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Abstract—Biological structures and organizations in nature, 
from gene, molecular, immune systems, and biological 
populations, to ecological communities, are built to stand 
against perturbations and biological robustness is therefore 
ubiquitous. Furthermore, it is intuitively obvious that the 
counterpart of bio-robustness in engineered systems is fault 
tolerance. With the objective to stimulate inspiration for 
building reliable and survivable computer networks,   this 
paper reviews the state-of-the-art research on bio-robustness 
at different biological scales (level) including gene, 
molecular networks, immune systems, population, and 
community.  Besides identifying the biological/ecological 
principles and mechanisms relevant to biological robustness, 
we also review major theories related to the origins of bio-
robustness, such as evolutionary game theory, self-
organization and emergent behaviors. Evolutionary game 
theory, which we present in a relative comprehensive 
introduction, provides an ideal framework to model the 
reliability and survivability of computer networks, 
especially the wireless sensor networks. We also present our 
perspectives on the reliability and survivability of computer 
networks, particularly wireless sensor and ad hoc networks, 
based on the principles and mechanisms of bio-robustness 
reviewed in the paper. Finally, we propose four open 
questions including three in engineering and one in DNA 
code robustness to demonstrate the bidirectional nature of 
the interactions between bio-robustness and engineering 
fault tolerance.  
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1.  INTRODUCTION 
      
John von Neumann's (1956) paper in the context of 
automata theory introduced far-reaching new ideas 
including building reliable systems from unreliable 
components. Apparently, his idea was inspired by the 
studies of human and animal brains.  He and other pioneers 
have already attempted to apply bio-robustness for building 
fault-tolerant systems.  
 
By using the new in the title, we simply wish to express our 
opinions that the scientific advances in several fields outside 
computer science in the last few decades warrant a 
rethinking of the ways we approach the reliability and 
survivability of computer networks.  In particular, the 
tradition of the interactions between biology and computing 
has been expanding, and the synergetic interplay has 
generated some remarkable new scientific fields such as 
bioinformatics, evolutionary computation, and 
computational biology.  In this paper, we review a not yet 
conspicuous research topic: the biological robustness vs. 
engineering fault tolerance. Therefore, the use of new is 
simply to stimulate interests to this still largely unexplored 
field, and its usage will certainly be one-time in this paper.  
 
The focus of this paper is to review and summarize 
literature on biological robustness, scattered in multiple 
subjects of biology, including molecular biology and system 
biology, ecology, evolutionary biology, ethology, 
evolutionary game theory, etc.  We also present a 
comparative analysis of biological/ecological systems and 
fault tolerant systems engineered by human beings, in 
particular, the computer network systems.  The term 
biological robustness, or bio-robustness, is used with 
various meanings in different fields of biology, and we still 
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lack a commonly accepted definition. This is understandable 
for at least two obvious reasons. First, biological robustness 
may be demonstrated very differently in at various scales.  
At gene and molecular scale level, it is the redundancy of 
gene codes and various molecular networks involved in 
gene expression and metabolism controls. At the individual 
organism level, most obvious examples can be pairs of eyes, 
ears, and some crucial internal organs such as kidneys, 
which we often take for granted and do not necessarily 
associate with robustness or fault tolerance. In the 
population level, the population dynamics of animal species 
can endure catastrophic events in environment and exhibit 
chaotic fluctuations.  Biological communities, ecosystems 
and landscape levels also exhibit remarkable resilience and 
stability. Bio-robustness also exists in many other systems 
scales. One more example would be the immune systems, 
which possesses extraordinary defense and offense 
mechanisms to foreign invasions.  Therefore, despite the 
diverse expressions of robustness on different scales, 
biological robustness is universal and ubiquitous. We can 
say, biological system is built to survive perturbations, and 
it achieves robustness with extremely rich and diverse 
mechanisms from extremely parsimonious organizations or 
structures to extravagant redundancy.  This makes it 
extremely difficult to have a unified bio-robustness theory 
or subject, unlike the fault tolerance or reliability theory we 
have in engineering. However, these highly diversified 
robustness mechanisms may hold enormous potential for 
engineering sciences to draw inspirations for designing 
reliable and survivable systems.   The second reason for this 
lack of uniformness is that bio-robustness is often taken for 
granted in biology. Perhaps, except for biomedicine, bio-
robustness has been treated as secondary in many fields of 
biology and ecology and often is not the focus of scientific 
research, until even recently.   
 
This paper has three objectives: (1) Review the state-of-the-
art research on bio-robustness at different scales including 
gene, molecular networks, immune systems, population, and 
community. We also briefly review the status of bio-
robustness inspired engineering research, such as self-
organization and emergent systems. (2) Present our 
perspective on the reliability and survivability of computer 
networks, especially the wireless sensor network and ad hoc 
networks, based on the principles and mechanisms of bio-
robustness. (3) Propose four open problems in the fields of 
reliability, survivability and fault tolerance of computer 
networks.   
 

2.  RECENT ADVANCES IN THEORIES OF 
NETWORKS. 

 
Newman, Barabasi and Watts (2006) compiled a selection 
of research papers covering what they believe to represent 
the most significant advances for what was suggested as a 
branch of new science -- science of networks. The study of 
networks, as Newman et al (2006) indicated, can be trace 
back to Euler's 1736 Kongigsberg Bridge Problem described 

with a Graph model.  They summarized three major features 
of the new science of networks, which to some extent, 
reflects their standard in selecting the papers for the 
collection. The three features they summarized are:  
 
(1) Modeling of real-world networks from both theoretic 
and practical perspectives. Real-world networks are the 
networks that arise naturally—evolve in a manner that is 
typically unplanned and decentralized, such as social 
networks, biological networks, publications citations, Web, 
Internet, etc, in contrast of traditional pure Graph theory 
models.  
 
(2) Networks as evolving structures— many networks are 
generated by the dynamic processes that add or remove 
edges or vertices dynamically. In other words, the structure 
of the network evolves with time. A major motivation of the 
new network science is to understand how local interactions 
influence global structures.  
 
(3) Networks as dynamic systems: it appears that the term of 
dynamic systems used by Newman et al. (2006) is 
somewhat different from the dynamic systems in 
engineering and computer science.  They refer to the notion 
that vertices of graphs are representative of discrete 
dynamic entities, and the edges of the interactions between 
the entities. One example is the application and expansion 
of the classical mathematical epidemic model (e.g., SIR 
model) to social networks.  
 
It is obvious that this selection of research papers presents a 
comprehensive overview of the state-of-the-art of network 
theories.  The dominant mathematical theory adopted is 
Random Graphs theory. The research is further fueled by 
decades of results from complexity science studies. The 
research fields are largely focused on social networks, and 
to a lesser extent to biological networks such as metabolism 
networks, gene control, etc. It almost touched every type of 
network organizations in social and natural sciences. The 
only major exception might be the theory of immune system 
networks, which was initiated with the name of idiotypic 
network by Jerne (1974) and has been expanded 
significantly in several fields (Perelson 1989, Dasgupta and 
Attoh-Okine 1997).  Perhaps the most well known results 
from the new network theory are the study of the "small-
world problem (Watts and Strogatz 1998, Barabasi and 
Albert’s 1999). According to Durrett's (2006) query of 
Science Citation Index in early July 2005, both Watts and 
Strogatz’s (1998) and Barabasi and Albert’s (1999) papers 
had 1154 and 964 citations. Durrett (2006) commented on 
the explosion of the research spawned by these papers, and 
on the difference in how physicists and mathematicians 
approach problems differently.   
 
Although the world-wide-web and Internet were two of the 
central objects in the research of new network theory, their 
abstract models seem to be more similar to social networks 
than to the strict computer networks such as LAN, WAN, or 
even the "Internet" from technical perspectives. Significant 
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differences between the real-world computer networks and 
the networks modeled by Random Graphs exist. For 
example, the real world computer networks are highly 
clustered and inhomogeneous, hierarchically structured, 
which seem to be very hard to capture with standard random 
graphs models where analytic solutions have been available.  
In spite of these difficulties, there have been quite a few 
applications of Random Graphs to communications 
networks, especially in the fields of wireless sensor and  
ad-hoc networks. Study of wireless capacity by Gupta & 
Kumar (2000) is one of the most cited studies, and Hekmat's 
(2006) monograph is a more comprehensive treatment of the 
applications of random graphs in wireless communications.  
Random geometric graphs, which also consider Euclidean 
distances between vertices, are more realistic in describing 
wireless networks (Kozat and Tassiulas 2005).   
 
The biggest challenge of applying Random Graphs 
(Bollobás 2001) or Random Geometrical Graphs (Penrose 
2003) is to formulate realistic graphs models that are still 
amenable for obtaining analytic solutions.  In the field of 
wireless sensor networks, it seems that Random 
Geometrical Graphs are more flexible in capturing topology, 
but still not flexible enough to analytically model more 
realistic dynamic events such as hybrid faults in agreement 
algorithms.  Despite the difficulties in modeling wireless 
networks, Random graphs theory is of significant 
importance to computer science. The two leading journals 
"Random Structures and Algorithms" and "Combinatorics, 
Probability and Computing" publish significant research 
papers of random graphs in theoretic computer science.  
Similarly, Percolation (Grimmett 1999) and Continuum 
Percolation (Meester & Roy 1996), which can be formulated 
as Random Graphs and Random Geometric Graphs, 
respectively, can also be applied to the study of networks, 
although it appears they are out of favor these days. 
However, Percolation models are more convenient for 
simulation study if analytic solutions are not available.   
 
 

3.  BIOLOGICAL ROBUSTNESS AT INDIVIDUAL 
LEVEL: GENETICS AND IMMUNOLOGY 

 
3.1. Genetic Robustness 
 
Before proceeding, it would be helpful to clarify a few terms 
first. In this paper, we use biological system to refer to any 
biological unit that has an identifiable functionality.  In 
Wagner's words, a biological system is an assembly of parts 
that carries out well-defined biological functions (Wagner 
2005). As Wagner pointed out, two questions should be 
asked to form a robustness problem of a biological system:  
(1) What feature of a biological system is robust?  (2) What 
kind of change is this feature robust to?  In addition, the use 
of networks is in the broadest sense and can refer to gene, 
metabolic, DNA, RNA, protein networks, population 
networks, food web, and immune networks.  We use the 
term reliability loosely; especially in the context of 

biological systems, reliability is used, by analogy, with that 
in engineering systems.        
Biological robustness is the capability of a biological system 
to continue to function in the face of perturbations that can 
be genetic or non-genetic (e.g., environmental fluctuations).  
Again, there are many interchangeable terms for robustness 
and perturbations. The alternatives for robustness, such as 
stability, homeostasis, resilience, balance, buffering, 
canalization, tolerance, efficiency, are often used at different 
levels of biological organizations (systems).  The 
alternatives for perturbation include disturbance 
(environment), impact (environment), mutation (gene), 
fragmentation (landscape) and regulation (population).  
Therefore, our biological reliability may be interchangeably 
used with different biological/ecological terms at various 
organizational levels:  robustness at the individual level, 
stability and regulation for population, stability for 
community, and balance at the ecological system level.   
 
Fitness has a clear definition in biology and it refers to the 
reproductive potential which natural selection acts on.  One 
of the main goals of this paper is to draw inspiration from 
biological systems on how the fitness is maximized, and 
then apply the principles and mechanisms to improving the 
reliability of computer networks. Accordingly, a practical 
and convenient mapping for fitness is the measurement of 
reliability and survivability.  
 
Wagner (2005) reviewed the biological robustness of gene 
and metabolism networks, which is probably the most 
comprehensive survey on biological reliability at the 
individual level.  He summarized seven principles of 
robustness from the analyses of the studies in gene and 
metabolism networks. Those principles are (Wagner 2005):  
 
(1) Most problems living systems have solved have an 
astronomical number of equivalent solutions, explained by 
the now widely accepted neutral fitness space theory.   
 
(2) Living systems are generally robust to mutations for two 
fundamental reasons: the huge mutation neutral space and 
incremental evolution of mutation robustness.  Furthermore, 
the immense mutational neutral space is inhomogeneous. 
The population is driven to high robust regions in the 
neutral space by natural selection.   
 
(3) Incremental evolution of mutational robustness can be 
caused by either mutation or environment selection pressure 
However, the mutation-driven evolution is very limited in 
nature; the dominant selection pressure is from environment 
or non-genetic changes. This implies that the mutation 
robustness may be a by-product of the selection for 
robustness to environment.   
 
(4) Evolutionary innovations need robustness and neutral 
mutations. Robust systems can endure many neutral 
mutations, but these mutations also provide substrate for 
future evolutionary innovations, which may evolve the 



 

 4

detrimental features again. In other words, neutrality is 
changeable.   
 
(5) Components redundancy of a system is lesser important 
than the distributed robustness in terms of the robustness to 
mutation. Wagner (2005) refers to the distributed robustness 
as "interactions of multiple system parts, each with a 
different role, can compensate for the effects of mutations".  
 
The above notion that component redundancy is of the 
secondary importance seems counter-intuitive from the 
engineering perspective. However, the difficulty in 
quantitative study of robustness of biological systems, as 
Wagner pointed out, may actually hold the explanation for 
this seemingly counter-intuitive principle. The difficulty lies 
in the phenomenon that, as Wagner (2005) stated,  
"redundancy and distributed robustness have 
indistinguishable signatures on the variables to understand 
a system's function and robustness,", which means it is near 
impossible to distinguish redundancy with distributed 
robustness. This principle might echo the redundancy 
management in engineering design; a system with multiple 
redundant components without proper coordinating 
mechanisms may render the system less reliable.      
 
(6) Fragility in a biological system, the opposite of 
robustness, does exist in nature. There may be multiple 
evolutionary causes for being fragile. A fragile system can 
change its function or structure dramatically in the face of 
mutations. In some cases, being flexible to drastic changes 
might be advantageous, for example, the antibody 
diversities in immune system (Wagner 2005).  
 
(7) Many natural systems below and beyond living 
organisms demonstrate remarkable robustness to changes in 
their system components.  Wagner (2005) argued that such 
robustness is often caused by self-organization, rather than 
natural selection. Wagner (2005) cited the robustness of 
ecological community to species invasions as an example of 
self-organizations. We consider it might be a more complex 
issue to attribute all ecological stabilities or robustness to 
self-organizations. There are many sound examples of 
evolutionary mechanisms in the ecological community 
level, for example, co-evolution between insects and plants, 
or niche overlaps, or trophic relationships.  We will return to 
this topic in sections 4 and 5.  
 
Wagner (2005) also dedicated one chapter of his monograph 
to the robustness of the engineered system—the focus of 
this paper. In some sense, the present article is motivated by 
Wagner's (2005) pioneering work but we focus on what 
Wagner chose to leave out: the bio-robustness beyond gene 
and molecular levels as well as their implications to 
engineering fault tolerance.  Specifically, we focus on 
biological population and community levels.  
 
Here, we present an extremely brief summary of Wagner's 
(2005) engineering robustness chapter. One important 
argument Wagner (2005) made is that the evolved 

robustness, which is often considered as unique to living 
systems, can be implemented in engineering systems. First, 
it is argued that although gene or genetic materials do not 
exist in engineered systems, the distinction between genetic 
and environmental perturbations are still highly relevant. 
Environmental perturbations may include changes that are 
not foreseen in the design stage. The counterparts of genetic 
changes in engineered systems can be components failures 
(Wagner 2005). Therefore, the counterpart of robustness in 
engineered systems is fault tolerance.  
 
Wagner (2005) discussed the most conspicuous differences 
between living systems and engineered systems. The 
substrate of engineered systems, ceramics, steel, plastic, 
silicon, and arguably wood, are very different from protein 
and nucleic acids of living things.  Biological systems are 
evolved through natural selection, which is similar to blind 
search mechanism to some extent, and engineered systems 
are from the rational design.  Two features in living systems 
seem to be fundamentally different. The behaviors of most 
parts of living systems are best characterized as erratic.  In 
contrast, most engineered systems behave much more 
orderly. In other words, the living systems are internally 
noisy.  Often the noise suppression leads to mutational 
robustness as by-products. Wagner (2005) further concluded 
that despite the significant difference, no radically different 
new approaches are needed in living systems to deal with 
the internal noise inside organisms. Wagner (2005) cited 
two engineering examples (Carlson and Doyle 2002, 
Keymeulen et al. 2000), distributed robustness of 
telecommunication networks, and evolved integrated 
circuits with genetic algorithms. There are numerous similar 
examples in engineering fields and recently in evolutionary 
computation that further support Wagner's points.  
 
Wagner (2005) noted seven open problems related to 
biological robustness. These open questions may be 
interesting in at least three fields: biology, evolutionary 
computing, and fault tolerant engineers. The significance in 
the first and third fields is obvious.  As to the second field, 
the interactions between bio-robustness and evolutionary 
computing are bidirectional. Evolutionary computing tries to 
obtain inspiration from the evolution of bio-robustness; on 
the other hand, computer scientists also try to simulate 
evolution and offer insights to biology. Here, we briefly 
introduce four of the seven open questions Wagner (2005) 
identified (we preserve Wanger's original numbering).   
 
Problem-1—Which of the two main evolutionary causes of 
robustness is more important: the vast mutation neutral 
space or the incremental evolution of mutation robustness? 
The first implies that the evolution process selects solutions 
that are more frequent among all solutions, that is, 
associated with large neutral space. Furthermore, such 
solutions lead to robust biological systems. If this is the 
case, then robustness is largely a by-product of the 
evolutionary discovery process. The second cause is the 
incremental evolution of robustness within a neutral space, 
which discovers regions within neutral space with    
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particularly high robustness.  
 
While the answer to this question is still open in biology, 
analogically similar questions exist in computer science, 
specifically, the evolutionary computing (EC). It seems 
there is not a definite answer for it either in EC. If the first 
cause should be dominant, then the exploration should be 
favored over the exploitation and the opposite if the second 
cause is the primary cause.  
 
Problem-4—Is robustness to mutation ever an adaptation to 
mutations? Or can mutations be the primary driving force 
for the evolution of mutational robustness? This is indeed a 
very interesting question, which could imply that organisms 
living under less stable environments should be more robust 
than those living under stable environments. If we think of 
the evolution of insects vs. vertebrates, the environments 
insects survive are often more severe and unstable, still they 
demonstrate remarkable robustness at both organism and 
population levels.  
 
Problem-5—Is robustness always associated with other 
features that facilitate evolvability? For example, modularity 
promotes evolvability, so are the robustness and modularity 
always positively correlated? The answer seems yes in 
engineered systems, in our opinion.   
 
Problem-7—Where has natural selection promoted fragility 
over robustness? Given individual-based selection do not 
promote fragility; does kin selection play any roles in it? 
This may have significance for evolutionary computation 
too, where fragility may be desirable.  
 
3.2. Immune Network Theory and Artificial Immune 
 System (AIS)  
 
The artificial immune system (AIS) is a computation 
paradigm inspired by natural immune systems. The natural 
immune system is the most important defense system for 
animal and human individuals and plays crucial roles for the 
functional robustness of an individual body. Our body 
maintains a large number of immune cells, named 
lymphocytes that circulate throughout the body and forms a 
defense network. What is remarkable with the immune 
system is that it is very similar to nerve system. It is a highly 
adaptive, parallel and distributed system from the 
perspective of information processing. The immune system 
possesses remarkable capability to recognize and remember 
relevant patterns encountered previously, and use 
combinatorics to build pattern detectors. In addition, the 
overall system behavior is an emergent property of many 
local interactions (Dasgupta and Attoh-Okine 1997).  
 
Jerne (1974) founded the immune network theory with a 
system of differential equations that describe the dynamics 
of lymphocytes, and later Perelson (1989) expanded Jerne 
(1974) theory with a stochastic approach including the study 
of phase transitions.  The theory is also called idiotypic 
network theory since it is built on the hypothesis of idiotypy 

cascading, analogous to neuron cascading in the nerve 
system. As Behn (2007) indicated in a review that the 
immune network theory has fallen out of fashion in parallel 
with the rapid advances in molecular immunobiology in 
biology fields, but seems returning due to the interests of 
system biologists and physicists. Part of the renewed 
interests also comes from the efforts of computer scientists 
in the fields of Immunological Computation or Artificial 
Immune Systems (AIS) (Hofmeyr and Forrest 1999), which 
were inspired by the natural immune network theory.  The 
applications of AIS have been expanded to intrusion 
detection, pattern recognition, computer virus detection, 
fault diagnosis, machine learning, etc.  For the latest status 
of AIS, Dasgupta (2006) surveyed the recent advances and 
Garrett (2005) presented a somewhat critical but 
confirmative review.  There are quite a few applications to 
wireless ad hoc networking, including misbehavior nodes 
detection etc. (Balachandran 2006, Drozda and Szczerbicka 
2006). Immune network systems have also inspired the 
strong interests in network survivability and fault tolerance 
research (e.g., Avizienis  2004).   
 
 

4.   BIOLOGICAL ROBUSTNESS AT POPULATION 
LEVEL: POPULATION DYNAMICS, DARWIN 

DYNAMICS AND EVOLUTIONARY GAME THEORY. 
 
4.1. Biological Population Dynamics and Spatial 
 Distribution Patterns.  
 
4.1.1. Population and Metapopulation.  
 
A biological population consists of individuals of the same 
species that distribute in specific habitats.  Population is 
spatially and temporally dynamic, determined by the net 
effects of birth-death and immigration-emigration processes, 
under the constraints of environment conditions.  Of course, 
species exist as populations, and a population is an 
information network carrying genome information, similar 
to a Local Area Network (LAN) vs. global Internet 
(species), in the analogy of computer networking.  
Historically it has been argued that geographical separation 
or environment is the major factors that lead to reproduction 
isolation and further speciation. Recent studies seem to 
show that intraspecies and intragenomic conflicts may lead 
to rapid evolution of genes and formation of reproductive 
barriers necessary for speciation. Genomic conflicts occur 
when natural selection favors alleles that may 
simultaneously raise fitness for some phenotype but lower 
for others (for example, in the other sex). This kind of 
conflicts may lead to tit-for-tat or arms race (Hey et al. 
2005). This is clear evidence at the gene level that 
speciation is an evolutionary game, as we will discuss in 
section 4.3.  
 
In nature, a species exists as evolving metapopulation    
lineages. In systematics and evolutionary biology, a 
metapopulation is the equivalent of a species; it is the set of 



 

 6

connected populations of the same species, or maximally 
inclusive populations (de Queiroz's 2005). In ecology, 
metapopulation means population of populations, and it 
becomes an established concept largely due to Levin's 
(1969) mathematical model,  in which a metapopulation is 
described as a dynamic process of extinction and re-
colonization of local populations linked to one another by 
ongoing dispersal and gene flow (Hanski 1999).   
 
4.1.2. Population Dynamics.  
 
Population dynamics, the changes of population size over 
space and time, is the central topic of population ecology. 
The mathematical modeling of population dynamics can be 
traced back to Thomas Malthus's (1798) "An Essay on the 
Principle of Populations" (cited in Kot 2001).  With his 
exponential growth model for human population, Malthus 
argued that  human population grow geometrically while 
resources such as food grows arithmetically, and therefore 
fast population growth would lead to much human misery.  
Malthus's conclusion had significance influence for 
Darwin's formation of struggle for existence or natural 
selection. Verhulst (1845) derived the famous Logistic 
population growth model, which was re-discovered by Pearl 
and Read in 1920 (cited in Kot 2001). The Logistic 
population model is more realistic than Malthus's 
exponential growth model; it is the solution of a first-order 
nonlinear differential equation. The difference form of the 
Logistic model was found to possess rich and complex 
Chaos behaviors in the 1970s (May 1976).   
 
Logistic differential equation and its discrete counterpart 
(difference equation) form the foundation for studying 
single species population dynamics deterministically. It has 
extraordinary rich and complex mathematical properties 
from stable growth, oscillation, attractors to chaos, and its 
applications have expanded well beyond biology. Logistic 
differential equation is also the basis for forming the famous 
Lotka-Volterra differential equations system for 
interspecific interactions such as predation and competition.  
The deterministic differential equations have traditionally 
been used to model population dynamics and are still one of 
the major approaches (Kingsland 1995, Hallman and Levin 
1986, Kot 2001, Brauer and Castillo-Chavez 2001).  An 
alternative to the differential equation modeling is the 
stochastic modeling with stochastic process models such as 
birth-death process (Lande and Engen 2003).  The third 
group of analytic model is the matrix model which can be 
formed in either deterministic or stochastic (Caswell 2001), 
and it turns out that matrix is often equivalent to either 
differential equations or stochastic process models (such as 
Markov Chains). The fourth type of analytical model is the 
optimization and game theory model, which was initially 
applied to study animal behavior or ethology (Lendrem 
1986).  As we will discuss in the next two sections, recent 
studies show that the game theory is able to unify 
population dynamics and evolutionary dynamics, and the 
resulting evolutionary game theory is mathematically 
equivalent to the traditional differential and difference 

equations for population dynamics (Nowak 2006, Vincent 
and Brown 2005, Hofbauer and Sigmund. 1998).    
 
4.1.3. Population Regulation.  
 
Population regulation was one of the most contested theory 
in the history of ecology (e.g., see Kingsland 1995 for a 
brief history) and the debates started in the 1950s and 
culminated in the 1960s , and even these days, the 
antagonistic arguments from both schools occasionally 
appear in ecological publications (e.g., Berryman 2002, 
White 2001).  The debate sounds simple from an 
engineering perspective. The core of the debate is: is 
population regulated by feedback mechanisms such as 
density-dependent effects of natural enemies or is simply 
limited by its environment constraints.  Within the 
regulation school, there are diverse theories on what factors 
(intrinsic such as competition, natural enemies, gene, 
behavior, movement, migration, etc) and how the population 
is regulated. Certainly, there are mixed hypothesis of two 
schools.  About a dozen hypotheses have been advanced 
since the 1950s. The debates were "condemned" by some 
critics as "bankrupt paradigm", "a monumental obstacle to 
progress" (cited in Berryman 2002).  However, there is no 
doubt that the debates kept population ecology as the central 
field for more than three decades, and is critical for shaping 
population ecology as the most quantitatively studied field 
in ecology. The mathematical ecology also known as 
theoretic ecology is often dominated by the contents of 
population ecology (Kot 2001).  In addition, the important 
advances in ecology such as Chaos theory, spatially explicit 
modeling, agent or individual based modeling all initiated in 
population ecology.  
 
The importance of population regulation cannot be 
emphasized more, since it reveals the mechanisms for 
population dynamics. Even more important is to treat 
population dynamics from the time-space paradigm, not just 
the temporal changes of population numbers. In addition, 
the concept of metapopulation is also crucial, which implies 
that local population extinction and recolonization happens 
in nature. Obviously, population regulation as control 
mechanisms for population size is very inspiring for the 
counterpart problem in evolutionary computation. As we 
will see, population regulation and population dynamics can 
be unified with evolutionary game theory, and even united 
with population genetics under same mathematical 
modeling framework such as Logistic model and Lotka-
Volterra systems.    
 
4.1.4. Population Spatial Distribution   
 
In biology, the terms spatial distribution patterns, spatial 
distributions, and spatial patterns are used interchangeably 
for biological populations.  Spatial distribution of 
population is one of the most fundamental ecological 
properties of species.  As Taylor (1984) summarized, 
"Spatial distribution yields characteristic parameters that 
segregate species. These parameters are the population 
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expression of the individual behavior... This behavior 
determines their spatial patterns." Many researchers believe 
spatial distribution of animals is governed by self-
organization, and the spatial distribution pattern is therefore 
an emergent property at population level.  It was already 
known in the early 1960s that insect population distribution 
follows the Power Law (Taylor 1961, 1984, Ma 1988, 
1990a,b).  
 
Generally, there are three types of spatial distribution 
patterns: aggregated, random and regular. Random spatial 
distribution can be fitted with Poisson probability 
distribution, and the regular distribution (also termed 
uniform distribution) is totally regular with even spacing of 
individuals than random. Aggregated (also termed 
contagious, congregated, or clustered) distribution 
represents nonrandom and uneven density in space (non-
randomly unequal spacing of individuals). The probability 
distributions (in mathematical term) for aggregated 
distributions (in biological term) are strongly skewed with 
very long right tails (Ma 1989, 1990a,b, 1991a,b,c).  
 
Theoretical modeling of spatial distribution was started as 
early as the 1920s. Until around the 1950s, the dominant 
modeling approach was to fit probability distributions to the 
frequency distribution data from the field sampling 
investigation. This is often termed probability (frequency) 
distribution approach in literature.  Taylor (1961) 
discovered that the Power Law model fits spatial 
distribution data ubiquitously well, baMV = , where M and 
V are population mean and variance, respectively, and a and 
b are parameters. According to Taylor (1961, 1984), b>1 
corresponds to aggregated distribution, b=1 to random 
distribution and b<1 to regular distribution.  Ma (1988, 
1990b, 1991c) extended Taylor’s Power law model with his 
concept of population aggregation density (PACD), which 
was derived, based on the Power Law: 

)]1/()exp[ln(0 bam −= , where a and b are the parameters of 
Power Law and m0 is the PACD.  According to Ma’s (1988, 
1990b, 1991c) reinterpreted Power Law, population spatial 
distributions are population density-dependent and form a 
continuum on the population density series. The PACD is 
the transition threshold (population density) between the 
aggregated, random and regular distributions.  Ma and 
Krings (2008d) presented an engineering application 
inspired by the spatial distribution pattern mechanisms.  
 
4.2. Evolution and Natural Selection. 
 
The publication of Charles Darwin's "On the Origin of 
Species by Means of Natural Selection, or the Preservation 
of Favoured Races in the Struggle for Life" published in 
1859 firmly established evolution as the fundamental theory 
of biology.  Lewontin (1974, cited in Vincent and Brown 
2005) and Vincent and Brown (2005) summarize Darwin's 
postulates as three folds: (1) "Like tends to beget like" and 
there is heritable variation in traits associated with each type 
of organism. The best evidence for this postulate would be 

Mendel's laws of heredity or Mendelian inheritance. (2) 
Organisms struggle for existence, often with the intra-
specific struggle fiercer than the inter-specific. This 
postulate was strongly influenced by Malthus's (1798) "An 
Essay on the Principle of Populations." (3) The struggle for 
existence is affected by the heritable traits. The third 
postulate holds the key to understand the consequence of 
evolution. Obviously, the first postulate is the genetic 
dimension of evolution theory and the second is the 
ecological dimension, and the third postulate is a logical 
derivation for the consequences from natural selection upon 
inheritable traits (Vincent and Brown 2005). It is indeed true 
that Darwin formed his theory of evolution without 
invoking genes, which was first discovered by Mendel in 
1866 but unnoticed until the rediscovery by Fisher (1930), 
Wright (1931) and others in the 1930s. The unification of 
Darwin's evolution with Mendelian was reached in the 
1930s by the efforts of Fisher (1930) and others and the 
latter unification further into the well-known Modern 
Synthesis (Mayr and Provine 1980).   
  
4.3. Evolutionary game theory.  
 
Games can be classified as cooperative (in which two or 
more players can form coalitions) versus non-cooperative. 
Non-cooperative games are generally simpler to analyze 
than their cooperative counterparts are. Therefore, one 
approach to cooperative study is to reduce the cooperative to 
non-cooperative version. Another way to distinguish 
cooperative and non-cooperative games is by examining the 
number of objectives involved in decision-making, with 
cooperative games dealing with single objective, and non-
cooperative ones dealing with multiple objectives (Bilbao 
2000).  Still another classification for conventional games is 
to divide them into the matrix (discrete), continuous static 
and differential. Matrix games have a finite number of 
strategy choices, and payoffs can be expressed with 
matrices. In continuous static games, payoffs and strategies 
are related in a continuous function; the game is static -- an 
individual's strategy is constant. Continuous games are 
characterized by continuously time-varying strategies and 
payoffs with a dynamic system modeled by differential 
equations.    
 
Traditional game theory is normative rather than descriptive 
(or positive) from the viewpoints of rationality assumption, 
since it only prescribes what players should act if rationality 
prevails. In addition, it assumes that players always try to 
maximize their payoffs and behave consistently. It has been 
found that even intelligent players like human beings do not 
always follow rationality, and therefore the applicability of 
traditional game theory in real world has been seriously 
questioned. Those contradictions with reality put serious 
doubts on the relevancy and applicability of the corner 
stones of classical game theory such as Nash equilibrium, 
although the mathematical validity of Nash equilibrium is 
never in question (e.g., Mailath 1998).  Another crucial 
weakness of traditional game theory, when applied to real 
world problems, is that it implies that the game is not 
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repeated. In practice, a typical decision-making problem is 
often dynamically interactive. Evolutionary game theory, 
largely, overcomes those restrictions associated with 
classical games, and understandably, was quickly embraced 
upon its invention, especially in the fields of economics and 
biology. As a side note but relevant to this article, Kumar 
and Marbukh (2003) seemed to be the first that proposed to 
model network survivability as a (traditional) game model.  
 
Evolutionary game theory is co-advanced by John Maynard 
Smith and George Price (Maynard Smith and Price 1973, 
Maynard Smith 1976, 1982).  It was reported that George 
Price's manuscript, rejected by the Nature magazine, 
inspired Maynard Smith to study the field systematically 
and led to their cooperative work. In the late 1960s, Price 
was puzzled by the evolution of ritualized non-injurious 
behaviors in animal conflicts, and even in the competing for 
the most valuable resources, animals rarely use their 
weaponry in the most effective way.  The solution to the 
puzzle was the application of game theory.  
 
Darwin and his contemporaries already recognized that life 
is a game; nevertheless, the formal tools of game theory was 
not available in their times (Vincent and Brown 2005). The 
so-called tragedy of the commons (the gains to individuals 
at the expenses of the group) encourages organisms 
invariably overexploit their common pool of resources 
(Vincent and Brown 2005). Darwin's "struggle of life" 
captures the conflicting nature of life. In evolving favorable 
traits, no organism is free from meddling with others. 
Therefore, individual organisms are the players of a game. 
Wright's fitness landscape (1931), Fisher's fundamental 
theorem (1930) of natural selection provided how natural 
selection drives the change of fitness (indication of payoffs) 
of traits (strategies).   
 
As indicated by Vincent and Brown 2005, ever since 
Darwin, natural selection has been deemed as an 
optimization process. Prior to Maynard Smith and Price 
(1973), who recognized natural selection is better described 
with game theory than the simple optimization model, 
several scientists including Fisher (1930), Hamilton (1963), 
Hutchinsn (1966), Levins (1962),  were very close to 
achieve the fundamental breakthroughs.  Hutchinson’s 
(1966) treatise titled "The Ecological Theater and the 
Evolutionary Play" clearly pointed out the relationship 
between ecology and evolution. What made Maynard-Smith 
and Price's work particularly significant is that the nature of 
natural selection as a game induced the extension of 
traditional game theory. The extended version has to 
accommodate the ongoing dynamic populations, players 
come and go through birth-death process, but strategies are 
inheritable from generations to generations, etc.  
 
Evolutionary game is different from any of the three 
traditional games mentioned previously: matrix (discrete 
games), continuous static and continuous dynamic games 
(differential games). It can be considered as a hybrid of the 
latter two. The players are the individuals and the strategies 

are inheritable phenotypes. A player's strategy is the set of 
all evolutionarily feasible phenotypes; a strategy may be 
inherited from generation to generation.  Payoffs of a game 
are expressed in terms of fitness, for example, the per 
capital growth rate of a strategy under specific ecological 
scenario. The fitness of a player then directly influences 
changes in the strategy's frequency within the population.  
The major differences between evolutionary games and 
traditional games are summarized by Vincent and Brown 
(2005) as follows:  
 
(1) Evolutionary games focus on the sustainability or 
persistence of strategies from generation to generation, 
while traditional games focus on payoffs for individual 
players. Players are updated from generation to generation 
via birth-death processes, but the strategy is often preserved 
with occasional modification due to mutation.  If we 
envision the analogy between a population of individual 
organisms and a wireless sensor network, the individual 
nodes will be the players; the game is played to maximize 
the persistence of the whole network, which can be 
“translated” into reliability or survivability.  The advantage 
of evolutionary game model versus traditional game model 
is obvious in this case, since the traditional game model will 
be an individual payoff centric, which is not important for 
the reliability/survivability of the whole network.  
 
(2) In classic games, players choose their strategies from 
well-defined strategy set rationally, which is defined as part 
of the game. In the evolutionary game, players inherit from 
their previous generation, and occasionally mutate a new 
strategy. The strategy set is determined by genetical, 
physical and environment constrains that may change over 
time. In the analogy of WSN, this is again advantageous 
over the traditional game model, since the evolutionary 
game model has built-in adaptability to environment (such 
as invasions from outside) and to the mutation (sabotages 
within a network).   
 
(3) In the traditional games, rationality or self-interests 
provides the optimization agents that encourage players to 
behave rationally.  In the case of WSN, this is not practical 
since the network is dynamic and step-wise strategy 
development is not feasible even if we can define rationality 
properly.  In evolutionary games, the natural selection 
serves as the agent of optimization and there is no need for 
step-wise or generation-by-generation development of 
strategies, since strategies selection is automatically picked 
up by the natural selection, which represents the pressure 
from inside and outside of the WSN.  With traditional 
games, the winners are the players, and with evolutionary 
games, winners are the strategies, or phenotypes. In the 
analogy of WSN design, the winner is the persistent strategy 
-- the schemes of network organizations and functionalities.  
 
(4) Evolutionary games have inner games and outer games. 
Inner games are similar to classic games, and are played in 
ecological process (short term).  Evolution plays outer 
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games; it is the game dynamics, via inheritance, that evolve 
strategies by assessing the payoffs.         
 
Since the evolutionary game is a hybrid of the continuous 
static and continuous dynamic (differential games), classical 
matrix payoff model is not sufficient for the modeling 
purpose. On the other hand, a somewhat surprising reward 
for evolutionary game theory is that the mathematical 
modeling framework for it has already existed for almost a 
century.  The population dynamics theory, as briefly 
introduced in section 4.1, provides this modeling 
framework. However, few of the many publications of 
mathematical ecology seem to note the connections with 
evolutionary theory. The situation is certainly changing with 
the excellent works such as Hofbauer and Sigmund (1998), 
Vincent and Brown (2005), Novak (2006).   
 
The remarkable descriptive power, elegance, and flexibility, 
with the extension of the existing population dynamics 
models to the evolutionary game theory, lie in the fact that it 
provides a unified mathematical framework to describe all 
three cornerstones (postulates) of Darwin's evolution theory. 
Those cornerstones are, as mentioned previously, (1) the 
struggle of life — ecological dimension (the original 
objectives of those models), (2) natural selection — the 
replicator dynamics, (3) "Like tends to beget like" — gene 
frequency dynamics.  All three dimensions can be modeled 
with the same set of differential equations.  The resulting 
model parameters achieve the biological meanings 
exchangeable in all three aspects of evolution theory 
(Hofbauer and Sigmund 1998, Vincent and Brown 2005, 
Novak 2006). This unified framework is named as Darwin 
dynamics by Vincent and Brown (2005).   
 
The development of evolutionary game theory by Maynard 
Smith and George Prince (Maynard-Smith and Price 1973, 
Maynard Smith 1982) received immediate embracement 
from game theoreticians and practitioners in many fields. 
However, it seems that, the mathematical framework which 
evolutionary game theory borrowed from population 
ecology, has not received as much attention as it deserved. 
In other words, the principles and ideas of evolutionary 
game theory have been adopted in many game theory 
studies, but the specific differential equation models, 
borrowed from population dynamics, do not seem widely 
applied, perhaps due to the biological nature of those 
models.  Therefore, this topic will be expanded in the next 
section (section 4.4), which we believe is particularly useful 
for studying dynamic systems such as wireless sensor 
networks.  
 
With hundreds of papers on important games such as 
prisoner's dilemma already published, the literature of 
evolutionary game theory is still growing daily in multiple 
subjects across game theory, economics, sociology, 
psychology, computer science, mathematics, etc.  Many of 
the studies in the above-mentioned fields adopted complex 
simulation models. The deterministic differential equation 
models from the classical mathematical ecology should 

bring in very refreshing perspectives, as already 
demonstrated by Hofbauer and Sigmund (1998), Weibull's 
(1995), Vincent and Brown (2005), Novak (2006) and 
others.  
 
4.4. Unifying population and strategy dynamics —
 Darwin dynamics.     
 
The discussion in this section is mainly based on Hofbauer 
and Sigmund (1998), Vincent and Brown (2005), and 
Novak (2006).  
   
4.4.1. Evolutionary Stable Strategy (ESS)  
 
Evolutionary game theory started with the introduction of 
ESS and its applications to the matrix games (Maynard 
Smith and Price 1973). The role of ESS in evolutionary 
game theory is similar to that of the Nash equilibrium in 
classical games. ESS is unbeatable or impregnable in the 
sense that mutants or dissidents in a population cannot 
“invade” the population under natural selection, in terms of 
the reduction of fitness. In analogy, in a computer sensor 
network, the failures of some nodes either voluntarily (e.g., 
refuse to relay due to selfish behavior) or involuntarily (e.g., 
“neutral mutation” such as running out of batteries) will not 
reduce the overall reliability/survivability of the network.  
 
As reviewed by Vincent and Brown (2005), the difference 
between the Nash equilibrium and ESS is that ESS requires 
both equilibrium and convergence-stability conditions. This 
additional requirement is significant, since evolutionary 
games are always dynamic and played repeatedly. It also 
reflects its original application domain, biological evolution, 
where one is interested in whether the extant properties 
should be evolutionarily stable.  The equilibrium describes 
the resistance to invasion by a mutant strategy and 
equilibrium is a necessary condition for ESS. The 
convergence stability, which is the sufficient condition for 
ESS, implies that a population will evolve to the ESS when 
it is near the ESS.    
 
The co-evolutionary game is a game that possesses the 
flavors of both cooperative and non-cooperative games; 
furthermore, it has been studied in both traditional game and 
evolutionary game domains (Vincent and Brown 2005). On 
the cooperative side, the game does not cause mutual 
destruction; on the contrary, it may promote the well-being 
of both parties, for example, the co-evolution between 
insects and plants.  On the non-cooperative side, one party 
evolves the strategy that is tuned to deter the advantages of 
its counterparts. Since the co-evolutionary game has been 
approached in both traditional and evolutionary games, the 
terminologies could be confusing.  
   
4.4.2. Replicator Dynamics  
 
Replicator dynamics describes evolution of the frequencies 
of strategies in a population. In evolutionary game theory, 
replicator dynamics is described with differential equations. 
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For example, if a population consists of n  types 
nEEE ,...,, 21 with frequencies .,...,, 21 nxxx . The 

fitness )(xfi of iE will be a function of the population 
structure, or the vector, ),...,,( 21 nxxxx = . Following the 
basic tenet of Darwinism, one may define the success as the 
difference between the fitness )(xfi of iE  and the average 

fitness )()( xfxxf ii∑=  of the population. The simplest 
replicator model can be defined as: 

)]()([/ xfxfxdtdx iii −= , for .,...,2,1 ni = The population 

,)( nStx ∈   where nS  is a simplex, which is the space for 
population composition, is similar to mixed strategies in 
traditional games (Hofbauer and Sigmund 1998, Vincent 
and Brown 2005).   
 
It has been shown that the replicator differential equations 
are equivalent to the classical population dynamics models 
such as Logistic differential equation and Lotka-Volterra 
equation.  In the analogy of reliability modeling, we can use 
the net fitness change )]()([ xfxfi −  as a measure of 
reliability or survivability in a wireless sensor network.     
 
4.4.3. Adaptation and co-adaptation  
 
The internal debate within Darwinists is often focused on 
the role of adaptation, with the difference that adaptationists 
consider every characteristic is evolved from the adaptation 
to the natural selection.  The opponents of adaptationists 
consider that some biological features are the by-products of 
natural selection, what Gould (1979) termed as "Spandrels 
of San Marco".  In the game theoretic evolutionary school 
such as Maynard Smith (1982), Hofbauer & Sigmund 1998, 
Vincent and Brown (2005), an adaptation is the particular 
strategies that make up the ESS. With Vincent and Brown's 
(2005) words, the ESS is the end point of evolution by 
natural selection, which probably should not be taken 
literally, in our opinion, since evolution of living things is 
certainly still going on. With evolutionary game theory, 
adaptive dynamics is the changes of the frequencies of 
strategies within the population, and can be modeled with 
the replicator equations.  Traditionally, adaptive dynamics 
refers to the change of gene frequencies in population 
genetics. Some researchers use adaptive dynamics to refer to 
the dynamics of phenotypes (e.g., McGhee 2007). Strategy 
dynamics refers to the strategy changes of a species and its 
difference with adaptation dynamics lies in the species 
versus population.      
 
4.4.4. Fitness Generating Function: G-function  
 
Fitness Generating Function (G-function) is invented by 
Vincent and Brown (2005) to specify groups of individuals 
within a population. Individuals are assigned same G-
functions if they possess the same set of evolutionarily 
feasible strategies and experience the same fitness 
consequences within a given environment.  This G-function 
has close connection with the German term bauplan, which 

is used to classify organisms by what appears to be common 
design features or rules. G-function can be thought of as 
describing both an organism's bauplan and its environment.  
In the analogy with computer networks, we might define 
bauplan as the clusters of homogenous nodes, for example, 
all Linux workstations in a network.  Hazard function 
model, which can be modeled with survival analysis, should 
be a good candidate for network G-function.  
 
The motivation of proposing G-function by Vincent and 
Brown (2005) seem to capture both aspects of ESS, the 
necessary equilibrium conditions and the sufficient 
convergent stabilities.  In practice, there is no single fixed 
form of G-function; instead, they are devised based on 
specific systems. For example, one of the simplest G-
function can be defined based on the Logistic equation, G = 
G [v, x], where v is the strategy vector and x is the vector of 
population dynamics. By studying dynamic properties of the 
G-function, one can obtain the models for both evolutionary 
equilibrium and convergent stability. The analytic 
procedures for G-function are very similar to the 
methodologies in Hofbauer and Sigmund's (1998), but the 
later just did not propose specific terms. G-function plays 
the similar roles of fitness functions in Hofbauer and 
Sigmund's (1998).  
 
Multiple G-functions and multi-stage G-functions can be 
defined for an evolutionary system. Often, both differential 
and difference equations forms of G-functions are provided.  
It might be the difference equations that prompted the 
adoption of the term generating function, since generating 
function is another term for the z-transform that often 
involves with the solving of difference equations.  
 
4.4.5. Darwin dynamics   
 
For biologists, one of the most appealing advantages with 
evolutionary game theory is the unified modeling 
framework for population dynamics and strategy dynamics, 
both of which together is termed as Darwin dynamics in 
literature (Hofbauer & Sigmund 1998, Vincent and Brown 
(2005). This seems to be the first time in biology that 
ecology-based population dynamics modeling is united with 
evolution theory. What is more remarkable is that the newly 
unified framework of Darwin dynamics is interchangeable 
with the traditional genetics-based Modern Synthesis 
(Fisher 1930, Mayr 1980).   
 
In the previous sections, we emphasized ESS. However, 
evolutionary game theory is not limited to study the games 
with ESS only.  ESS may not exist in some evolutionary 
games.  Actually, the existence of Nash equilibrium is not 
sufficient to guarantee the existence of ESS, since the 
existence of ESS depends on the convergent stability. The 
study of non-equilibrium is certainly complicated. 
Fortunately, the results from population dynamics, such as 
nonlinear dynamic models, provide valuable insights; the 
dynamic behaviors such as periodic, quasi-periodic, chaos, 
limit cycles and n-cycles (discrete cycles) can be analyzed 
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with those models. These analyses require the solutions 
from the models to be bounded (Hofbauer & Sigmund 1998, 
Vincent and Brown 2005).  
 
In summary, evolutionary game theory, which itself is 
inspired by the evolution theory, provides an effective 
alternative to the traditionally genetics-centered statistical 
approach to the studies of evolution. Furthermore, it united 
population dynamics with evolution theory. In addition, the 
mathematical framework of evolutionary game theory still 
holds, when gene frequency is brought into the model, that 
is, it can replace the traditional genetics-centered evolution 
models.  
 
 

5.  BIOLOGICAL ROBUSTNESS  
AT COMMUNITY LEVEL 

 
Generally, living systems can be classified vertically as the 
organizations of molecular, individual, population, 
community and eco-systems. Although this classification is 
not precise, it serves well for organizing research subjects. 
Each of the organizational levels may be further detailed. 
For example, at molecular level research, there are gene and 
protein, cell, metabolic networks, etc.  The main subjects at 
the molecular level are molecular biology, biochemistry, 
and more recently, genome sequencing and bioinformatics. 
Research at the individual level is somewhat special and 
several subjects are deeply rooted at this level, including 
physiology (which also interfaces with biochemistry and 
metabolism at molecular biology level), autecology, and 
ethology. Population, community, and ecosystem 
traditionally are subjects of ecology.  This imprecise 
classification is far from complete, for example, some 
important subjects do not fit into any single level or form 
their own level. Two outstanding examples are evolutionary 
biology and immunology.  With the recent rapid advances in 
molecular biology, a few new subjects have been 
established, for example, bioinformatics, molecular ecology, 
and system biology.  In addition, in recent years, the 
theories of metapopulation (ensemble of populations) and 
metacommunity (ensemble of communities) have been 
established solidly in ecology, which can be considered as 
organizational levels between population and community 
and between community and ecosystem, respectively.  
 
In recent years, landscape ecology has emerged as a new 
and exciting level of ecological study. Environmental 
problems such as global climate change, land use, habitat 
fragmentation and decline of biodiversity have required 
ecologists to expand their traditional spatial and temporal 
scales. The widespread availability of remote imagery, GIS 
technology, has permitted the development of spatially 
explicit analyses (Turner et al. 2003). Due to the emergence 
of landscape organization level which is beyond community 
but vague with the ecosystem level, plus the ambiguity 
surrounding ecosystem itself, there is suggest to abandon 
the ecosystem concept (O'Neill 2001).  
 

There is no doubt that biological robustness is ubiquitous at 
various levels.  Some of the concepts are even deeply 
embedded into our daily lives, for example, the near 
ideological concepts of conservation of biodiversity, balance 
of ecosystems and global warming.  One fundamental 
question implied by these concepts is how ecosystem or 
nature is resilient to human disturbance or how stable is the 
ecosystem? We are going to totally skip the ecosystem and 
landscape level robustness or stability and balance with its 
native terms, not because of the controversies around it, but 
for two reasons: (1) The field is too broad to summarize a 
meaningful definition of robustness. (2) Many of the 
ecological principles and mechanisms in ecosystem and 
landscape levels are the extension of community level 
theory. Therefore, from the practical point of view, focusing 
on community level should be sufficient for drawing 
ecological inspiration. Of course, our ignorance of these 
topics never implies these fields are unimportant in their 
own rights or in other fields. For example, there is very 
active research in software engineering that draws 
inspiration from ecosystem concept.  
 
5.1. Ecological Communities   
 
Ecology as a subject has more than 100 years of active 
research, and early ecological research was largely 
experimental and descriptive.  Significant portions of the 
theoretic ecology described with mathematical models have 
been mainly accumulated since the 1960s. One significant 
difference between theoretic physics and theoretic ecology 
is that an ecological theory, presented with perfectly correct 
and logical mathematical models, does not guarantee that 
the theory is biologically valid, since the law in ecology is 
very difficult to verify with experiments, unlike in physics. 
In addition, our understanding of ecological systems, 
especially beyond population level, is very limited. It 
sounds unbelievable, that while we have the full knowledge 
of human gene sequence, we still do not have a reliable 
estimate for the number of species on earth, not to mention 
the controversies around collapsing biodiversity and global 
climate changes.  Here we choose to briefly discuss two 
fields, which are more relevant to our topic—biological 
robustness. These two fields should also reflect the level of 
our understanding of ecological communities.  
 
5.2. Community organization    
 
The most common denominator for ecological communities 
is the ensemble of biological species. Beyond that 
commonality, differences emerge. One definition for 
ecological community adopted by Hubbell (2001) is "a 
group of trophically similar, sympatric species that actually 
or potentially compete in a local area for the same or similar 
resources".  However, many ecologists do not restrict the 
species to the same or similar trophical groups, and a 
community simply includes all species in a specific region 
or natural environment, which is approximately equivalent 
to the metacommunity Hubbell (2001) defined.  The 
different opinions surrounding the community definitions 
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spring from the theories of community organizations, or the 
underlying mechanisms for community to form and evolve 
with time. The organization directly affects the biodiversity, 
which consists of two aspects: species richness (the number 
of species in the community), and relative species 
abundance. One of the central themes of community 
ecology is the relationship between diversity and stability.  
 
There are several theories on community organizations, but 
two somewhat opposite theories are of particular interests: 
niche-assembly hypothesis and dispersal-assembly 
hypothesis as termed by Hubbell (2001). Niche-assembly 
hypothesis is the outgrowth of niche theory and evolution 
biology. Niche requirements determine interspecific 
functional relationships, which in turn decide which species 
is admitted to the community of limited membership. It 
seems that the niche-assembly theory is currently accepted 
by a majority of ecologists (Kinzig et al. 2002).  The 
collection edited by Kinzig et al (2002) is a state-of-the-art 
synthesis. 
 
The alternative dispersal-assembly theory assumes that 
communities are open, non-equilibrium assemblages of 
species largely brought together by chance, history, and 
random dispersal.  The presence of species is dictated by 
random dispersal and local extinction. Hubbell (2001) 
developed a unified dispersal-assembly theory dominantly 
based on the theory of island biogeography (MacArthur and 
Wilson 1967), and the inspiration from the neutral evolution 
theory in population genetics. Neutrality is the baseline to 
describe system behavior and it assumes that all individuals 
of every species obey exactly the same rules of ecological 
interactions (Hubbell 2001). Hubbell further assumes that 
populations and community changes arise only through 
ecological drift (stochasticity of demography, or per-capita 
birth/death rates), limited stochastic dispersal (species 
immigration/emigration), and random speciation (new 
species generations). He further restricts the ecological drift 
to zero-sum drift, which is a very crucial assumption. This 
implies that the dynamics of ecological communities are a 
zero-sum game. That is, any increase in one species' number 
is matched by decreases of other species numbers.  With the 
three assumptions, the community dynamics is simply a 
stochastic process modeled with Markov Chain. What is 
particularly interesting for us, is the assumptions of zero-
sum drift game and neutrality assumptions, which seem 
consistent with the evolutionary dynamics theory we 
discussed in population level.  
 
5.3. Biodiversity and Stability.  
   
Biodiversity in a community or occasionally in an 
ecosystem can be characterized by the species richness 
(number of species), relative species abundance or the 
synthesis of both. The most well known is the Shannon 
Diversity Index, which is based on Shannon's information 
theory and essentially measures the community entropy by 
synthesizing both species richness and relative abundance 
(Kinzig et al. 2002).   

Stability is perhaps one of the most ambiguously ecological 
terms. In a near exhaustive and remarkable survey, Grimm 
and Wissel (1997) catalogued 163 definitions of 70 different 
stability concepts.  Fortunately they were able to simplify 
the mess by replacing stability with three of its properties: 
(1) Constancy--"staying essentially unchanged;" (2) 
Resilience--"returning to the reference state (or dynamic) 
after a temporary disturbance;" (3) Persistence-- 
“persistence through time of an ecological system.”  The 
difference between constancy and persistency is constancy 
refers to a certain reference state or dynamics, which may be 
equilibriums, oscillations or irregular but limited 
fluctuations.  Persistence, on the other hand, does not refer 
to any particular dynamics, but only to the question whether 
a system persists as an identifiable entity (Grimm and 
Wissel (1997)).   
 
Grimm and Wissel (1997) also found that three other terms, 
which have very close meaning with the three terms 
described above, also are used frequently.  Therefore, they 
should be accepted to avoid imposing the usage.  These 
three terms are further interpretations of the previous three 
properties: (1) resistance--"staying essentially unchanged 
despite the persistence of disturbances", this is a further 
interpretation of constancy; (2) elasticity--speed of return to 
the reference state (or dynamic) after a temporary 
disturbance; and (3) domain of attraction--the whole of 
states from which the reference state (or dynamic) can be 
reached again after a temporary disturbance.  Elasticity and 
"domain of attraction" are the further properties of 
resilience.   
 
These three properties alone or combined cannot solve the 
ambiguity. One has to ask the question: to what ecological 
scenario or situation does the statement refer to? It is 
interesting that the usage of stability in ecology very much 
mirrors the concept of survivability in survivable network 
systems (SNS) field of computer science. It also shows that 
the three aspects of survivability, resistance, resilience and 
recognition, are indeed precise, except that a separate 
persistence is not necessary in the case of survivability since 
the "identifiable" but uncertain state implied by persistence 
is often not acceptable in the context of survivability.     
 
One central question in community ecology (also the 
ecosystem research) is the relationship between biodiversity 
and community (ecosystem) stability. The practical 
implication of this question is, if diversity does not promote 
stability, why do we human beings care to preserve nature 
diversity?  One thing for sure is that the relationship is not a 
simple linear relationship and is very complex, even without 
the enormous confusions from the "163 definitions of 70 
stability concepts" or the ideological or anthropocentric 
influences. The prevailing theory is that increased diversity 
tends to stabilize community properties, but tends to 
destabilize population properties. In addition, species 
composition or functional group composition (called guilds) 
may be equally important to stability as diversity is (Kinzig 
et al. 2002).  
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6.  SELF-ORGANIZATION AND  
EMERGENT BEHAVIOR. 

 
Self-organization refers to a broad range of pattern-
formation processes in nature, and the process occurs 
through system internal interactions without intervention by 
external directing influences (Camazine et al. 2003). 
Accordingly, self-organized systems acquire their emergent 
orders, structure and behaviors via self-organization, rather 
than imposed on the system by external influences.  
According to Camazine et al.  (2003), self-organization in 
biological systems can be different from that in physical 
systems, because individual units in biological systems are 
affected by genetically controlled properties. Natural 
selection, therefore, may fine-tune the rules of interactions 
among the individual units of the system.  In addition, some 
studies have demonstrated that simple local interaction rules 
may generate very complex emergent system behaviors.  
This phenomenon has inspired some new computing 
algorithms such as particle swarm intelligence (Eberhart et 
al 2001), ant colony optimizations (Bonabeau et al. 1999), 
stochastic diffusion search (Bishop 1992), etc, and found 
wide applications in artificial life. Actually, all those three 
algorithms and some others are termed swarm intelligence 
in literature, which typically refers to the computation with 
a population of simple agents interacting locally with each 
other or through their common environment.  Many bio-
inspired computing and communication involved self-
organization (Ma and Krings 2008e).  
 
Camazine et al. (2003) also discussed the relationship 
between self-organization and evolution. First, they stressed 
the argument that self-organization is not an alternative 
mechanism to evolution. Evolution indeed influences self-
organization, or fine-tune self-organization in the words of 
Camazine et al. (2003). Although both are characterized by 
the changes over time, the underlying mechanisms are very 
different. For example, natural selection is often absent from 
the self-organizing systems. Even if it is present, it is not the 
primary driving force (Camazine et al. 2003). 
   
Similarly, it might be dangerous to over-extend the 
computer-simulated self-organizations. Simulation without 
experiment verifications or lack of sound assumptions in 
simulation models should not be used to support hypothesis, 
since the simulation itself is an unverified hypothesis.   For 
example, in computer simulation, a population of particles 
may simulate migration behavior of birds, and very likely 
with very minor modifications, one will be able to simulate 
insects' migration too. The self-organizations, apparently 
has no way to explain the other differences between birds 
and insects, except their similarities in migrations flights; 
there is no way to explain the phylogenetic relationships and 
the enormous diversity differences between insects and 
birds.  
 
As indicated by Camazine et al. (2003), positive feedback or 
self-reinforcing is often responsible for the build-up of 
patterns, however, antagonizing inhibitory negative 

feedback has to stop and shape the build-up process to avoid 
overgrowth or even the self-destruction. Self-organizing 
systems are dynamic, and exhibit emergent properties. The 
emergent property often arises from nonlinear interactions 
among system components, which are qualitatively new 
properties and cannot be explained with simple addition of 
components properties.  
 
Historically, the relationship between self-organization and 
bio-robustness received relative little attention in traditional 
biology and ecology. The status has been changing in recent 
years.  One example that shows the obvious trend change is 
the rediscovery of Turing's (1952) seminar paper on the 
morphogenesis and pattern formation theory, which is also 
known as the reaction-diffusion pattern formation model. 
Turing's paper has spawned extensive research in several 
subjects including chemistry, physics, biology, and more 
recently in computer science. Some of the studies were 
performed from the bio-robustness or fault tolerant 
perspectives (e.g., Maini et al, 1992, Henry & Langlands 
2004). We expect that the ongoing rapid expanding of 
system biology will further accelerate the trend, because 
both self-organization and bio-robustness exist widely in 
gene, molecular, cell networks.     
 
Compared with self-organization and bio-robustness, there 
have been much more studies on the relationship between 
self-organization and fault tolerance, with the hope to find 
better engineering designs. Some of these studies also draw 
inspiration from biology. Certainly, the integration of the 
three fields: bio-robustness, engineering fault tolerance and 
self-organization, is highly desirable. A few examples, 
among many others, in this field include, Greensted's et al. 
(2004) study on multiprocessor system design inspired by 
endocrinologic system,  Koloskov and Medvedeva's (2001) 
self-organized multimicrocontrollers, and Zou & 
Chakrabarty's (2007)  distributed self-organization protocol 
for fault-tolerant wireless sensor networks. Another 
extensive source of research on this topic is from 
researchers in evolutionary computing.  
 
 

7.  PERSPECTIVES AND OPEN PROBLEMS 
 
7.1. Perspectives   
 
Perhaps except for medicine, we often take bio-robustness 
as granted and simply as by-products of adaptive evolution 
even in biology.  The attitude has certainly changed in the 
last few decades. The most prominent example would be the 
studies of robustness of gene control networks, and the 
global climate changes. Global climate change boils down 
to the question — how robust the earth biosphere is.  In 
previous sections, we have briefly reviewed bio-robustness 
from various biological and ecological scales (levels) with 
the objective to inspire the applications of the bio-
robustness mechanisms and principles to enhance the 
reliability and survivability of computer network systems. 
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We realize that this is an extremely challenging work, given 
that the relevant literatures are spread all over several 
apparently distant subjects, including biology, ecology, 
mathematics, computer science, and engineering.   
 
We propose to make the analogy between computer 
networks and biological populations, with network nodes 
mapping to biological individuals and communication links 
mapping to interactions among individuals, both of which 
can be described by a set of mathematical models, such as 
graphs or even matrices. Both biological and computer 
network systems possess adaptability, evolvability, stability, 
etc, as suggested by numerous research already conducted.  
 
With this framework mapping, we may adapt the concepts, 
principles and mechanisms from biology/ecology to 
formulate several thoughts, summarized as follows.  
 
(1) Both populations and computer networks can be 
abstracted as graph models, with graph vertices representing 
population individuals or network nodes, and with edges 
representing individual interactions or network 
communications paths.  By studying the evolutionary games 
on graphs, one can study the spatial-temporal dynamics of 
biological populations or computer networks. The 
mathematical tools for this research topic would be graph 
theory (in particular random graphs) and evolutionary game 
theory. Evolutionary fitness in biological population is 
ideally mapped to network reliability; in the broad sense 
network performance is one aspect of reliability.  
 
(2)   Selection pressure acts on populations/networks via 
the gene mutation. Mutations can be natural causes, 
catastrophic events, etc. However, the mutations do not 
necessarily cause failures (even though it may cause the 
reduction of fitness or reliability), and the effects depend on 
the internal network state and the intensity of selection 
pressure.  In computer networks, we can consider the 
network changes caused by external or internal factors as 
perturbations or mutation, which does not necessarily cause 
failure; instead, most mutations are neutral to reliability and 
survivability. ESS (Evolutionary Stable Strategy) in 
evolutionary game theory, which is unbeatable or resistant 
to both internal mutations and external perturbations, can be 
mapped to network survivability. Therefore, survivability is 
a set of strategies prescribed to organize a survivable 
network. This notion of survivability may be inconsistent 
with the existing definition or concept; we adopt the notion 
as a work definition for practical modeling convenience.    
 
(3) We can borrow the concepts of fitness/adaptive 
landscape frameworks from evolutionary theory for network 
reliability and survivability modeling, which acts as a 
conceptual model for spatial-temporal fitness (reliability) 
model. High fitness represents high reliability. The 
extinction fitness thresholds, a measure of robustness, 
represent survivability thresholds.  
 

(4) By treating individuals in a population as playing an 
evolutionary game, we can model the fitness landscape by 
using the evolutionary game theory, which has been 
developed for modeling biological fitness in mathematical 
biology. The theory of temporal modeling in biology has 
been established in the last few years; however, the spatial 
modeling of evolutionary dynamics is barely touched yet.  
 
(5) Evolutionary game theory puts players in the context of 
populations and emphasizes the dynamic nature of game 
strategy evolution. The strategies can be inherited and 
evolved via natural selection that acts as optimization 
agents. Therefore, there is no rationality assumption 
required.  It unites evolutionary dynamics with ecological 
dynamics of populations under a common framework.  
Mapping to network reliability and survivability, 
evolutionary game theory provides a unified framework for 
modeling reliability, survivability and hybrid faults (from 
agreement algorithms and fault tolerance theory).  We will 
expand this notion in the next subsection—open problems.  
 
(6)  The theoretic morphospace concept was first proposed 
by D. M. Raup in 1966 and further expanded by McGhee 
(2007) to convert adaptive landscape from a conceptual 
framework to a mathematically rigorous metric space. The 
difference between theoretic morphospace and adaptive 
landscape is that the adaptability in adaptive space is 
replaced by the frequency of the different combinations of 
the characteristics. Very recently, this concept was 
introduced to study the geometrics of evolutionary dynamics 
(McGhee 2007).  This new framework may not bring 
additional advantages to the study of network reliability and 
survivability, beyond the widely adopted fitness landscape. 
Nevertheless, we consider it a potentially very useful tool 
for studying the intrusion detection patterns in network 
security, since it seems an ideal tool for quantifying various 
intrusions behaviors or characteristics.   
 
(7) Evolution on graphs — the graph representation of the 
population players (or network nodes) and its further 
integration with landscape can provide a solid paradigm to 
study the evolutionary dynamics of biological populations 
or computer networks. Mathematically, deterministic 
differential equations and stochastic processes have already 
been applied to this field, and a number of models are 
already available. The Graph theoretic models, however, 
bring additional important mathematical theories into the 
field; notably, Percolation, Interacting Particle Systems 
(IPS), and Random Graphs, can be used to model spatial 
dynamics and phase transitions.  
 
More importantly, evolutionary game theory model, 
adaptive/fitness landscape and hybrid-fault models, can be 
further integrated, various faults such as symmetrical and 
asymmetrical in hybrid fault model can simply be treated as 
the strategies of nodes.  
 
(8)  Several metrics can be applied to model network  
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reliability. The fitness generating function (G-function) by 
Vincent and Brown (2005) simply the fitness function in 
evolutionary game theory are promising. Furthermore, 
survivor function from survival analysis (Ma and Krings 
2008a,b,c) can be used as stochastic fitness function to build 
stochastic evolutionary game models.  Again, survivability 
can be prescribed as ESS.  As discussed in Ma and Krings 
(2008a), malicious attacks or catastrophic failures that are 
hardly predictable can be treated as censoring in survival 
analysis.   
   
(9) Besides bio-robustness, Darwin's evolutionary theory, 
evolutionary game theory, and survival analysis, we can 
also incorporate another important aspect of nonlinear 
complex system, i.e., self-organization and emergent 
behaviors. We argue that self-organization is by no means 
the alternative to evolution. Self-organization itself is 
subject to natural selection and evolution can fine-tune the 
self-organization. We consider self-organization and 
emergent behaviors as the transitions of system behaviors 
across spatial-temporal boundaries. In the next subsection, 
we discuss an example of self-organization related 
application—emulating the spatial distribution patterns of 
insects in directed diffusion networking for wireless sensor 
networks.   
     
(10) We see a potential synergy between biologists who 
study biological robustness and computer scientists who 
study reliability and fault tolerance. The influences can be 
bidirectional.    
 
7.2. Open Problems and Proposed Approaches.  
 
From the above review and perspective, we propose the 
following four open problems, which we consider of 
significance in both theory and practice.  We also outline 
our suggested solutions and implementation steps. We 
further researched them in the context of wireless sensor 
network. These results will be reported separately. We use 
the term open problem somewhat differently from its usage 
in mathematics, but similar to how Wagner (2005) proposed 
his open problems on bio-robustness.   
 
Problem I — Unified Modeling Framework for Network 
Reliability and Survivability. 
 
Problem description: Survivability can be conceptually 
defined as the system's capability to endure catastrophic 
failures, such as a network system under malicious 
intrusions, while still preserving mission critical 
functionalities. A survivable system generally has to be 
reliable, and an unreliable system generally is not 
survivable.  There are no agreed upon modeling frameworks 
for network survivability (Krings 2008). Survivability 
modeling should be closely related to reliability modeling. 
However, the current reliability models do not 
accommodate survivability, since survivability often 
involves events such as malicious intrusions that are not 
predictable.  

Proposed approaches: (1) Deterministic approach—
Formulate survivability as an evolutionary game theory 
model and use the survival function as fitness function or G-
function, which is equivalent to reliability. The survivability 
is then prescribed by the ESS. An ESS system is equivalent 
to Survivable Network Systems (SNS) — resistant to 
internal mutations and external perturbations or preserve 
mission critical functionalities under catastrophic failures 
such as caused by malicious attacks.   (2) Stochastic 
approach — Treat unpredictable events that affect reliability 
and survivability as censoring.  Censoring means 
incomplete observation in the failure time data (also known 
as survival or time-to-event data), and it can be left, right, or 
random censored or truncated. Survival analysis was 
advanced to study time-to-event random variables with 
censoring. Censoring is undesirable but hardly avoidable in 
reality; for example, the information recorded in the black 
box of an airplane up to a crash is a typical case of right 
censoring or truncation where the observation is terminated 
at a fixed time. Censoring is generally assumed 
unpredictable in survival analysis experiments; otherwise, 
the experiment design or operation is biased. For instance, 
in a clinical drug trial an experiment is biased, if individuals 
are removed (censored) predictably or systematically. To 
capture unpredictable malicious events in survivability we 
use the censoring mechanism of survival analysis for 
network survivability modeling. This proposed approach is 
further discussed in Ma and Krings (2008 a, b, c).  
 
 (3) Mixed Approach—This is the integration of the 
previous deterministic and stochastic approaches. A simple 
mixed model can be the adoption of the survivor function as 
the fitness function or G-function in the deterministic 
evolutionary game model (differential equation). A more 
general formulation can be the adoption of stochastic 
population theory such as birth-death process or logistic 
process (Hallam and Levin 1986, Lande and Engen (2003) 
as the models for describing evolutionary games. The 
current evolutionary game theory utilizes differential 
equations such as Logistic differential equations. Therefore, 
this extension will lead to significant complication. To some 
extent, this is the transformation from deterministic to 
stochastic of an evolutionary game model.  
 
Problem II — Byzantine Generals Play Evolutionary 
Games.  
 
Problem description: The mathematical theory of consensus 
in the presence of faults is based on agreement algorithms, 
which was introduced as the Byzantine general problem by 
Lamport (1982). The agreement algorithms also form one of 
the foundations of distributed computing. The resulting 
hybrid fault models have become essential for fault tolerant 
design (e.g., Azadmanesh and  Kieckhafer 2000, Krings and 
Ma 2006). However, the hybrid fault models of agreement 
algorithms are essentially static and discrete.  There is a lack 
of a modeling framework to study a population of sensors in 
a wireless sensor network, in which each node may fail at 
different times due to variable failure rates. In other words, 
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we need a framework that is able to integrate reliability 
measurement with hybrid faults models in heterogeneous 
and dynamic environments.  This is necessary for studying 
the reliability and survivability of wireless sensor networks.   
The integration of hybrid fault models with traditional 
reliability models is of extreme significance both 
theoretically and practically. Currently, the two models are 
connected by simple assumption of constant fail rates or in 
many cases are disconnected. This makes it very difficult to 
incorporate hybrid fault model in reliability or survivability.   
 
Proposed approaches: We propose the framework of 
"Byzantine generals playing an evolutionary game". This is 
essentially an extension of the previous proposed solution 
for Problem-I.  In other words, the generals are represented 
as players of the evolutionary games, each general may have 
its own hazard function λ(t), which can be represented as 
fitness function or G-function in the evolutionary game 
theory model. Another key extension is that various classes 
of faults such as symmetric vs. asymmetric, omission vs. 
transmissive, or benign vs. malicious can be treated as 
strategies of the players.  Of course, the hazard function λ(t) 
and survivor function from survival analysis can be 
converted from each other. This integration of evolutionary 
game theory model, hybrid faults model, and survival 
analysis provides a unified modeling framework to measure 
network reliability, survivability and fault tolerance with a 
single model system.  For example, whether or not a 
Byzantine general can participate in the next round of vote 
depends on the general's fitness (or survivor function). In 
particular, the validity of an agreement algorithm is strongly 
linked to the assumptions about the thresholds of the 
number of nodes of specific fault types, i.e., thresholds in 
the next round of voting depends on the generals' fitness (or 
survivor function). Furthermore, since the system is 
continuous and dynamic, this implies that the integrated 
model system can predict real-time reliability and 
survivability for various possible faults modes (class of 
faults).   
 
The practical significance of this extension is obvious. For 
example, the sensors in a space shuttle or an airplane may 
be modeled with the proposed scheme.  These sensors 
needing to reach agreement can be treated as generals 
playing evolutionary games. Each sensor has its own 
survivor function (failure rate). The system should be able 
to predict real-time reliability and survivability (in ESS).  
 
To consider topology in the proposed scheme, we can move 
the game onto a graph model — the evolutionary games on 
graphs. Players become the nodes on the graph and the links 
represent their interactions. This extension is certainly 
challenging, but the framework is already clear.  
  
Problem III — Spatial Distribution Patterns, Power Law, 
Directed Diffusion Networks.  
 
Problem description:  
 

In wireless sensor networks, with hundreds of sensor nodes, 
even ignoring the mobility of the nodes, it is often infeasible 
to measure distances, and the distance-based design might 
be hard to validate. Intuitively, nodes’ density control in 
wireless sensor network should be less difficult to 
implement than the distance-based approach.  
 
Proposed Approaches: The spatial distribution patterns of 
insects (as briefly introduced in subsection 4.1) is 
considered as emergent property at the population level 
from self-organized aggregation or dispersion behaviors.  
The distribution mechanisms and corresponding 
mathematical models may offer very useful methodology 
for addressing the density control issues, since the models 
for spatial distribution patterns essentially measure the 
crowding or aggregation degree.    
 
One example to demonstrate this approach is the application 
to the agent-based directed diffusion networking (Ma and 
Krings 2008d). Directed diffusion sensor networking was 
proposed by Intanagonwiwat et al. (2003) as an alternative 
to the IP-based end-to-end and the hop-by-hop ad-hoc 
routing architectures. This networking paradigm was 
apparently inspired by Alan Turing's (1952) seminar paper 
on the reaction-diffusion pattern formation model. Among 
numerous follow-up studies to the directed diffusion 
architecture, Malik and Shakshuki (2007) recently extended 
it by introducing mobile agents (MA) with the goal of 
increasing the operation efficiency. The resulting 
architecture is termed Agent-based Directed Diffusion 
(AbDD). We suggest two potential improvements to the 
AbDD: introducing spatial distribution modeling for 
measure and control sensor density, and optimizing the 
number of mobile agents (MA) employed based on the 
spatial distribution model. Both improvements are based on 
the spatial distribution pattern theory introduced in 
subsection 4.1 (Ma and Krings 2008d).   
      
Problem IV— Byzantine Faults in DNA Code.  
  
While the predominant focus of this article is to draw 
inspiration from bio-robustness for research of engineering 
fault tolerance, we indeed emphasize that the interactions 
between two fields should be bidirectional. For example, the 
field of fault tolerance, especially the agreement algorithm 
and reliability modeling may provide very useful 
mathematical models for modeling redundancy in molecular 
biology and system biology.  
 
The current mathematical modeling approaches, such as 
system dynamics approach, for studying molecular and gene 
networks in system biology seem inadequate because they 
fail to address a fundamental problem in bio-redundancy 
(robustness), that is, the distributed synchronization (voting 
in terms of reaching agreement) among the redundant parts 
or subsystems.  The Byzantine general based agreement 
algorithms (models) should be very promising to fill the 
current gap.  
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As a step of our advocacy of introducing fault tolerance 
theory to bio-robustness and system biology, we present a 
conjecture about DNA code redundancy based on Byzantine 
general problem. We would like to emphasize that our 
discussion is a pure conjecture at this stage.  
 
Problem description:  
 
The universal genetic code consists of 64 possible 
arrangements of the 4 RNA nucleotides, U, C, A, and G, in 
the form of a triplet, termed codon. There are three codons 
acting as stop codons that terminate the protein synthesis, 
and they do not map to any amino acids. The remaining 61 
codons are mapped to 20 kinds of amino acids from which 
proteins are synthesized. Since there are only 20 amino 
acids, there are approximately three times of redundancy in 
the DNA coding.  In other words, the same amino acids may 
correspond to multiple codons. For detailed description of 
the genetic code, one can refer to standard molecular 
biology monographs (e.g., Osawa 1995). As expected, there 
have been enormous amount of research on the genetic code 
from perspectives of nearly every scientific disciplines, 
chemical, physics, biology, and certainly mathematical 
modeling. Many of the studies indeed focused on the 
robustness of the genetic code.  
 
Since there are only 20 amino acids and only 4 RNA 
nucleotides, the minimum codon length should be 3 to 
encode the 20 amino acid. This explains the triplet nature of 
genetic code, since doublet codon is not long enough. This 
also explains the possible number of codons,  43=64.  While 
the simple principle of parsimony (minimum length needed) 
explains the triplet nature and the 64 possible codons, it 
does not explain why there are three stop codons. Our 
questions are: (1) is there an alternative explanation to the 
parsimony principle, (2) why are there exactly 3 stop 
codons?   We propose the following conjecture to answer 
the questions.   
  
Conjecture: The universal genetic code follows Byzantine 
general agreement with oral messages.   
 
We first briefly describe the Byzantine General Problem 
itself and we refer readers to Lamport (1982) for its details.  
Assume there are n generals who need to reach an 
agreement by vote (such as simple majority) to determine 
either attack or retreat (binary decision). Among the n 
generals, there are m traitors, and the remaining n−m 
generals are loyal. All loyal generals must reach the 
agreement (same decision, either attack or retreat) even if 
the traitors send conflicting messages to different generals 
to prevent loyal generals from reaching the consensus. 
Lamport et al. (1982) proved that, if the generals 
communicate via oral messages, which is the least 
restrictive form of communication protocols in terms of the 
possibility that a traitor can induce maximal confusion (e.g., 
telling one general attack but retreat to another general) to 
the voting system, then the total number of generals needed 
to overcome m traitors' sabotage must satisfy, n≥3m+1. For 

rigorous description of Byzantine general problem, one 
should refer to Lamport et al. (1982). 
 
If we assume that genetic coding is evolved to maximally 
safe-guide the inheritance of the genes, and further assume 
that each of the 20 amino acid needs multiple agents to 
participate a vote and reach an agreement, which may 
simply means the validity of the participants in case some 
participants are mutated (traitors).  To guarantee an 
agreement is reached, the number of total agents (codons) 
should be 3m+1= 61, with m possible traitors (mutanats).  
Among the 64 possible codons, we have 3 extra agents who 
are not needed to participate in the voting. It might be that 
these 3 redundant agents are assigned the job of code 
terminators or the stop codons.  Again, we stress that this is 
only a conjecture.  
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