t is the time, s is the space, X is the vector of 
covariates, β(t) is the time-dependent vector of regression 
coefficients.  W(s) is the spatial frailty for space location s.  
Z is the unstructured spatial frailty. Several models such as 
Cox (1972) proportional hazard model, the original frailty 
model by Clayton (1978), Henderson et al's spatial frailty 
(2002), Carlin and Banerjee's (2002) dynamic survival, can 
be derived from the model as special cases.    
 
 
6.  SHARED FRAILTY FOR OTHER DATA MODELS 
 
Shared frailty models for the parallel data, discussed in 
previous section 5, is the most extensively studied field in 
frailty modeling, and it also has the longest history.  
However, frailty modeling approach has been extended 
significantly to other survival data in recent years. In 
particular, it has been extended to the data sets of recurrent 
events, short-term and instantaneous frailty, and true 
multivariate frailty models (beyond bivariate). Given the 
extensive contents and also the similarities between these 
other extensions with the frailty models for parallel data, we 
only mention the most fundamental differences between the 
extensions. In particular, we omit all the equations and 
models, which seem necessary to fit an article of this length 
but make it nearly impossible to have comprehensive 
discussion on the relevant topics here.  Readers are referred 
to Hougaard’s (2000) excellent monograph for the detailed 
treatments. The following is mainly summarized from 
several chapters of Hougaard (2000). 
 
6.1. Shared frailty models for recurrent events 
 

The recurrent events data is significantly different from 
parallel data. In the parallel data model, one pre-specifies a 
group of individuals or items, which are followed 
individually until failure. In recurrent events model, one is 
interested in single individuals who experience the same 
event multiple times. Recurrent data is essentially 
longitudinal data.  Recurrent data may be modeled as multi-
state model by treating the number of occurrences of 
recurrent events as different states. The discovery of bugs in 
a software-testing project is an example of recurrent events 
data in computer science. 
 
In the case of independent data, the event count can be 
described with the ordinary Poisson process. This means 
that future events are independent of previous ones, which 
requires that there are no random variations among the 
individuals. In the more general cases with dependence, one 
treats the models conditional on some individual's variations 
(frailties). Thus, the frailty model for recurrent events is a 
model for dependence or individual variation (Hougaard 
2000).  
 
The frailty models for recurrent events are similar to those 
for parallel data discussed in section 5. Here are the major 
conceptual differences summarized by Hougaard (2000): 
The frailty variation in recurrent events modeling does not 
exist as group variation, but exists as variation between 
individuals. This is opposite to the interpretation in parallel 
data in which frailty is considered as a random variable 
taking different values between groups. Furthermore, the 
variation described by the hazard function is not an 
individual's variation, but a variation between individuals, 
which is called the Poisson variation in recurrent events 
modeling.  For parallel data set, the risk decreases at each 
event time (since high risks individuals dies early); whereas 
for recurrent events data, the risk set is constant over the 
observation period.  Therefore, it is critical to observe the 
times of events for parallel data, whereas for recurrent 
events, the frailty leads to the variation in the number of 
events, even the observation time is the same for all 
individuals. In the extreme case of very long observation 
period, every individual in parallel data observation will 
ultimately die, so there is no variation in the number of 
events (death). However, obviously the variation is 
inevitable in the case of recurrent events. Therefore, in 
recurrent events data, it is satisfactory to know the number 
of events within the observation period and the ultimate 
actual times is less concerned.  In software testing, the 
discovery of bugs is a typical recurrent event. One depends 
on the number of bugs discovered within the testing period 
for decision-making, but depending on the ultimate actual 
number of bugs may simply be impractical.    
 
When the observation period is the same for all individuals, 
some evaluations can be based on only the number of events 
during the study period (the acquired data is called period 
count data.). This leads to specific Poisson over-dispersion 
distributions and a completely separate theory to study 
them.             
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The stochastic process is often Markov for frailty models in 
recurrent events, whereas the process for multi-state 
bivariate data is often not Markov. The reason for the 
difference is that the risk set in recurrent events is constant 
over time. Accordingly, the constant hazards assumption 
often holds for recurrent event data, but is rarely valid for 
parallel data.  For parallel data, dependence measures such 
as Kendall's coefficient are sufficient, but for recurrent 
event data, we need fundamentally different measures. 
Poisson Process, over-dispersion models such as Negative 
Binomial distribution, PVF distributions, and regression 
models based on Cox model extensions are the major 
models for describing recurrent frailty.  
 
Peña (2006) reviewed a set of new dynamic process models 
based on counting stochastic process and the Martingale 
central limit theorem in the context of recurrent events. This 
class of models, which is able to handle the unique key 
features (such as mentioned in section 2.1) of recurrent 
events simultaneously, has been developed by Pena and his 
collaborators in the last few years (Peña and Hollander 
2004, Stocker and Peña 2007). The potential application 
fields of this class model envisioned by the authors include 
survival analysis, reliability and maintenance. The model 
emphasizes the dynamic nature of reliability and shows the 
necessity of stochastic process such as counting process and 
Martingale theory in recurrent event modeling.  
 
6.2. Short-term and instantaneous frailty models.  
 
Dependence can be distinguished into three timeframes: 
long-term, short-term, and instantaneous. Almost all the 
dependence models so far deal with long-term dependence.  
Multi-state models can be easily converted into short-term 
dependence modeling by abandoning the Markov 
assumption and substituting with a Markov extension 
model. However, the resulting models often lack 
interpretation, and are hard to solve analytically.  In 
contrast, frailty model is relatively ameanble when 
extending to the short-term dependence modeling 
(Hougaard 2000). Similar to the previous subsection 6.1, the 
following is simply a list of the topics; readers are referred 
to Hougaard (2000) monograph for more details.  
 
Frailty models are essentially random effects models with 
three sources of variations. In shared frailty models for 
parallel data (Section 5), these are group effects and 
individual random effects, plus random group by time 
interaction effects. In recurrent events, the corresponding 
random effects are individual variation and simple variation. 
In the context of short-term and instantaneous dependence, 
one supplements the recurrent modeling treatment with a 
random variation over time. Both parallel and recurrent 
events are involved in the short-term and instantaneous 
timeframe modeling. According to Hougaard (2000), the 
following seven types of models have been developed to 
model short-term and instantaneous dependence. 
 

(i) Independent increments frailty model, which deals with 
simultaneous events and instantaneous dependence.  This 
describes common risks models in a randomly changing 
environment.  Compared to the shared frailty models, it 
substitutes the constant frailty Y, with a stochastic process 
common to all individuals in the group Y(t).  
 
(ii) Bivariate parallel data model. It is assumed that the 
individuals in a group share the same realization of Y(t), and 
the groups are assumed independent and have the same 
distribution of the stochastic process.   
 
(iii) Recurrent events data model. Whether instantaneous 
dependence can occur for recurrent events data is case 
dependent, since in some cases, it is physically impossible 
to experience two events simultaneously. Even when the 
physically simultaneous events are impossible, the model 
may still be useful as an approximation to the scenarios that 
dependence is extremely short-term. Generally, the 
instantaneous dependence model is simpler than that for 
short-term dependence, but the latter is often closer to 
practice. The increments frailty modeling can be used to 
build models for the recurrent events data, the model is 
actually simpler than that for parallel data since the risk set 
is constant. An alternative to increment frailty modeling is 
called subordinated time model, which assumes the 
increments of frailty as a stochastic time process in 
continuous time starting at time 0.  For example, the time 
process may be a Poisson process that can describe the 
accumulated use of the object. In the case of computer 
networks, the time process can describe the repeated attacks 
from hackers or the repeated calls of a module in software. 
 
(iv) Piecewise gamma model. This model is formulated in a 
similar way as the additive model. What is derived from the 
additive frailty over time structure is then a model with 
piecewise constant frailty.   
 
(v) The so-called moving average model is intended to 
"smoothen" the additive frailty model, that is, to reduce the 
jumps in the dependence in the piecewise constant frailty 
model.   
 
(vi) The hidden cause of death model is still a shared frailty 
model and is based on the idea that each person has a 
constant, but multivariate frailty, with one coordinate for 
each cause of death.  Similar to the moving average model, 
this also makes the change smoother over time.  
 
(vii)  Woodbury-Manton diffusion process model is a model 
that may possess extremely rich features. It was developed 
in the context of univariate survival analysis. Due to the 
computational difficulties even in the univariate case where 
numerical solution is required, its applicability is unknown 
in the multivariate case (Hougaard 2000). The model is a 
stochastic differential equation and it treats the frailty as a 
diffusion process controlled by a Brownian motion.  
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As pointed out by (Hougaard 2000), a major issue with the 
above models is their mathematical complexity. The 
extreme difficulty is that even simplified versions may still 
be too complex and cost computationally to be applicable.  
 
 

7.  MULTIVARIATE FRAILTY MODELS 
 
In this section, similar to section 5, we present a brief 
introduction to the key issues in multivariate frailty models, 
largely based on Hougaard (2000), and supplemented with 
some of the latest advances in literature. The shared frailty 
models in previous sections are somewhat limited in the 
sense that the dependence is treated in a pair-wise fashion. 
This is perfectly appropriate for bivariate data with common 
risks dependence.  For general multivariate systems with 
three or more failure variables, the ideal models should be 
able to consider varying degree of dependence. The theory 
for generalization of shared frailty modeling to general 
multivariate systems is still an actively research field. Only 
ad hoc extensions are available. As indicated by Hougaard 
(2000), the main mathematical issue lies in that some very 
essential probability results on mixtures modeling in 
multivariate context are not yet developed.   
 
There are two general requirements for a multivariate frailty 
model. The first is the conditional independence, that is, 
conditional on the frailty. The frailty may be a random 
variable (univariate or multivariate) or a stochastic process. 
It is also assumed that the object being studied behave 
independently; this implies that the frailty capture all the 
dependence between response times. The previous frailty 
model is essentially a common risk model, the multivariate 
frailty model is more general and it also includes the 
features such as negative dependence, which gives 
flexibility to capture both negative and positive interactions 
between objects. This is a progress with significant potential 
in practical applications. Put a broad perspective, it provides 
a general framework for modeling interactions and 
dependence well beyond the applications of survival 
analysis or reliability, such as machine learning, cooperative 
systems modeling, since negative dependence in failures 
implies positive interactions in survival or cooperation.  We 
see that the prospect for expanding to other subjects is 
extremely promising. For example, Locatelli et al (2007) 
formulated a bivariate frailty model to study woman's 
susceptibility to breast cancer by considering genes, 
environment, as well as immunity under the unified frailty 
model, the correlated frailty-mixture model. The immunity 
was incorporated with negative dependence mechanism, as 
expected.  We believe that the approach can also be applied 
to fields as diverse as animal population demography and 
dynamics, software reliability, and network performance 
modeling.  The second requirement for multivariate frailty 
model is that the frailties act multiplicatively on the hazards, 
like what was adopted in previous sections, such as Yλ(t). 
This restriction is not mandated technically (Hougaard 
2000).  

The data considered here is parallel data taking the form 
T1,..., Tk in a single group. The overall modeling strategy is 
to replace the shared frailty Y with multivariate random 
variables (Y1, ..., Yk), such that Yj applied to time number j.  
The previous shared frailty model is then the special case 
when Y1 = ... = Yk and the distribution of Y is the same for all 
groups.  In this section, the frailty is still assume constant; 
the time-varying frailties are too complex for multivariate 
frailty modeling at this stage and seem not explored yet 
(Hougaard 2000).  
 
In parametric modeling of multivariate survival analysis, 
one has to specify the multivariate probability distribution 
on (0, ∞)p. This is often performed by generalizing the 
univariate distribution to multivariate counterparts, but 
sometimes the generalization could be troublesome due to 
the extra complexity in high dimensions. Walker et al 
(1999) introduced a univariate family of distribution, termed 
the beta-log-normal family, which can be extended to 
multivariate system naturally. This new family is motivated 
by the mixture of some of the typical distributions.  
 
7.1. Differential effects of a shared frailty.  
 
One extension of the shared frailty model is to allow the 
various response times being influenced by different frailty 
functions. That is, the hazard for individual j is in the form 
of )()( tYf jj μ in time t.  Define )(YfY jj = , such that the 
hazard is expressed as: )(tY jjμ . When kjYf j ,...1),( = is the 
same for all j and does not depend on j, the model defaults 
to the standard shared frailty model.  Often the fj are 
monotone, and one can define the model via the first frailty 
term Y1=Y, as some kind of base frailty.  In proportional 
hazards modeling, a natural choice is the power functions, 
because they fit into )exp( 'ωψ jjY = , where ω represents the 
originally neglected covariates which are treated as 
constant, but the corresponding coefficients jψ  are allowed 
to vary and therefore the Yj is different for each j.  This can 
be interpreted as that frailty has different degree of influence 
on different responses, or it is more important for some 
responses than for others. In the medical context where this 
model was first developed, this formulation was proposed 
simply as a mathematical interpretation and the practical 
implication was not agreed upon (Hougaard 2000).  If we 
think this interpretation in the engineering context, it may 
indeed possess important practical implications.  Treat j as 
different events, for example, in a computer network, the 
events can be malicious compromise, hardware failure, 
natural degradation such as OS memory leaks, etc. This 
model will allow us to assign different frailty parameters Ψj 
for different events, all the events occur under the same 
covariates (ω) which could represent maintenance or 
environment, such as on the same OS patches, or same 
firewall protection.  However, the effects of the frailty on 
various events apparently can be very different. For 
example, software maintenance has strong effects on 
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malicious compromises but little effects on hardware 
failures.   
 
7.2.  The multiplicative stable model. 
 
If  X1 and X2 are independent and X1 follows positive stable 
distribution with parameter α and X2 follows the same 
distribution with parameter ρ, then the distribution of 

2
/1

1 XX ρ is positive stable with (αρ). This derives a 
multiplicative mixture model, with the distribution staying 
within the family of positive stable distributions. The results 
allow one to evaluate some multivariate Laplace transforms 
for models with nested data.  
 
The following is an example of the so-called nested 
trivariate parallel data model of T1, T2, and T3, which may 
be used for modeling siblings. Assume T2 and T3 are twins, 
and T1 is an ordinary sibling. Naturally, T2 and T3 are 
strongly dependent, but T1 is less dependent with the twins. 
There are three frailties Y1, Y2, Y3 generated from powers of 
three independent variables: Z0 is common to all individuals, 
Z1 is for individual 1, Z2 is applicable for individuals 2 and 
3. That is,  
 

 2032101 , ZZYYZZY ===    (21) 
 
It is assumed that ρ

0Z  follows the positive stable 
distribution with parameter α and is denoted as PosStab(α), 
and Z1 and Z2 are denoted as PosStab(ρ).  To fit the mixture 
model described in the beginning, Z0 corresponds to ρ/1

1X . 
It follows that all the marginal distributions are identical. 
The marginal distribution of each Y is PosStab(αρ) . This 
formulation allows that both the conditional and marginal 
distributions of lifetimes are common to the three 
individuals. However, the degree of dependence is higher 
between T2 and T3 than between T1 and T2 or T1 and T3.  
 
What was derived is a random effects model with three 
sources of variation. Two of these sources, the group effect 
(Z0) and the individual variation captured by the hazard μ(t), 
are similar to the corresponding quantities in the shared 
frailty model. The third (represented by Z1 and Z2) model a 
source common to only a subgroup (twins) of the group 
under study.   
 
The conditional hazards model for the j-th individual, can be 
represented as 
 

 )'exp()( ''
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The covariates effects are expressed as three parts: z is the 
observed part, w is the common unobserved covariates, and 
u is the unobserved covariates common to individuals 2 and 
3 only. That is, )exp( '

0 wZ ψ=  and )exp( '
jj uZ φ= , j=1,2.  

The survivor function for the trivariate distribution is then: 
 

)])}()({)([exp(),,( 332211321
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If the conditional distributions follow Weibull distribution, 
this model can be formulated alternatively via the 
accelerated failure times model.  
 
7.3.  Additive models 
 
The above multiplicative model is unique to the positive 
stable distributions. In general, it is much more convenient 
to handle additive frailty models (Hougaard 2000). Here, the 
bivariate frailty is used as an example to demonstrate the 
additive models.  Assume that the conditional hazard for 
individual j is of the form )(tY jjμ , given the bivariate frailty 
(Y1, Y2). The model is constructed by using the following 
additive functions of random variables: 
 

  ,, 202101 ZZYZZY +=+=    (24)  
 
where Z0, Z1, Z2 are independently distributed variables. Of 
course, Z0 is introduced to capture the common frailty 
between Y1 and Y2, since it contributes to both Y1 and Y2. Z1 
and Z2 are independent individual terms, generating only 
extra variance.   
 
The model can be interpreted as a hidden cause of death 
model. Suppose that there are two causes of death, with 
proportional hazards, c1μ(t) and c2μ(t), and corresponding 
frailties Y1 and Y2.  Further assume cause No. 1 is 
genetically determined, but cause No. 2 is unrelated to 
genetics. It could be, that cause Y1 is shared by family 
members, whereas cause Y2 is individual, that is, it is in the 
form of Y2j for individual j in a family.  When the actual 
death is unknown, this gives the additive model, with 
Z0=c1Y1, Z1=c2Y21, Z2=c2Y22.  The proportional hazards are 
crucial for formulating the relative simple additive model 
here, but extending to non-proportional hazards is also 
possible (Houggard 2000).  
 
The conditional survivor function in the general bivariate 
distribution case is, 
 

)},()()()(exp{),,|,( 222011021021 tMZZtMZZZZZttS +−+−=  
      (25) 

where M1(t) and M2(t) cumulative or integrated hazards 
function. The bivariate survivor function can be expressed 
via Laplace transforms, Lm(s) for  Zm, m=0,1,2 as follows: 
 

)]([)]([)]()([),( 2221112211021 tMLtMLtMtMLttS +=  (26)  
 
The p.d.f. can be derived by differentiation with respect to t1 
and t2, from which likelihood functions can be built.  
 
The gamma distribution for Z has been exclusively adopted 
in the additive frailty models to make the marginal 
distributions of Yj simple. For example, by imposing the 
common value for the parameter θ of gamma distributions 
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on all Zm, m=0, 1, 2, the resulting marginal distribution is 
also gamma. The model is also called correlated frailty 
model in literature (Hougaard 2000).   
 
Quite a few additive models based on the above framework 
have been proposed. We mention one interesting model, the 
father-mother-child model. The father-mother-child model 
is inspired by the genetic relationships between parents and 
child, where some genetic terms are common for the father 
and child and some for the mother the child.  There are also 
environmental terms common to all of them in the family. 
One particular point about the model is the so-called 
common marginals. For example, if there is a frailty term 
for father and child, we need an independent contribution 
for the mother with the same distribution. Five items Z1 to 
Z5 are required to guarantee that the model leads to common 
marginals.  The model can be described by a matrix model 
corresponding to the linear equations system, the frailty 
model is: 
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     (27)   
This matrix equation specifies the model for frailties, 
analysis similar to the above bivariate case can be conducted 
but the process is much more complex (Houggard 2000).  
Intuitively, this model should provide a useful framework 
for studying the reliability of software built with the 
objected-oriented approach.    
 
As summarized by Hougaard (2000), current multivariate 
shared frailty modeling tries to incorporate more 
complicated dependence structure over individuals, but not 
more complication over time.  The multiplicative models 
possess many nice theoretical characteristics. However, the 
additive models seem relatively easier to apply. The 
dependent structures are very flexible in additive models. 
The key computational issue in applying additive models is 
to obtain the multivariate Laplace transforms. A 
disadvantage with the additive model is that one needs more 
parameters to make models, which requires data sets that 
contain more detailed information (Hougaard 2000).  
    
7.4. Proportional Odds Models    
  
In biomedical research, the proportional odds models have 
been proposed to be an alternative to the proportional 
hazards model. Let Tij denotes the failure time of the j-th 
observation from the i-th group (j=1, ...ni and i=1, 2,...n).  n 
is the number of groups (also known as clusters) and ni is 
the size of the group i. Corresponding to each Tij is the 
covariates zij and an unobserved latent variable Uij which 
induces the intra-group dependence. The groups are 
independent. Conditional on the random effects uij and uih, 
Tij and Tih (j≠h) are mutually independent.  The multivariate 
proportional odds model can be formulated in several ways, 
one of which is the conditional hazard function of Tij, and  

given h'(t) is the first derivative of h(t),   
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The ratio of any two conditional hazard functions converges 
to unity over time, 1/)( →ihij t λλ ,  is a key property of the 
proportional odds models. This implies that the 
heterogeneities between several groups diminish over time. 
For example, the difference between patients under some 
treatments and individuals in controls should diminish 
overtime. Ultimately, the patients recover totally due to the 
treatment and demonstrate no difference from healthy 
controls. The proportional odds model can be extended to 
multivariate survival data, Lam and Lee (2006) provided 
such an example. Lu and Zhang (2007) discussed the 
covariate selection in the proportional odd model.    
 
We argue that the notion of unit hazards ratio can be used to 
compare reliability of two dynamic systems or to compare 
the reliability of repaired systems with old systems. System 
maintenance and medical treatments are analogically the 
same; therefore, the modeling approach should be useful in 
engineering reliability.  
 
7.5. Proportional Mean Residual Life Models   
 
This model was first proposed by Oakes and Dasu (1990), 
Chen and Cheng et al. (2005) derived the semi-parametric 
inference procedure by using the counting process theory. 
The mean residual lifetime is,  
 

  )|()( tTtTEtm >−=   (29) 
 
The proportional mean residual life model by Oakes and 
Dasu (1990) is: 

  ]exp[)()|( 0 ztmZtm Tβ=   (30) 
 
m(t|Z) is the mean residual lifetime, conditional on the 
covariates , and m0(t) is baseline mean residual lifetime.  
 
7.6. Other Issues in Multivariate Shared Frailty Modeling 
 
Multivariate lognormal frailty model — The simplest way 
to build a multivariate frailty model is to use a multivariate 
lognormal distribution. For example, in the bivariate case, 
the frailty (Y1, Y2) is given by (X1, X2) = (log Y1, log Y2), then 
(X1, X2) follows bivariate normal distribution.  However, it 
is difficult to do explicit computation, as simple expression 
for the Laplace transform is not available. Numerical 
integration, penalized likelihood, etc can be used to deal 
with the computation.  There have been few applications of 
this model. Jensen (1998) applied a Bayesian lognormal 
frailty model to study the genetic relations between bulls  
and conducted computation with Gibbs sampling.  
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Negative dependence models—Positive dependence is 
dominant in survival analysis. However, negative 
dependence does exist and may be of crucial importance in 
some cases. For example, negative dependence is very 
likely to occur in the recurrent events data from an 
alternating state process. Shared resource competition is 
another scenario where negative dependence occurs when 
the strong competitors died first.  First, there must be 
procedures to detect whether the dependence is positive, 
negative or neutral.  This can be accomplished by extending 
an existing model with positive dependence to 
accommodate for negative dependence. Second, we need 
models for the cases of negative dependence. The shared 
gamma frailty model can be extended to accommodate 
negative dependence, but its probability density could be too 
concentrated, especially when the dimension increases. 
Multivariate normal frailty can also be extended to negative 
dependence. Aalen (1987) proposed a distribution where 
(Y1, Y2) is the diagonal in a Wishart distributed matrix.  In 
most cases, the model gives a positive dependence, but for 
some parameter values, the dependence is negative.  
  
MFPT approach —This is a recently proposed approach to 
relax the limitation of traditional Cox's proportion hazards 
assumption by Sauerbrei et al. (2007). They used the MFPT 
(multivariable fractional polynomial time-transformation) 
to select variables with influences on the outcome, 
determine a sensible dose-response function for continuous 
variables, and investigate time-varying effects on a 
continuous scale. The motivation is to extend the MFP 
(multivariable fractional polynomial) approach by Sauerbrei 
and Royston (1999) to accommodate the nonlinear 
covariates effects in the Cox proportional hazards approach.    
 
Parsimonious analysis of time-dependent effects in the 
Cox model—Lehr and Schemper (2007) warned about the 
over-fit of Cox proportional hazards model and suggested to 
adopt the parsimonious strategy in data analysis in Cox 
framework.  They noted that as long as sufficient degree of 
freedom is spent, the fitting of any shape of time-
dependence is possible, but the resulting model may be an 
over-fitted curve.  The over-fit will inevitably lead to the 
increased width of confidence intervals and decreased 
prognostic power.  They demonstrated that fractional 
polynomials and similarly penalized likelihood approaches 
are suitable in controlling the over-fit by parsimonious use 
of degrees of freedom, still allowing flexibly exploring the 
time-dependence contained in data sets.  
 
Time Process Regression—Fine et al. (2004) recently 
proposed a general linear model for survival time vs. 
covariates that are allowed to be temporal process observed 
over intervals. This model includes extension of standard 
models in multi-state survival analysis but it does not 
require smoothing or a Markov assumption. Therefore, it is 
different from the currently widely used multi-state models 
that are based on the transitional probability (intensities in 
survival analysis).  The following is an extremely brief 
sketch of the model formulation: Let Y(t) be the mean of 

lifetime at time t, Y(t) is conditional on a vector of time-
dependent covariates vector Z(t) and a time-dependent 
stratification factor S(t). Then, the model is defined as: 
 

)}()({}1)(),(|)(( 1 tztgtStztYE Tβ−==    (31) 
 
where g is a monotone, differentiable and invertible 
function. For example, g-1 may take the form of logistic 
function such as g-1 = exp(.)/[1+exp(.)].  )(tβ is the vector 
of time-dependent coefficients. Obviously, in the previous 
section, the regression coefficients vector is not time-
dependent. This is a fundamentally different feature from 
the other models. These parameters are interpreted 
conditionally on covariates at t, not all s≤t.  In addition, the 
Y(t) is the mean of response (survival time) and therefore 
does not involve a Markov assumption.  There is also an 
indicator function δ(t) [R(t) was used in original paper, 
which we change to avoid confusion with reliability], set to 
1 when the temporal process is observed, and to 0 
otherwise.  The function g(.) is also called link function, a 
term from general linear modeling and g-1(.) is termed 
inverse link function.  In a recent paper, Rabe-Hesketh and 
Skrondal (2007) applied the general linear modeling to 
derive a framework for multilevel and latent variable 
modeling, with the approach of composite links and 
exploded likelihoods.   The derived models are envisioned to 
be applicable in survival analysis.  
 
Bootstrap analysis of multivariate failure data — It is 
interesting to notice that survival analysis appears to have 
been dominated by semi-parametric approaches, and pure 
nonparametric approaches have been used much less. 
Monaco et al (2005) demonstrated that Bootstrap method 
could be used to estimate standard errors in the multivariate 
failure times, in particular when the concern is the point 
failure probability.   
 
  

8. SUMMARY AND PERSPECTIVES 
 

Shared frailty modeling is suitable to common-risks 
dependence type, parallel, repeated measurements, and 
recurrent events data models, as well as long-term, short-
term, and instantaneous dependence timeframes. In addition, 
recent research seems to suggest that event-related 
dependence can also be described with frailty models. 
Obviously, shared frailty theory occupies the central focus 
of multivariate survival analysis. The dominance is not 
accidental because frailty captures crucial but often directly 
unobservable (latent) random variables, which are 
attributable for dependence and variations. To some extent, 
dependence, variation, randomness, and frailty all address 
some facets of multivariate failure events. The frailty theory 
provides a unique set of approaches to address the 
theoretical and practical issues related to those four 
concepts.  Similar to the fact that censoring is the trademark 
feature of survival analysis (both univariate and 
multivariate), frailty theory is the trademark of multivariate 
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survival analysis. These two trademark properties, 
censoring-handling and frailty modeling, have made 
multivariate survival analysis a unique and indispensable 
mathematical tool for biomedical and public health research.  
 
The applicability of survival analysis and its sister field 
competing risks analysis to engineering reliability is out of 
question. Obviously, there have been early interactions in 
these fields.  What is perhaps unfortunate is that survival 
analysis and reliability diverged significantly in recent years 
and their interactions withered accordingly. In our opinion, 
this happened in a period when survival analysis has already 
achieved significant breakthroughs. This had apparently 
been fueled by the demands from biomedical research, 
which has been undoubtedly the most active subject in the 
last quarter of the 20th century. In contrast, during the same 
period, industrial engineering reliability was perhaps 
perceived to be mature and sufficient despite the existence 
of some crucial issues such as dependence.  
 
Another interesting observation is that there is significant 
theoretical research in both survival analysis and reliability 
fields, mostly by mathematicians.  Some of these theoretical 
studies have been published in reliability literature and some 
are in survival analysis, but the majority has been published 
in mathematical and statistical journals. Although different 
terms are used, the problems addressed are similar, and the 
solutions are often very similar too. What seems to make the 
difference is that in survival analysis fields, the high 
demands from biomedical research helped to convert the 
theoretical research into statistical procedures and methods. 
Similar demands from reliability engineering to reliability 
theory seem not as strong as in biomedicine.  
 
It is our opinion that due to this background today's survival 
analysis can offer some unique opportunities to the 
engineering reliability field. Frailty modeling is the most 
significant in our opinion, because it addresses the most 
difficult issue in both fields—dependence. Therefore, for 
reliability and survival analysis, our motivation is to bridge 
the diverged gap. In addition, we also believe that the 
interaction should be bidirectional. One convincing example 
is multi-state modeling, where the reliability field should be 
able to offer fresh insights to the survival analysis field.  
 
In computer science, and to a lesser extent, in the IEEE 
related engineering fields, multivariate survival analysis is 
still relatively unknown.  As we have argued in the first two 
articles of the series, survival analysis and competing risks 
analysis should be able to address many crucial issues in 
network reliability and survivability, software reliability and 
test measurements (Ma and Krings 2008a,b). This is 
certainly also the case for frailty modeling, which we 
believe should provide more powerful modeling techniques, 
as we have commented in various occasions in the previous 
sections. For example, the negative dependence in the frailty 
models is not that important for survival analysis. However, 
the modeling of negative dependence may open significant 
applications in computer science such as machine learning  

and cooperative systems modeling.    
 
In the previous two articles, we also argued the potential of 
survival analysis and competing risks analysis in prognostic 
and health management (PHM), software reliability, and 
network survivability. We believe frailty modeling provides 
an even more compelling case because of its multivariate 
nature and its unique advantage in handling dependence.   
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