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Abstract—Competing risks analysis is a field of applied 
statistics with research dating back to the eighteenth 
century. Starting in the 1980s, the interaction with survival 
analysis has lead to significant advances in competing risks 
analysis, especially in dealing with the dependency and 
identifiability issues, both of which are often intermingled 
with each other and have been the focus of the controversy 
surrounding classical competing risks analysis. The 
usefulness of competing risks analysis in engineering 
reliability has been recognized since the 1960s, and several 
important models in competing risks analysis were 
developed in the context of reliability modeling [e.g., 
Marshall-Olkin (1967) model]. However, the interaction 
between competing risks analysis and reliability has 
gradually withered during the period when significant 
advances were made in competing risks analysis. 
Consequently, it seems that the application of competing 
risks analysis in engineering reliability has fallen behind the 
theory of competing risks analysis. In particular, the 
advances in dependence and identifiability research are of 
extremely important significance in reliability field.  We 
hope that this review article will contribute to the 
reestablishment of the connections between competing risks 
analysis and engineering reliability. In perspective, we 
suggest that the competing risks analysis has great potential 
in other fields of computer science and engineering, besides 
engineering reliability. In particular, network reliability and 
survivability, software reliability and test measurements, 
prognostics and health management, stand out as fields with 
very compelling reasons for further exploring.   
  
INDEX TERMS: Competing Risks Analysis, Survival 
Analysis, Reliability, Prognostic and Health Management, 
Network Survivability, Software Reliability.  
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1. INTRODUCTION. 
 
The term risk analysis, as well as various alternative terms 
such as risk assessment, management, or evaluation, appears 
in much of the scientific and engineering literature. 
However, the underlying quantitative methods may be very 
different from paper to paper. In this paper, we use the term 
"competing risks analysis" in a well-scoped domain, which 
originated from population demography, and the foundation 
of which has been supplemented by the modern survival 
analysis since the 1980s. According to David and 
Moeschberger (1978), the history of competing risks 
analysis can be traced back to the great French 
mathematician Daniel Bernoulli's research on the risks 
around the smallpox inoculation back to 1760. What 
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Bernoulli addressed was an extremely significant medical 
and social issue, we still do not have full answer for the 
question (the issue of dependent failures) he raised.  
 
Despite its long history and its focus on dependency among 
competing risks, it appears that the field of competing risks 
analysis has long been battling for its independent identity.  
Occasionally some statisticians in survival analysis tend to 
consider competing risks analysis as a field of survival 
analysis.  On the other hand, competing risks analysis 
community complained, that survival analysis itself was a 
"lost cause", correctly pointing to the fact that traditional 
survival analysis is univariate (Crowder 2001).  The 
competing risk analysis community insists that, "if 
something can fail, it can often fail in one of several ways 
and sometimes more than one way at a time." (Crowder 
2001).  
 
Before the 1980s, the mathematical theory of competing 
risks analysis was dominantly described with a pair of 
random vectors.  One vector is known as latent failure 
times, since it is not observable. It can be modeled with a 
multivariate distribution model, such as multivariate 
exponential or Weibull distribution. The other vector of 
random variables is the theoretical lifetimes, as well as the 
corresponding causes.  This is known as classical competing 
risks analysis. When the dependence between competing 
risks is introduced, mathematical analysis quickly becomes 
intractable.  The simplification assumptions and methods 
used by classical competing risks analysis caused 
controversy and much criticism.  Starting around the 1980s, 
an alternative formulation of competing risks analysis was 
developed, with the hope to better resolve the issues of 
failure dependency and distribution identifiability.   
 
Given the close ties between competing risks analysis and 
survival analysis, we would like to briefly introduce their 
relationship in the remainder of the introduction. The 
relationship between survival analysis and competing risks 
analysis may be confusing. First, we should distinguish 
survival analysis as univariate and multivariate survival 
analyses, to avoid causing further confusion when 
discussing their relationships with competing risks analysis.   
 
As reviewed in several monographs (e.g., Crowder 2001, 
David and Moeschberger 1978, Hougaard 2000), univariate 
survival analysis has been dominantly based on the i.i.d 
assumptions (independent and identically distributed) or, at 
least, on the independent failure assumption. Univariate 
survival analysis assumes that an individual can only fail 
once from a single cause; the other failures are simply lump-
summed as the censored. Distribution-free regression 
modeling allows one to investigate the influences of 
multiple covariates on the failure, and it relaxes the 
assumption of identical failure distribution, and to some 
extent the single failure risk restriction. However, the 
independent failures as well as single failure events are still 
assumed in the univariate survival analysis. Of course, these 
deficiencies do not invalidate survival analysis (univariate), 

and indeed, in many applications those assumptions are 
realistically valid.  
 
In contrast, competing risks analysis has the tradition of 
tackling dependent failures.  The fundamental difficulty 
comes from the introduction of dependent failures. This has 
been demonstrated in both reliability theory and survival 
analysis.  In addition, competing risks analysis is essentially 
a problem of multivariate systems, and therefore it should 
be more closely related to multivariate survival analysis 
(Hougaard 2000). According to Hougaard (2000), 
multivariate survival analysis generally analyzes three types 
of survival data: (1) survival times of multiple individuals 
whose failures can be dependent; (2) repeated occurrences 
of the same event, known as multiple data; (3) times to 
several events an individual may experience, known as 
multiple events. Competing risks analysis addresses a type 
of multivariate survival data that is indeed different from the 
three types of data Hougaard (2000) classified, because 
among the multiple latent or theoretic failure times, only 
one of them, the minimum, is actually observable. This is 
because in competing risks analysis, multiple risks compete 
for the failure of an individual, but the individual can fail 
only once from only one of the risks. The major challenges 
of competing risks analysis are resulted from three issues: 
(1) the dependency between the multiple competing risks, 
and (2) data censoring, where both failure time and failure 
cause may be censored.  Failure time censoring is 
straightforward, which means that we do not have complete 
observation for the failure times of some individuals. The 
other censoring is the inability to identify the cause of the 
failure. In engineering reliability, the mask of failure cause 
is a perfect example of this type of censoring. (3) 
identifiability issue which will be discussed in section 4.  
From this short discussion, we can see that competing risks 
analysis is indeed unique, compared to univariate and 
multivariate survival analysis.  One can expect that it can be 
as complex as multivariate survival analysis, if not more. 
This also implies that our expectation to competing risks 
analysis and even multivariate survival analysis has to be 
reasonable, at this stage; with Bedford's (2005) words, the 
validation of competing risks analysis models should be 
softer (i.e., resting on the evaluation of the engineering 
context).  
 
We would like to point out, we use the term "competing 
risks analysis" strictly limited to its meanings in survival 
analysis and competing risks analysis fields such as defined 
in the two monographs (David and Moeschberger 1978, 
Crowder 2001). In literature, there are numerous concepts, 
methods, publications, which use risk analysis and some of 
which may even use the term competing risks. Since it 
appears that most of the other risk analyses are often related 
to the statistical decisions or Bayesian decisions, or other 
specialized decisions approaches, we do not consider they 
are relevant to the topics of this paper. In section 2, we 
review the precise mathematical formulations of the 
competing risks analysis problems to be discussed.  We are 
not very sure why the competing risks analysis is often 
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prefixed with the "classical" modifier, since we have not 
seen the counterpart term, the modern competing risks 
analysis. It might be the case that competing risks analysis 
is prefixed with classical to distinguish it from the various 
risks analysis methodologies such as those developed in 
probabilistic decision theory.  Of course, this does not imply 
that the various risks analysis techniques should be termed 
the "modern" competing risks analysis.  Given that 
competing risks analysis has been studied since 1760, and 
significant changes have occurred since the 1980s, due to 
the extensive interactions with survival analysis, we suggest 
referring to the latter competing risks analysis as modern 
competing risks analysis, purely for convenience of 
reference, if this has not been suggested already.    
 
Classical competing risks analysis has been the major 
mathematical tool for actuarial and population demographic 
studies.  Modern competing risks analysis has been 
dominantly applied in biomedical and public health 
research. The classical competing risks analysis indeed was 
applied to reliability modeling and a few important 
competing risks models were developed in the context of 
reliability theory. However, it appears that the links between 
modern competing risks analysis and reliability modeling 
have not been fully established.  Undoubtedly, modern 
competing risks analysis should be an important tool for 
engineering reliability modeling.  
 
This article is the second in a four-part series in which we 
review state-of-the-art research in survival analysis, 
competing risks analysis, and multivariate survival analysis 
as well as their applications to engineering reliability and 
computer science. The other three articles discuss univariate 
(Ma and Krings 2008a) and multivariate survival analysis 
(shared frailty and multi-state modeling) (Ma and Krings 
2008b & c) respectively. The paper has two primary 
objectives: (1) to briefly introduce essential models and 
methodologies of competing risks analysis and review its 
applications in reliability analysis and IEEE related 
engineering fields. (2)  to present our suggestions and 
opinions on the potential applications of competing risks 
analysis to broader computer science and engineering fields, 
such as the reliability and survivability of computer 
networks, software reliability and test measurements, and 
prognostics and health management (PHM).  Due to the 
page limitation, we can only focus on the most important 
aspects, which in our opinion are the formulations of major 
competing risks analysis models and underlying failure or 
dependence mechanisms. For comprehensive and detailed 
treatments such as statistical inferences of these models, one 
should refer to the excellent monographs by David and 
Moeschberger (1978), Crowder (2001) and Pintilie (2006) 
as well as Bedford's (2005) recent survey paper.  
 
  

2.  GENERAL FORMULATIONS OF COMPETING 
RISKS ANALYSIS. 

 

There are two general notation systems for the formulations 
of the competing risks analysis models, reviewed by David 
and Moeschberger (1978) and Crowder (2001), respectively. 
To facilitate further discussion, we briefly discuss both 
notation systems in this section. In addition, we made minor 
symbol adjustment to keep consistent with the general 
survival analysis field, and also to be consistent with our 
three other articles in the series on survival analysis and 
multivariate survival analysis (Ma and Krings 2008a,b&c).    
 
2.1. Competing Risks Analysis Formulation Reviewed by 
 David and Moeschberger (1978). 
 
This section is mainly drawn from David and Moeschberger 
(1978).  Let Cl (l=1,2,...,k) be the k competing risks or 
causes of failure for individuals in a population.  Generally, 
the term risk should be used before the failure occurs, and 
the cause is more appropriate afterwards. These k risks 
compete for the failures of the individuals, but an individual 
may fail from one of the k causes only and fail only once. 
Therefore, two sets of random variables are adopted: one set 
is theoretical and generally not observable, and the other is 
actually observable.   
 
Let random variable Yi (i=1,2,…,k) represent an individual's 
lifetime with the assumption that the particular risk Ci were 
the only risk present. Denote the cumulative distribution 
function (c.d.f) of Yi by Fi(x) = Pr {Yi ≤ x} and 
corresponding probability density function (p.d.f.) as fi(x)= 
pi(x).  If not all other k-1 risks excepting Ci can be excluded, 
Yi may not be observed. What may be observed is the 
minimum Z of the k theoretical lifetimes, and the 
corresponding cause of Z. That is, Z = min (Y1, Y2, ..., Yk). If 
Z exceeds x, then all of the Yi must also exceed x,  
 

 Pr {Z>x} = Pr {Y1>x, Y2>x, ..., Yk>x} (1) 
 
Obviously, Pr {Z > x} is the counterpart of the survival 
function in univariate survival analysis, and it is denoted as:   
 
  Sz(x) = Pr {Z > x} = 1 − Fz(x) 
 
Further, the conditional failure rate function for Z is defined 
as rz(x),  

  rz(x) = fz(x)/Sz(x)   (2) 
 
Various terms for rz(x) are adopted in different application 
fields, such as: hazard rate, force of mortality, force of 
decrement, age-specific death (failure) rate, intensity 
function, etc.  
 
Now let gi(x)dx ( i =1, 2, ..., k ) be the probability of failure 
from cause Ci in (x, x+dx), in the presence of all k risks.  
Assume that the probability of more than one failure in dx is 
negligible [order of (dx)2], then rz(x) is the probability of 
failure in dx from any cause, conditional on the survival to 
time x.  
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This indicates that the total force of mortality is the sum of 
the component forces. Up to this point, the risks Ci are not 
required to act independently.  
 
When introducing the independence assumption, equation 
(1) becomes: 
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This is the failure rate function for Yi, and called cause-
specific failure rate or marginal intensity function. 
Therefore, for independent risks, there is: 
 

 gi(x) = ri(x)  i = 1, 2, ..., k  (5) 
   
This equation implies that the probability of failure from Ci 
in dt, conditional on the survival to t, is not influenced by 
the simultaneous existence of other k-1 risks.   From (3) and 
(5), the following relationships can be derived.   
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Besides the above definitions, which are common with 
standard reliability terminologies, there are three additional 
definitions, which are widely used in demography but not 
often in reliability theory.  Crude Probability of Failure 
measures the failure from a specific cause in the presence of 
other risks.  Net Probability of Failure measures the 
hypothetical probability of failure if specific risk is the only 
risk present. Partial Crude Probability of failure is the 
probability of failure from a specific risk in the presence of 
all risks except that one or more risks are eliminated. These 
terms can be defined by ri(x), rz(x), and gi(x) for a time 
interval (a, b) (Chiang 1968, 1984, David and Moeschberger 
1978).  The following are the definitions for the terms just 
mentioned. Chiang (1991) in a review on the competing 
risks analysis in public health further discussed these 
definitions and their computation, as well their extensions.    
  
David and Moeschberger (1978) derived the formula for the 
three statistics. The net failure probability from cause Ci in 
the interval (a, b), qi (a, b) is: 
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The crude failure probability from cause Ci, in the presence 
of all causes, Qi(a, b), is expressed as: 
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The partial crude failure probability with Cj eliminated is: 
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where gi

-j(x)dx and rz
-j(x) are the failure probability in dt 

from cause Ci and the hazard rate, in the absence of cause 
Cj, respectively.  
Equations (8)−(10) are not restricted by the assumption of 
independent risks. When the risks are independent, they can 
be simplified by replacing gi(x) with ri(x).  
 
This is a convenient place to explain one of the earliest 
studies of competing risk analysis, Daniel Bernoulli's 
research on smallpox inoculation, which was mentioned in 
the introduction. As reviewed by David and Moeschberger 
(1978) who cited Karn (1931)'s introduction on Daniel 
Bernoulli's research on the risks around the smallpox 
inoculation back to 1760.  This account is based on David 
and Moeschberger (1978) review.  The question Bernoulli 
asked was: if the smallpox could be removed in a given 
population, what would be the effect on the population 
mortalities at different ages? With the terms introduced by 
David and Moeschberger (1978), as briefly introduced 
above, Bernoulli's question would be equivalent to the 
computation of the partial crude failure probability, 
assuming that smallpox was the risk eliminated and all other 
risks were lumped together. Bernoulli indicated that his 
approach rested on a crucial assumption—that individuals 
immune to smallpox were of the same susceptibility to other 
risks as the rest of the population. This implies that the risks 
were independent, and the assumption would not hold if 
there exists individual variation in the vulnerability to 
smallpox. The dependency among failures is an issue not 
yet resolved fully, despite the significant advances in recent 
years as reviewed in Moeschberger and Klein (1995), 
Rotnitzky et al. (2007), Chen et al. (2007).  
 
2.2. Competing Risks Analysis Formulation Reviewed by 
  Crowder (2001).  
 
This section introduces the formulation reviewed by 
Crowder (2001) and the contents are mainly drawn from this 
reference.  We will have a comparison of this formulation 
with that of David and Moeschberger (1978) later in the 
section.  Again, we adopt minor nonessential adaptations to 
the notations, to try being consistent in the whole article.  
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There are two data sets, the time to failure (or survival time) 
T, and the failure cause (or mode, type) C.  T is a continuous 
random variable with positive value, but C is a set of a 
handful of labeled discrete values, such as positive integers, 
1, 2, ... k.   
 
The key difference between Crowder (2001) and David & 
Moeschberger (1978) seems that Crowder treats the 
competing risks framework as a bivariate distribution of T 
and C.  There is one and only one cause in the set of k 
causes for each failure observed.  The elements of C are 
called risks before failures and causes afterwards. The risks 
compete for the cause.  
 
In reliability analysis, C might be faulty components in a 
series system and T is the breakdown time of the system; or 
C might be the failure modes, such as asymmetric vs. 
symmetric, etc.  
 
The sub-distribution function is defined as: 
 

 ),Pr(),( tTjCtjF ≤==      (11) 
 
Equivalently, the sub-survivor function is defined as: 
 

),Pr(),( tTjCtjS >==    (12) 
 
Obviously, jptjFtjS =+ ),(),(   

where )0,(),()Pr( jSjFjCp j =∞===   
represents the marginal distribution of C.  
 
F(t, j) does not form a proper distribution function because 
it only accumulates to the value pj rather than 1 at t = ∞.  
Implicitly, ∑pj = 1, and pj>0 is assumed. Similarly, S(j, t) is 
not a proper survivor function because it is not the 
probability that T>t for failure type j; that probability is a 
conditional probability, Pr(T>t|C=j) = S(j,t)/pj.  
 
The sub-density function f(j, t) for continuous T is  
represented by -dS(j ,t)/dt. 
 
The marginal survivor function and marginal density of T 
can be calculated with: 
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The related conditional probabilities are: 
 

 Pr (time t |cause j) = f(j, t) / pj  (15) 
  

Pr (cause j | time t) = f(j, t) /f(t)   (16) 
 

Pr(time t | cause j) represents distribution of failure time 
caused by j, for example, the survival time distribution of 
cancer patients in a biomedical experiment. Similarly,  
Pr(cause j | time t) gives distribution of risks faced by a 
specific age group, for example, the failure modes of a 
system at particular time.   
 
One still needs to define hazards related functions: the sub-
hazard function and overall hazard function. The overall 
hazard rate from all causes is defined as: 
 

 
dttSdtStf
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The sub-hazard function is defined as: 
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Similar to the arguments in equation (3), ∑ =
=

k

j
jthth

1
),()( . 

where h (t, j) is the cause-specific hazard function, or the 
marginal hazard function in the latent failure times setup.  
 
Both Crowder (2001) and David and Moeschberger (1978) 
are essentially equivalent. One may easily map them with 
each other. For example, equation (11) and (12) are the 
counterparts of distributions and survivor functions in David 
and Moeschberger (1978), except Crowder combines causes 
and failure times into a bivariate probability model. 
Equation (13) is equivalent to (3), both of which do not 
assume independent risks; the additivity is due to what we 
call the exclusive assumption, rather than independent 
assumption. The exclusive assumption implies that the 
probability of more than one failure in dx is negligible, 
which is often realistic. Equation (14) is simply the p.d.f. 
expression of the exclusive assumption.  
 
David and Moeschberger's (1978) equations (8)-(10), 
although they appear very different from Crowder's (2001) 
equation (15)-(16), fulfill similar functions.  It seems to us  
that Crowder's (2001) notation is more powerful and elegant 
in expressing high level framework, but David and 
Moeschberger's (1978) notation seems to be more 
convenient for analysis and also more consistent with other 
related fields such as reliability analysis.   
 
2.3. Censoring in Competing Risks Analysis 
 
In competing risks analysis, censoring can be simply treated 
as one of the competing risks, although in recent years, the 
survival analysis approach is often used to address 
censoring. However, treating competing risks as censoring 
is a very tempting simplification, especially for the sake of 
evaluating the major risk in concern, this naive 
simplification will cause bias and is not the proper way to 
analyze survival data (Putter et al. 2007).  
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Of course, censoring is not limited to the failure times T, 
and the censoring of failure causes can occur in many 
studies. For example, after a failure, the exact cause of 
failure may be unidentifiable and often is narrowed down to 
a certain range of causes. Interestingly, if the C (the set of 
causes) is not observed, competing risks analysis becomes 
standard survival analysis (Crowder 2001).  
 
 

3.  PARAMETRIC APPROACH (DISTRIBUTIONS-
SPECIFIC APPROACH) 

 
Similar to univariate survival analysis, there are generally 
two categories of approaches to study competing risks 
analysis. With the category discussed in this section, it is 
assumed that the probability distribution form of the 
underlying lifetime or failure time process is known, e.g., 
multivariate exponential or Weibull distributions, but the 
parameters of the distribution needs to be estimated.  
Maximum likelihood estimation, or more recently, Bayesian 
estimation, are often used to determine the values of the 
parameters. Once the distribution model and parameters are 
determined from observation data, the various competing 
risks analysis problems are turned into standard statistical 
exercises, such as comparing survivor or reliability 
functions, computing mean, median and various survivor 
quantiles (e.g., 50% quantile would be the median lifetime).  
What is special with competing risk analysis is that the 
results are expressed as conditional probabilities [e.g., 
equation (15), (16)]. The second category of approach does 
not require the exact distribution form to be known and will 
be discussed in section 6.  In each category, we separate 
discussions into two types: the independent risks versus 
dependent risks. The latter type is far more difficult and 
many of the problems are analytically intractable.   
 
The joint distributions or survival functions for theoretic 
survival times in competing risks analysis are multivariate.  
However, the traditional multivariate statistical analysis is 
hardly applicable to competing risks analysis, because the 
multivariate analysis has been developed based on 
multivariate normal distributions. One may easily conjecture 
that distributions, such as multivariate exponential and 
multivariate Weibull distribution, should be the most likely 
distributions in competing risks analysis.   
 
Pintilie (2006) summarized major parametric models 
formulated with latent failure times approach (adopted by 
David and Moeschberger 1978) in a table. The models 
described include exponential independent, exponential 
dependent, Weibull, and Marshall-Olkin (1967) model.   
 
3.1. Parametric Competing Risk Analysis with 
 Independent Risks. 
 
David and Moeschberger (1978) reviewed the general 
maximum likelihood functions for estimating distribution 
parameters in the competing risks analysis. Even if the 
independent risks are assumed, there is still significant 

complexity with competing risks analysis, due to the various 
censoring involved in collecting the experiment data. They 
summarized five different scenarios: (i) All lifetimes and 
associated causes of failures are observed, the simplest case 
but often least realistic. (ii) Lifetimes are censored. (iii) 
Lifetimes are grouped into intervals.  (iv) Possible immunity 
exists in some individuals; this is related to the intuitive 
phenomenon that when one introduces additional risks other 
than Ci the failure probability from cause Ci is non-
increasing. (v) The combinations of (i)-(iv).  The 
complexity of likelihood function generally increases with 
more complex data structure. When observation censoring is 
involved, the partial likelihood function used in survival 
analysis is used.  
 
Here, we only list the results of likelihood function for the 
case(i), all lifetimes and associated failure causes are 
known.  The following discussion is based on David and 
Moeschberger (1978). Using the notation in equation (1), Yi 
is the theoretic lifetime when Ci is the only cause of failure 
(i = 1, 2, ..., k). The observed time Xi is conditional on 
knowing the cause Ci. In the presence of all risks, only the 
smallest Z = min(Yj) is in fact observable. With David and 
Moeschberger's (1978) notations, this can be written as: 
 

 )(min| jjiii YYYX ==    (19) 

Let the probability of failure due to cause Ci be 
 

1,0}minPr{
1

=>== ∑ =

k

j jjjjii YY πππ  (20) 

 
From (19) plus the independence assumption of the Yi, the 
p.d.f. of Xi is, ignoring the lower order items,  
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Now, if there are Ni individuals that fail from cause Ci and 
Xij denotes the lifetime of the j-th individual failing from the 
cause Ci (i =1, 2, ..., k; j=1, 2, .... ni),  conditional on Ni = ni 
(i = 1, 2, ..., k), the joint p.d.f. of the Xij would be: 
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Assuming Ni are random variables with the multinomial 
probability function: 
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Hence the likelihood function of interest is: 
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The (24) can be rearranged as: 
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where  
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Equations (25) and (26) show that if each risk follows a 
different theoretical distribution, the parameter estimation 
for each distribution can be performed individually by 
maximizing each Li.  
 
In this paper, we generally do not discuss detailed parameter 
estimations, such as the derivations of likelihood functions. 
However, its importance cannot be overemphasized since it 
is the parameter estimation under censoring that makes 
survival analysis or competing risks analysis unique. The 
processing of information censoring depends on both types 
of censoring (left, right, random, type-I, type-II, etc) as well 
as the distribution forms of the censored observations. A 
significant portion of research efforts in the survival 
analysis community has been spent on the studies of 
censoring. In some occasions, researchers from other fields 
even tried to improve the estimation procedures by 
introducing some general-purpose optimization techniques, 
notably, artificial neural networks (ANN). There are two 
potential pitfalls with the superimposing of black-box ANN 
on native survival analysis methods: (1) Survival analysis 
and competing risks analysis are well tuned to maximally 
extract the partial information in censored observations, and 
it may be difficult for black-box approaches to outperform 
the native methods.  Several so-called neural survival 
analysis procedures failed to produce significant 
improvements or improvements at all (Ma and Krings 
2008a). In this aspect, introducing additional optimization 
may be an unnecessary complication. (2) In some of the 
artificial neural survival analysis studies, the resulted 
procedures lost the capability to process censoring; 
obviously, this type of extensions should be avoided.  
 
3.1.1. Exponential Lifetime Distributions 
 
Exponential distribution is unique in the notion that it is the 
only continuous distribution with a constant hazard rate and 
lacking of memory property In addition, its relation with the 
Poisson process gives it justification for some failure 
processes (David and Moeschberger's 1978). Despite its 
limitation in adequately describing failures in practice, 
exponential distribution is always important as a baseline 
for studying the departures from constant hazards.  
 
The p.d.f. of exponential distribution is: 
 

kiyyyp ii ,...,2,1,0,0)exp()( =>>−= λλλ  (27) 
  
Substitute pi(y) into equation (26), the likelihood component 
of interests is: 
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The maximum likelihood estimate is: 

 ∑ ∑= =
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It can be derived based on (21) (David and Moeschberger 
1978) and the fact λλπ /ii =  that 
 

 0)exp()( >−= xxxfi λλ    (30) 

where ∑ =
=

k

i i1
λλ  

    
Therefore, the observed lifetimes are identically distributed 
regardless of the failure causes.  Furthermore, the failure 
rate observed is the sum of the failure rates of all competing 
risks.  Also the p.d.f of }{min ll

YZ = is identically equal to 

that of the Xi in (30).  
 
3.1.2. Weibull Lifetime Distributions.  
 
With two-parameter Weibull distribution, the p.d.f. of y is: 
 

0,0,0]exp[)()( 1 >>>−= −
iiiiiii yyyyp ii λβλβλ ββ  (31) 

 
Similar to the case of exponential distribution, when 
equation (31) is substituted into (26), the maximum 
likelihood estimations of the parameters ii λβ ,  can be 
derived, except that the explicit solutions for the likelihood 
functions are not available and numerical computation is 
used to estimate the parameters.   
 
If there is no censoring, the p.d.f. for observed failure time 
from cause Ci can be derived based on equation (21), upon 
noting that λλπ /ii = , is: 

 0]exp[)()( 1 >−= − xxxxfi
ββ λλβ  (32) 

 
Thus, the observed lifetimes are again identically distributed 
regardless of the failure causes. Also the p.d.f of 

}{min ll
YZ = is identically equal to that of the Xi in (32).  

It should be pointed out that when censoring is involved the 
likelihood functions are much more complex. Especially 
when random censoring occurs, the distribution of censoring 
times further complicates the likelihood function.  For the 
detailed derivation of the above models, readers are referred 
to David and Moeschberger (1978) where this section is 
based on.  
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3.2. Parametric Competing Risk Analysis with Dependent 
 Risks. 
 
Independence of risks has dominated much of the 
competing risk analysis and univariate survival analysis, 
similar to the situation in the reliability theory. As shown by 
David and Moeschberger (1978), one way researchers tried 
to deal with dependence is by selectively grouping the 
distinguishable risks into k categories, labeled Ci (i = 1, 2, ... 
k); within each group, the risks are similar and possibly 
dependent, but between groups, hopefully there is no 
dependencies. For example, in medical studies, it is 
reasonable to assume deaths from cardiovascular diseases 
and accidents or violent crimes are independent.   
 
Assume the theoretical failure times Yl (l = 1, 2, ..., k) have 
a continuous joint distribution with p.d.f. p(y1, y2, ..., yk).  
We repeat equations (19) and (20), for the observed lifetime 
Xi (i =1, 2, ..., k) conditional on the knowing failure cause 
Ci, and the probability (πi) of failure due to cause Ci,  
 
 )(min| jjiii YYYX ==

 1,0}minPr{
1

=>== ∑ =

k

j jjjjii YY πππ  

      (33) 
The p.d.f. of Xi is: 
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In the case of independence, (34) reduces to (21).  
 
The likelihood functions with censoring for (34) were given 
by David and Moeschberger (1978). However, even with 
numerical computation, the parameters estimation from the 
derived likelihood functions is very challenging, since the 
derived likelihood functions are extremely complex.    
 
Bivariate and multivariate exponential distributions receive 
significant attention in literature. Even for bivariate 
exponential distribution, the resulting model seems still 
complex enough to deter wide applications in practical data 
analysis. Beyond exponential distribution, Weibull 
distribution might be the only model studied in dependent 
competing risks analysis. In this section, we show examples 
discussed in David and Moeschberger (1978) first and then 
give a brief review of major studies not reviewed in David 
and Moeschberger (1978) and Crowder (2001) in the next 
section. The repetition of David and Moeschberger (1978) 
here helps us illustrate the major issues involved in the 
dependent competing risks analysis with parametric 
modeling; therefore, it may simplify the review work in late 
part of this article.  
 

Marshall and Olkin (1967) presented the idea of obtaining 
other multivariate distributions by transforming variables. 
This is a powerful technique to expand the results from 
multivariate exponential distribution and has been used by 
others (David and Moeschberger 1978). Marshall and 
Olkin’s (1967) bivariate exponential distribution has the 
survival function: 

 
)],max(exp[

},Pr{),(

21122211

221121

yyyy
yYyYyyS

λλλ −−−=

>>≡  (35) 

 
Marshall and Olkin (1967) derived the model from shock 
damage model described with Poisson process; this is 
therefore a competing risks analysis model originated from 
reliability field. There are three independent Poisson 
processes, Z1(t, λ1), Z2(t, λ2), and Z12(t, λ12), the number of 
fatal shocks in time t acting on component 1, component 2 
and both 1 and 2 simultaneously, respectively.   
 
Let U1, U2, U12 be the exponentially distributed times to the 
first arrival of events in the corresponding Poisson 
processes, then Y1=min (U1, U12), and Y2=min (U2, U12) and  
 

 
1221
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21 )Pr(

λλλ
λ

++
==YY   (36) 

  
The Marshall and Olkin (1967) model can describe a system 
made of two series components, and any of the three kinds 
of fatal shocks leads to system failure. When the system 
actually fails, one can identify U1, U2, or U12, which are 
individual's failure time from cause 1, 2, or both causes, 
respectively.  
 
This example shows one useful approach to address 
dependent risks. As demonstrated by David and 
Moeschberger (1978), when the dependence between two 
risks is purely owing to the chance of simultaneous failure 
from both risks, one may artificially introduce the third risk 
corresponding to simultaneous failure and then treat the 
three risks as independent.  
 
Similar to Marshall and Olkin (1967), by taking the 
transformation  

   21 /1
2

'
2

/1
1

'
1 , ββ YYYY ==    (37) 

Moeschberger (1974) derived the bivariate Weibull 
distribution.  
 
Equation (35) can be extended to k-dimensional exponential 
distribution by: 
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Given the complexity of the general form, it is 
understandable that most of the dependent competing risks 



 9

analysis is ad-hoc, parsimoniously adding necessary 
complexity.  
 
When the assumption of independent risks is violated, it is 
often only realistic to determine the bounds of marginal 
survival function. Klein and Moeschberger (1988) presented 
such an example, which is of general illustration for this 
problem. Moeschberger and Klein (1995) presented a 
comprehensive survey on the dependent competing risks.  
 
3.3. Some of the Recent Advances. 
 
Pintilie (2007) raised a very interesting but perhaps 
somewhat counter-intuitive point in regards to competing 
risks analysis. The argument Pintilie (2007) made was that 
in some cases, depending on the objective of the 
experiment, it may be useful to ignore competing risks, as 
long as the results are interpreted properly. The author 
illustrated the issue with a fictional example about cancer 
occurrences in two towns.  We found that her example could 
be easily transformed into a research problem in the field of 
reliability of computer networks. We present the network 
reliability example as follows, but the original ideas and 
arguments should be credited to Pintilie (2007) since there is 
nothing innovative in our transformation of the example.   
 
Assume a computer science graduate student is conducting a 
study to compare the vulnerability of two networks of the 
same magnitude. One network consists of nodes running 
OS-W, and the other of nodes running OS-U.  Both 
networks are very similar in operating environments, size, 
etc and the differences are negligible.  The student 
formulates two hypotheses to test: (i) Is there significant 
difference in the incidence of node failures caused by 
security compromises between two networks? This is 
intended to determine if one of the networks would require 
more attention from the network administration team. (ii) Is 
there a difference in the rate of failure due to security 
compromises between the two networks? This is intended to 
test which of the OSes is more vulnerable to security 
breaches.  
 
The competing risks in this case can be the hardware 
failures. Furthermore, the hardware for both OSes is 
different, and their reliability may be different too.  In the 
testing of the first hypothesis, following Pintilie's (2007) 
logic, the failure from the competing risks should be 
considered, since if a node failed due to hardware failure 
before being exploited, the failure caused by hardware 
would reduce the exposure of the OS to hackers. Therefore, 
in the first testing case, the competing risks should be 
considered, and this is called analysis of the hazard of sub-
distribution. However, in the second test case, the goal is to 
test whether one OS is more vulnerable than the other in 
terms of the failure rates due to security breaches.  This is 
ideally done in the virtual scenario where the competing 
risks such as hardware failures do not exist. Therefore, it is 
desirable to exclude the competing risk events. This is 

called the analysis of the cause specific hazard (CSH) and is 
performed in the absence of competing risks events.   
 
After the problem formulation, similar models to Pintilie’s 
(2007) can be used to analyze the experiment data and build 
corresponding models. There were also follow-up comments 
and reply about Pintilie's (2007) paper, by Latouche et al. 
(2007).  
 
Pintilie's (2006) recent monograph, Competing Risks: A 
Practical Perspective, contains an excellent overview of 
competing risks analysis. Furthermore, the monograph 
provides relatively detailed instructions to perform 
competing risks analysis with two of the most widely used 
software package, R and SAS.   
 
 

4.  IDENTIFIABILITY ISSUES. 
 
Up to this point, we largely follow David and Moeschberger 
(1978) notation system.  What David and Moeschberger 
(1978) called theoretical failure times, Yi (i =1, 2, ..., k) is 
also known as latent failure times.  All but the smallest of Yi 
is actually observable for a particular cause. Once the 
system has failed, the smallest Z=min {Yi}and its associated 
risk is identified as the system failure time and cause, and 
the remaining theoretical or latent failure times lose the 
meaning (Crowder 2001).  
 
There is a potential disturbing issue with the latent failure 
times approach, the identifiability issue (David and 
Moeschberger 1978, Crowder 2001). Simply put, the 
distribution of observed lifetimes Xi (i = 1, 2, ..., k) is 
completely determined by the equation (34), the joint 
distribution of the latent failure times. However, the inverse 
is not necessarily true.  That is, the distributions of Xi do not 
uniquely identify the joint distributions of Yi. What is more 
disturbing is that the distribution of Xi (e.g., equation 33) 
can always be represented in the form of equation (21) 
(which assumes independent) by proper picks of 
independent variates Yi' having p.d.f. pi'(y).  In other words, 
the dependent risk model with joint p.d.f. p(y1, y2, ..., yk) 
[p.d.f in (34)] is indistinguishable from the independent risk 

model )(
1

'∏=

k

i ii yp . Obviously, if the risks are indeed 

independent, there is no issue; otherwise, the statistical 
results such as (21) may mislead the whole analysis.  
 
Some researchers consider that the identifiability issue is 
resolvable as long as caution is taken.  They believe if a 
specific functional form is assumed for the joint p.d.f of Y1, 
Y2, ... ,Yk, then, generally, the model can be fully identified 
by estimating the model parameters with the likelihood 
function, and the independence assumption can be tested 
(David and Moeschberger 1978). Some other researchers 
are more pessimistic, and this has been the major point 
where controversy on competing risks analysis arises.  
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This identifiability issue was first noted by Cox (1959) and 
further extended by Tsiatis (1975). Crowder (2001) called 
the results Cox-Tsiatis impasse and expressed it as the 
following proposition, of course with Crowder's notation 
introduced in section 2.2.  Suppose that the set of survival 
functions S (j, t) is given for some model with dependent 
risks. Then there exists a unique proxy model with 
independent risks yielding identical S(j, t). It is defined by 

)()(
1

**
i

k

i i tStS ∏=
=  where ∫=

t
i dssihtS

0

* ),(exp)(  and the 

sub-hazard function h(i,s) derives from the given S(j, t).   
 
The proof of the proposition (omitted here) reveals that the 
proxy model is constructed by using the original sub-
hazards h(i, t) for the hi

*(t). If the original model has the 
independent risks, then it is its own proxy, because in this 
case h(i, t) = hi(t), and so S(t) = S*(t). The troubling part is 
that this hazard condition can hold even without 
independent risks (Crowder 2001). In addition, while each 
dependent-risks model has a unique independent-risk proxy 
model, each independent-risk model has a whole class of 
satellite dependent-risks model and that this class can be 
further partitioned into sets with the same marginals 
(Crowder 2001).    
 
Furthermore, the issue of identifiability persists in the less-
distribution or semi-parametric competing risks analysis 
approaches. As we will discuss in the next section, the so-
called mixed proportional hazard model (MPH), which is an 
extension of Cox proportional hazard model, assumes that 
the hazard rates of the latent failure times depend 
multiplicatively on the elapsed duration, observed regressors 
(co-variates) and unobserved heterogeneity (the frailty 
components).  One example of the so-called frailty could be 
the economic conditions of a group of patients under 
observations, the differences between patients in economic 
conditions exist objectively, but not observable, perhaps due 
to the restriction of laws or whatever other reasons.  If the 
unobserved determinants, such as frailties are dependent 
across the risks, then the failure times are dependent given 
the regressors (co-variates).  Heckman and Honore (1989) 
showed that the MPH is identified if there is sufficient 
variation in the latent failure times with the regressors. Here, 
the identifiability is a little bit different from the previous 
one since the MPH is a nonparametric model and no 
distribution is assumed. Instead, the identifiability in the 
MPH is concerned with invertibility of the mapping from 
the model determinants to the distribution of (T, C), T is set 
of the observed failure times and C is set of corresponding 
causes.  The identifiability issue is important because it 
implies that the estimates of model specification are not 
completely driven by parametric functional form 
assumptions on the model determinants. Abbring and van 
den Berg (2003) further relaxed the identifiability conditions 
set by Heckman and Honore's (1989).  
 
The identifiability issue may be further complicated by an 
even broader issue in the parametric model selection for the 
observed failure times. As explored by Marshall et al. 

(2001), the issue is how does a researcher know Weibull 
distribution is more appropriate than, for example, Gamma 
distributions? In situations when there is not the identifiable 
"signature" mechanism, for example, the "lack of memory" 
property of exponential distribution, the choice of 
distribution naturally rests on the results from fitting the 
distribution models. There are generally three statistical 
methods for evaluating the fitting results (Marshall et al. 
2001). The most popular method is the goodness-of-fit test. 
The second approach is to test the hypothesis that the 
chosen family is correct against the alternative hypothesis 
that a second specified family is correct and it treats the two 
families asymmetrically.  The third approach is to choose 
two or more possible candidates and then use the data to 
select the most appropriate candidate.  The difference 
between the second and third approaches is that all 
candidates are treated equally in the latter. The third 
approach then requires the procedure to evaluate the 
different candidates.  There are two criteria that are often 
used: maximum likelihood and minimum Kolmogorov 
distance, and the hybrid of both are also used. Marshall et al 
(2001) used Monte Carlo simulation to generate data from 
known distributions and then used the third approach to 
investigate whether or not the data can "recognize" its 
parent distribution where they were generated from. They 
limit the study to the non-negative survival distributions 
including Weibull, gamma, lognormal, and geometric 
extreme exponential.  What they found is that neither of the 
maximum likelihood and minimum Kolmogorov distance 
performs uniformly best. Since all but the lognormal 
distributions have the exponential distribution as special 
cases, what is interesting is that when the data is generated 
from exponential distribution, these models with 
exponential distribution as their special cases become less 
certain, for example, and may be strongly influenced by 
sample size. The issue becomes even more interesting with 
the so-called "rich" distribution. For example, the data from 
gamma distribution may be fitted by a Weibull distribution 
better than by its parent distribution. Weibull distribution is 
then said to be "richer" than gamma in some range of their 
parameters. Therefore, caution should be taken particularly 
when the tail behavior of the distribution model is 
important, since extrapolation to regions of little or no data 
may lead to wrong inferences (Marshall et al. 2001).  
 
     

5.  SUMMARY ON PARAMETRIC APPROACH. 
 
Before starting the discussion of less-distribution dependent 
approaches, it might be helpful to have a summary of the 
distribution-dependent approach or parametric approach, 
especially after the discussion of the identifiability issue.   
The parametric approach is based on the concepts of 
theoretical or latent failure times. The latent failure times 
(Yi) are multivariate, but the observed failure times (Xi) is 
univariate as formulated in David and Moeschberger’s 
(1978) notations. The probability distributions of Y and X 
and the estimations of the distribution parameters form 
central tasks for competing risks analysis. This distribution 
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parametric approach has been used historically; from this 
perspective, it can be said that competing risks analysis is 
independent of modern survival analysis. As we will see, the 
less distribution dependent or distribution-free, which is also 
called semi-parametric or non-parametric approaches 
respectively, draw extensively from modern survival 
analysis.  
 
As indicated by Crowder (2001), another way to look at the 
latent failure time distribution approach is that it attempts to 
infer marginal distributions from observed data that is a 
consequence of competing failure risks acting together. In 
other words, it attempts to estimate the net risks from 
observations on crude risks. Due to the identifiability 
problems discussed above, the inference of marginal 
survival function from the latent failure times survival 
function cannot be done unless the risks are independent or 
some restrictions are made on the marginal survival 
functions.  Without the restrictions, the best that can be 
obtained is some bounds of net failure probability (Crowder 
2001).  For this kind of limitation, plus the question of 
whether it even make sense to focus on the estimation of 
marginal survival function, the traditional competing risks 
analysis we introduced so far has received strong criticisms 
from some statisticians, especially from statisticians in 
survival analysis field. For example, it is argued that a 
doctor would normally just give advice on the illness in 
question, rather than worrying about other minor or 
incontrollable risks his or her patient may experience (such 
as being hit by a bus) (Crowder 2001). This suggests to 
focus on major failure risks and make inferences free of 
minor risks. 
 
While those criticisms are certainly valid in biomedical 
fields, our opinion is that the situation may be different in 
reliability analysis. For example, when an airplane crashes, 
any information that helps to identify the cause of failure is 
extremely valuable. The case of an airplane investigation is 
probably typical for any component-based engineered 
systems.  It is understandable that competing risks analysis, 
the applications of which are dominantly used in biomedical 
and actuarial sciences, has currently shifted away from the 
traditional latent failure time distribution approach, 
especially given the complexity of the approach and its 
limitations.  However, we believe that the approach is very 
valuable in engineering reliability analysis and more 
research efforts are desirable to overcome or alleviate the 
existing problems associated with it.  That also explains 
why we allocate significant space to discuss this approach, 
despite it appears out of favor in recent literature of 
competing risks analysis.  
 
 

6. SEMI-PARAMETRIC AND NON-PARAMETRIC 
APPROACHES 

 
In this section, Crowder's (2001) notation system and 
formulation are used, and many of the results are drawn 
from this reference.  

6.1. Proportional Hazards  
 
To introduce semi-parametric and non-parametric 
approaches, we need a few additional concepts. Recall the 
overall hazard function [h(t)] and sub-hazards function  
[h(t, j)] defined in equation (17) and (18). If the relative risk 
of failure from cause j at time t, h(j,t)/h(t), is independent of 
t for each j,  then the risks are said of proportional hazards.  
In other words, as time goes on, the relative risks of various 
causes do not change. No one gains or loses its share 
(proportion) of the overall risk, although the total risk may 
be up or down (Crowder 2001). The following theorem, 
recognized by several authors since the 1970s in various 
studies, confirms that this proportionality is another version 
of the independence of cause and time of failure.  
 
Crowder (2001) expressed the theorem as the equivalence 
among the following three assumptions: (i) proportional 
hazards; (2) the time and cause of failure are independent; 
(3) h(j, t) /h(k, t) is independent of t for all j and k.  In this 
case, h(j, t) = pj f(t) or F(j, t) = pjF(t), where pj = Pr (C = j) = 
F(j, ∞) = S(j, 0) is the marginal distribution of C in Crowder 
(2001) notation.  
 
The proportional hazards described here are different from 
that in univariate survival analysis, although they are 
similar.  Actually, we will review the extension of the 
proportional hazards in univariate survival analysis to the 
competing risks analysis in section 6.2.  
 
In addition, one needs another type of hazard function,  
g(j, t), which is conditional on both C=j and T>t, rather than 
conditional on T>t only.   
 

dttjSdtjStjftjg /),(log),(/).(),( −==   (39) 
 
This is the hazard for failures due to the cause j only, and it 
arises naturally in the development of competing risks 
analysis theory.  In practice, when the proportional hazards 
do not hold, the so-called piece-wise proportionality may be 
used (Chiang 1960, 1970, 1991).    
 
6.2. Regression Models 
 
In most failure time analysis, the i.i.d (independent and 
identical distribution) assumption is not satisfied.  A 
regression model that relates the covariates with the 
distribution parameters is built to capture the influences of 
covariates.  A similar approach is used in non-parametric 
modeling, but, in semi-parametric modeling, the form of 
distribution is assumed rather than totally distribution-free.  
 
6.2.1. Proportional Hazards Model 
 
The univariate proportional hazards model by Cox (1972) 
can be extended to the competing risks modeling. A natural 
extension can be made in terms of the sub-hazard functions: 
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 ),();,( 0 tjhxtjh jxΨ=    (40)  
 
where jxΨ is a positive function of the vector of covariates x 
for cause j. h0(j, t) is some baseline hazard function.  
 
As mentioned previously, the "proportional hazards" has 
different meanings in the univariate survival analysis and 
the competing risks analysis. Now if one imposes the 
"proportional hazards", in the context of competing risks 
analysis, on the model (40), that is, replacing 

),(0 tjh by )(0 thp j : 
 

 )();,( 0 thpxtjh jjxΨ=    (41) 
 
Ψjx can take different forms, for example, )exp( j

T
jx x β=Ψ .  

Another way to look at the semi-parametric and non-
parametric approaches is the specification of h0(.); h0(.) 
could be specified as some distribution such as Weibull, or 
left unspecified and computed by procedure such as 
maximum likelihood from observation data.   
 
6.2.2. Accelerated Failure Time model.  
 
Similar to the Cox proportional hazards model, the 
accelerated failure time model in univariate survival 
analysis can be extended to the competing risks analysis.  
When the effect of covariates vector x is to accelerate the 
time scale t by a factor Ψjx in the baseline model S0(j, t),  
 

 ),();,( 0 tjSxtjS jxΨ=    (42) 
 
A second proportional hazards in the context of competing 
risks can be incorporated into (42) and the model becomes: 
 

 jp
jxtSxtjS )();,( 00 Ψ=    (43) 

 
The pj is the marginal distribution of C in the Crowder 
(2001) formulation. One example of Ψjx is 

)exp( j
T

jx x β=Ψ . 
 
The idea of accelerated failure tests was originated from 
engineering reliability, and they are conducted to quickly 
obtain failure data of products under "accelerated failure 
conditions" such as exposure to excessive stress. The 
obtained data are used to parameterize accelerated failure 
time models, such as (42) and (43), which are then used to 
extrapolate the reliability under normal operation 
conditions.  Escobar and Meeker (2006) presented a very  
comprehensive review on this topic.     
 
6.2.3. Proportional odds model.  
 
The univariate survival analysis model for proportional odds 
is: 

 )](/)(1[);(/)];(1[ 00 tStSxtSxtS x −Ψ=−  (44) 
 
A natural counterpart in competing risks is: 

 
)],(/),(1[);,(/)];,(1[ 00 tjStjSxtjSxtjS jx −Ψ=−  (45) 

 
The second stage extension of proportional hazards in the 
context of competing risks yields: 
 

})](/[)]([1{);,(/)];,(1[ 0000
jj pp

jx tStSxtjSxtjS −Ψ=−  
      (46) 

that is, replacing ),(0 tjS  by jptS )]([ 00 . 
 
6.2.4. Mean residual lifetime model.  
 
The mean residual lifetime at age t is defined as: 
 

 )|)()( tTtTEtm >−=    (47) 
It is the expected time left to an individual that has survived 
to time t. The corresponding life expectancy is E(T|T>t) = 
m(t)+t.  
 
It can be derived (Crowder 2001):  
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The inverse relationship can be derived as: 
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For regression in univariate survival analysis, the mean 
residual lifetime can be regressed with a covariate vector x.  
 

 )();( 0 tmxtm xΨ=    (50) 
 
m0 is some baseline mean residual lifetime function and Ψx 
is a positive function of covariates vector, for example, 

)exp()( βTxx =Ψ .  
 
When extended to competing risks, (50) can take the form: 
 

 ),();,( 0 tjmxtjm jxΨ=    (51) 
 
The cause-specific mean residual lifetime is defined as 
(Crowder 2001): 

∫∫
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      (52) 
The above brief introduction might present an impression 
that the extensions from univariate survival analysis are 
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straightforward. There is enormous complexity hidden: one 
has to justify the assumptions in the context of real 
applications, and there is also the necessity to accommodate 
observation censoring.   
 
 
7.  MULTIVARIATE COMPETING RISKS ANALYSIS 
 
The term multivariate competing risks analysis was 
proposed recently by Wohlfahrt et al (1999) in an 
application-oriented study.  One would naturally think the 
multivariate competing risks analysis should be the 
multivariate extension of standard competing risks analysis.  
It appears that the extension has not received full 
recognition yet. Before introducing Wohlfahrt et al (1999), 
let us see how competing risks analysis is approached by the 
researchers in multivariate survival analysis.  
 
In the competing risks analysis we discussed so far, there is 
only one real or observable failure event. Although there is 
the notion of latent failure times variables (which are not 
observable), it makes some sense to treat competing risks 
analysis as univariate, given that only one of them can 
actually be observed.  As we have seen, the two major 
complications from competing risks analysis are: (i) the 
dependence between the competing risks; (ii) identifiability 
issues.   
 
Hougaard (2000) criticized the competing risks analysis, 
especially the latent failure time approach; understandably, 
the identifiability issue was his main concern. Hougaard 
(2000) also indicated that the standard frailty approach in 
multivariate survival analysis does not provide a solution to 
competing risks analysis either. He does consider that cause-
specific hazard functions can be estimated, for example, 
with Nelson-Aalen estimator (e.g., Nelson 1969), or include 
covariates in a Cox model. The other problem Hougaard 
(2000) addressed regarding competing risks analysis is that 
in some cases, it is difficult to classify the events, or identify 
the cause of failure. This latter is treated as censoring of 
failure mode in competing risks analysis, similar to the way 
censoring time was treated in survival analysis.    
 
The different opinions in survival analysis and competing 
risks analysis might be more related to the dominant 
problems each field needs to address.  The dominant 
applications of survival analysis are in biomedicine, where 
one may focus on a single dominant failure cause.  In 
medical clinical trials, an experiment may only need to 
evaluate the effects of a single drug or treatment, and the 
other factors can be treated as covariates. Therefore, in 
many occasions, there is a single dominant failure event in 
biomedicine. From this perspective, survival analysis is 
certainly not a "lost cause".  On the other hand, the 
dominant applications of competing risks analysis are in the 
actuary and public health, in which multiple risks are the 
norm rather than the exception.  An insurance company has 
to determine various premiums for different insurance 
options. Therefore the effects of removing a risk from  

consideration is of extreme importance, since it has to 
estimate how much it needs to charge extra to cover a 
specific source of risks to be profitable.  In the public health 
field, Bernoulli's question of how the elimination of 
smallpox risk would affect the overall population mortality 
is still relevant today. It is true that we still lack effective 
solutions to answer Bernoulli's question, but in many cases, 
competing risks analysis offers feasible and relatively 
simple solution. To reconcile both perspectives, Bedford's 
(2005) suggestion that the validation of competing risks 
analysis models has to be softer (i.e., resting on the 
evaluation of the engineering and organizational context), 
might be helpful.    
 
It is our opinion that reliability analysis, with broader target 
systems, may face problems similar to both biomedicine and 
actuarial science and should try to draw the best from all 
three fields: survival analysis, multivariate survival analysis, 
and competing risks analysis.  The simplest reason is that 
survival analysis provides basic models for reliability 
analysis. The competing risks analysis and multivariate 
survival analysis are needed to address series and parallel 
systems, respectively. In addition, any advances in handling 
dependent risks are always needed in reliability analysis.  
 
We now turn to Wohlfahrt et al’s (1999) multivariate 
competing risks analysis concept and model. They presented 
a motivating example with a breast cancer follow up study. 
The objective of their study was to investigate whether a 
woman's number of births, besides being an important risk 
factor for breast cancer as such, was also predictive of 
disease severity at diagnosis, in order to select women for a 
targeted cancer screening.  The analysis was conducted to 
compare the effects of birth number on the incidence of 
breast cancer according to two measures of severity at 
diagnosis: tumor size and number of positive nodes.  
Therefore, there are two types of events in observations: one 
is the tumor size, and the other is the number of positive 
nodes. One may argue that those are just two symptoms of 
the same cancer event, but the authors argued that the two 
classifications do exist separately at diagnosis. 
 
The first key element is that there are two or more types of 
failure events associated with each individual in 
observation. Now, there are covariates such as the number 
of births and other factors that may affect each type of the 
observed events. For example, the number of births has 
strong effects on the tumor size, as well as on the positive 
nodes. What Wohlfahrt et al. (1999) were particularly 
interested in was the hypothesis that both types of events 
might be strongly dependent, as small tumors tend to be 
node-negative. In other words, one may speculate that the 
two findings may reflect the same phenomenon.  
 
Obviously, one may easily construct a similar application in 
reliability analysis. For example, a network administrator  
may be interested in observing two types of security events: 
(1) virus infection and spread; (2) the system instability, 
which may be caused by, for example, the operating system 
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memory leak which may be time dependent. Both types of 
events are not fatal and may be observed simultaneously. 
Still, other types of events may be observed (for example, 
hardware failure and/or malicious attacks). In the other 
dimension, there are multiple risks such as efficacy of the 
virus protection program, the operating systems patch level, 
hardware wearing, and hacking activity.  Of course, the 
observed events are very likely dependent on each other.  
For example, a virus-infected node would be more 
vulnerable to hacker's attacks, and it might even be the case 
that a hacker uses a virus as the initiating attacking tool.  
Similarly, one would like to test the dependence between 
events and whether or not the effects of covariates on 
instability are simply a consequence of its influences on 
virus infection. In other words, one may wish to know, 
whether the instability is more the consequence of virus 
infection or the consequence of its own problem—the 
memory leak of its running operating systems.  
 
We summarize the modeling framework proposed by 
Wohlfahrt et al (1999) for their multivariate competing risks 
analysis based on the Cox proportional hazard model.  
 
The standard univariate Cox regression model is: 
 

 )exp()()( 0 xtt βλλ =    (53) 
 
where t represents time or age and x being the covariates 
vector.  β is a vector of the parameters corresponding to 
each covariate in the covariates vector.  
 
The version for multiple events would be: 
 

 )exp()()( 0 xtt jkjkjk βλλ =    (54) 
 
j=1, 2, ..., J belong to one classification of J subtypes, k=1, 
2, ..., K belong to the other classification of K subtypes. The 
effects of covariates are different for each classification of 
subtypes, and are reflected by βjk. The model (54) is the 
straightforward extension of (53), and it considers the cross 
product of both classifications.  
 
Wohlfahrt et al (1999) considered a more parsimonious log-
additive model: 

 )exp()()( 210
0 xxxtt kjjkjk βββλλ ++=  (55) 

 
where the effect of covariates x is log-additive on both 
subtype classifications. 
 
Wohlfahrt et al (1999) claim that equation (55) offers a 
natural means for testing the lack of difference in effects, 
according to one subtype classification.  That is, testing the 
models: )exp()()( 10

0 xxtt jjkjk ββλλ +=  or,  

)exp()()( 20
0 xxtt kjkjk ββλλ += .   

These models for )(tjkλ are called multivariate competing 
risks models since they can be applied for analyzing two or 

more sets of competing risks, making it possible to test 
hypotheses about the multivariate effects of risk factors.  
 
 

8.  COMPETING RISKS ANALYSIS AS A MULTI-
STATE MODEL. 

 
While the framework of multivariate competing risks 
analysis such as Wohlfahrt et al (1999) seems to receive 
little attention, the problem of an individual experiencing 
multiple events, each of which might have multiple 
competing risks or all of which have a common set of 
competing risks, does exist widely in many applications.  
What we discuss in this section is a recent attempt to 
address the same problem discussed in the previous section 
with the so-called multi-state survival analysis model.  
 
Multi-state model is a rapidly expanding topic and a recent 
issue of Statistical Methods in Medical Research is 
dedicated to the multi-state model (Andersen et al. 2002, 
Andersen 2002, Putter 2007). In the following, we briefly 
discuss the formulation of the problem of competing risks 
analysis with multi-state model.  
 
Competing risks analysis deals with one initial state and 
several mutually exclusive absorbing states.  In the multi-
state model, the states are not exclusive and there are 
intermediate or transient states.  To simplify the model, one 
may designate a single start state and a single unique 
absorbing state.  Essentially, the multi-state model is an 
integration of Markov chains with survival analysis, and the 
challenges lie in forming a state-transition model that 
conforms to the property of Markov chains or semi-Markov 
chains. The remaining work is simply standard Markov 
chain analysis. Of course, the Markov chain has been an 
important tool for reliability for quite a long time. This is a 
field where reliability analysis may actually be ahead of 
survival analysis and competing risks analysis.  For the 
status of multi-state model in reliability analysis, one may 
refer to Lisnianski and Levitin (2003) and several others.   
  
We draw the following introduction from Putter et al. 
(2007) on how the competing risks analysis is formulated as 
a multi-state model, or we simple call it a Markov chain 
model.  
 
Let T denote the time of reaching state j from state i (i→j), 
the hazard function (transition probability in terms of 
Markov chains) is defined as: 
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The cumulative hazard for transition ji a is: 
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There are two essential issues that have to be addressed: the 
defining of time scale and the compliance with the Markov 
chain properties.  There are two approaches to define the 
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time scales. One is the so-called clock forward scale that 
refers to the time since the individual entered the initial 
state. The clock keeps ticking forward for the individual 
continually, even when it travels through the transient states. 
The other scale is called "clock reset" referring to the time 
since the entry into the state; the clock is reset to 0 each time 
the individual enters a new state. The clock reset scale is 
also known as backward recurrence time.  The decision to 
adopt one over the other lies in the consideration of their 
potential influences on the properties of Markov chains.  
 
Several kinds of violations or relaxations are possible and 
dependent on the specific problem in study. One potential 
violation of Markov property is a situation where the order 
of states visited influences transition probabilities.  One 
solution for this violation is to split a state into two or more 
states, i.e., treating the different visiting sequence as 
different transitions. A second relaxation of the Markov 
assumption is to let the sojourn times (as covariates) depend 
on the times at which earlier states have been entered.  The 
resulted model is called state arrival extended semi-Markov 
chain model, which means that the i→j transition hazard or 
probability depends on the time of arrival at state i.  
 
The transition hazards functions (56) can be extended with 
Cox regression approach, that is, including covariates 
effects and the covariates can be time-dependent. For 
example,  

  )exp()()|( 0, xtxt ijijij βλλ =   (58) 
 
where λij,0(t) is the baseline hazard for transition i→j and βij 
is the vector of parameters that describe the influences of 
covariates (x) on transitions. The follow-up to (58) should 
be obvious to researchers in reliability theory, since the 
Markov chain has been used in reliability analysis 
extensively.  Nevertheless, it seems that the integration of 
competing risks analysis and survival analysis indeed brings 
about some very useful new insights.  
 
It seems that the extension of either standard survival 
analysis or competing risks analysis to multivariate or multi-
state modeling framework is inevitable. In an extension of 
survival analysis for modeling insect population dynamics, 
Ma (1997) adopted the Leslie matrix model that uses the 
survival functions for insect development and survival as 
matrix elements. The Leslie matrix is essentially a Markov 
chain model with the survival and developmental 
probabilities as the elements of the matrix.  Therefore, the 
integration of survival analysis and Markov chain seems to 
be a very natural modeling strategy (Ma 1997)  
 
 
9.  CURRENT APPLICATION STATUS IN COMPUTER 

SCIENCE AND IEEE RELATED ENGINEERING. 
 
9.1. Applications Found in IEEE Digital Library.  
 
We conducted an online search in IEEE Digital library with 

the keyword "competing risks" in October of 2007, and 
found only about 20 relevant papers. In this section, we 
briefly review each paper found from the search to get a 
glimpse of the status of competing risks analysis in 
computer science and IEEE related engineering fields.  
 
Ishioka and Nonaka (1991) presented a maximum likelihood 
estimator (MLE) for a system consisting of two series 
components, whose lifetimes follow Weibull Distribution.  
The independence seems implicitly assumed. It is not clear 
how the identfiability issue was dealt with. Dognaksoy 
(1991) applied competing risks analysis to analyze masked 
system failure data. Masked failure is the failure whose 
cause is not identified. The exact estimation of the 
confidence interval (CI) of failures from observed interval is 
not possible.  The masked failure was treated as censored 
observations in the study, and the independence between the 
multiple modes was implicitly assumed. Menon et al (1991) 
applied the competing risks analysis to the quality 
assurance. The VLSI failures of interconnects were modeled 
with competing risks analysis. Whenever defects exist, the 
failure distribution is bimodal. When there are no defects, 
the failure distribution follows the lognormal. This 
multimodality in failure distribution, as an indication of 
competing risks, may be useful for general quality testing; 
however, this only works when the failure modes are 
independent.  
 
Monitoring and inspection based maintenance schemes also 
need to consider the effects of competing risks. Coolen and 
Dekker (1995) concluded that once the cost-effectiveness of 
monitoring-based maintenance was established, the 
competing risks were irrelevant in determining the optimal 
monitoring interval. This might be an exception rather than 
the rule.  Nevertheless, the study demonstrated that 
competing risks analysis can be applied to the optimization 
of maintenance policy-making.  We think that competing 
risks may actually have significant influences on 
maintenance policy.  Usher (1996) presented a scheme to 
predict the components’ reliability from the system 
reliability data. The motivation was that the reliability 
predicted in this way is more realistic than the reliability 
data from isolated component tests. That is, we build a 
system of series components and observe system failure and 
the cause of failure, then try to infer the component 
reliability or marginal failure probability. The mask or 
censoring is a major challenge in this approach. Of course, 
if the failure modes are dependent, the identifiability issue 
emerges.  Papadopoulos et al. (1996) applied hierarchical 
Bayesian approach to estimate the parameters of 
multinomial, multivariate exponential, and Marshall-Olkin 
multivariate exponential distribution.  
 
Sun and Tiwari (1997) proposed a nonparametric hypothesis 
test statistic for the possible dependence between the 
different failure risks. Reineke et al. (1999) assigned a 
competing risks model for each of the five subsystems of a 
bridge reliability structure. Each subsystem or competing 
risks model had two failure modes. It was assumed that the 
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expected system lifetime and maintenance actions were 
known. Their study tried to identify the optimal preventive 
maintenance. Cooke and Bedford (2002) advocated the 
adoption of competing risks analysis as a general 
mathematical model for failure modes analysis in the 
context of building the reliability databases. They argued 
that reliability databases should not only store data that can 
be used to derive failure probability, but also the causes of 
failures. This makes competing risks analysis necessary.  
Bunea and Bedford (2002) adopted competing risks analysis 
to assess the operation reliability of nuclear facility 
maintenance. Nuclear facility maintenance data is highly 
right-censored due to the preventative maintenance.  They 
introduced three competing risks models: independent 
failure risks models, strongly correlated censoring and 
dependent failure risks models.  The challenge is that it is 
not possible to identify the accurate failure modes due to the 
censoring.  They call the inability to identify accurate failure 
modes the uncertainty of models. What they found is that 
the model uncertainty does have significant implications to 
optimal maintenance plans.   The solution they suggest is to 
use expert judgment to quantify the dependence between the 
competing risks, and then the model uncertainty is 
incorporated into the optimization of maintenances.   
 
Park and Kulasekera (2004) developed maximum likelihood 
estimators for the competing risks analysis of data from 
multiple groups, with both failure time and failure cause 
censorings under multivariate exponential distributions. 
Park (2005) also studied the parameter estimation in 
competing risks analysis with the EM (expectation 
maximization) algorithm. Kundu and Sarhan (2006) 
extended Park and Kulasekera (2004) by assuming Weibull 
distribution failure times, rather than the exponential 
distribution.  They also tried EM algorithms for the 
parameter estimations.  Sarhan (2007) also studied the 
maximum likelihood estimation for the competing risks 
models with lifetimes following the generalized exponential 
distribution.   
  
Zhao and Elsayed (2004) formulated a competing risks 
analysis model consisting of two types of failures. One 
failure risk is the soft failures due to degradation, and the 
other is the hard failures due to catastrophic events.   The 
degradation was modeled with a Brownian motion process 
and the first arrival to a boundary was treated as a soft 
failure. The hard failures, due to catastrophic events, were 
described with a Weibull distribution.  Pascual (2007) 
studied the accelerated failure test planning under multiple 
competing risks and the distribution of the failure times was 
assumed to follow the Weibull distribution. 
Dimitrakopoulou et al. (2007) introduced a three-parameter 
failure time distribution with bathtub and upside-down 
bathtub shaped failure rates. Weibull distribution can be 
derived as a special case of the three-parameter distribution. 
The authors also offered competing risks failure 
interpretation for the derivation of the distribution.  
 
9.2. Selected Papers Found in MMR-2004.   

In the following, we briefly review a few survival analysis 
related studies presented in a recent International 
Conference on Mathematical Methods in Reliability, MMR 
2004 (Wilson et al. 2005).     
 
Bedford (2005) presented a comprehensive review on the 
key issues of competing risk modeling in the context of 
reliability. His discussion is particularly relevant to 
maintenance problems. Bedford treated the competing risk 
problem as arising from a renewal process, in which only 
the first possible event, occurring after renewal, is 
observable. He emphasized the problem, which he referred 
to as the inability to infer marginal distribution without 
invoking un-testable distributional assumptions. What 
Bedford referred as competing risks problem is actually the 
identifiability issue we discussed previously, which has 
been the major controversial issue in competing risks 
analysis. Bedford's review is particularly inspiring by 
treating the identifiability problem as a more general issue 
of model identifiability.  Selecting more tight class is 
helpful for identifying more specific model in the class; 
however, the extreme parsimony in this strategy may lead to 
failure to capture the features in the data. Bedford's  (2005) 
recommendation is that the balance should be achieved by 
better understanding the engineering context while 
specifying tight families of models. The other issues 
Bedford (2005) addressed include independent and 
dependent competing risks, characterization of possible 
marginals, Kolmogorov Smirnov test, the bias of 
independence, maintenance as a censoring mechanism, and 
relaxation of the renewal assumption.  
 
Bunea and Mazzuchi (2005) offered an example of the 
accelerated failure modeling with dependent competing 
risks (failure modes) and the study reveals the high model 
sensitivity to the degree of dependence between the 
competing risks.      
 
Dewan and Deshpande (2005) reviewed distribution-free 
test statistics for bivariate symmetry, F(x, y) = F(y, x), for 
all (x, y), where x and y are latent failure time random 
variables associated with two competing risks and F(x, y) is 
their joint distribution. The rejection of the hypothesis 
indicates that one risk dominates the other. They also 
reviewed the statistics for testing the independence between 
failure time (T) and failure cause (C). Both tests are of 
significant importance. For example, the independence 
between T and C implies that equation (12) 

),Pr(),( tTjCtjS >== in Crowder's (2001) formulation 
can be simplified as )()Pr(),( tSjCtjS == . This will allow 
the study of failure causes and failure times separately.   
 
 

10.  PERSPECTIVE 
 
In previous sections, we surveyed the major research in 
competing risks analysis and its applications in computer 
science and IEEE related engineering fields.   It seems to us 
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that the interaction of competing risks analysis with survival 
analysis, especially with multivariate survival analysis, is 
the trend, despite the occasionally contentious opinions 
between two fields. In this paper, we did not discuss 
survival analysis outside the context of competing risks 
analysis.   
 
In section 9, we reviewed all 20 papers found (until the 
summer of 2007) from IEEE digital library with the 
keyword "competing risks". Although this search is 
certainly far from complete in the scope of scientific 
literature, it may demonstrate the status of the applications 
of competing risks analysis in computer science and IEEE 
related engineering fields. While the number of the papers is 
incomparable with the applications of competing risks in 
biomedicine, actuarial science, and public health, which are 
in the magnitude of hundreds or more per year, we have 
seen some excellent applications, especially in the last few 
years. However, it is also obvious that the potential of 
competing risks analysis should be much broad. Below, we 
suggest a few topics that have not been explored but with 
great promise in our opinion. Although we have not seen the 
applications of competing risks analysis in the suggested 
fields, they are certainly motivated by applications of 
competing risks analysis in other fields, especially by the 
applications published in IEEE digital library. 
 
10.1. Reliability and Survivability of Computer Networks.   
 
The reliability of computers and computer networks have 
been studied extensively and reviewed in several excellent 
monographs (e.g., Trivedi 1982, Shooman 2002, van 
Mieghem 2006). Survivability is closely related or even 
dependent on reliability. The key difference between 
survivability and reliability is that survivability is measured 
with the capability to endure catastrophic failure, which is 
often caused by malicious and unpredictable events (Krings 
2007). Modeling of survivability has been very challenging 
for several reasons. First, unlike reliability, for survivability, 
we still lack a precise mathematical definition that is well 
accepted. Even if one devises a probability definition similar 
to reliability, the task to assign probability to the malicious 
intrusions is extremely difficult and unreliable. Secondly, 
survivability is more closely associated with economic 
values. Nobody cares about the survivability of a system 
that has little economic value. Reliability has a similar 
property, but survivability is much more direct. The extreme 
example would be if we were willing to invest enough 
resources, unpredictable attacks can be minimized. On the 
other hand, once the system is built, monetary investment 
often has little effect on the failures due to normal operation.  
 
In addition, survivability also depends on maintainability, 
just as it depends on reliability. Maintainability is often 
modeled as an optimization problem with economic and 
environmental factors as constraints. Thirdly, it seems to us 
that survivability is also a competing risks problem, in the 
sense that these unpredictable events are competing risks for 
the system. In other words, a system under normal operation 

environments may fail due to either malicious events or 
normal failure mechanisms (such as wear-out or shock).   
An approach based on Survivable Network Analysis (Mead 
et al. 2000) is an example of a qualitative approach. 
 
The second property suggests that game theory modeling 
should be useful for survivability modeling. Kumar and 
Marbukh (2003) have provided such an example. We 
suggest that evolutionary game theory can be more suitable 
for modeling survivability for the following reasons: (1) 
Rationality which is the basis of traditional game theory is 
far from realistic in malicious events. Evolutionary game 
theory is not based on the rationality assumption; instead, it 
is based on the dynamic interaction between the players, or 
it evolves the evolutionary stability strategy (ESS). ESS is 
the strategy that can resist both internal mutation and 
external invasion. (2) Survivability is highly dynamic, 
which again is consistent with the assumption of 
evolutionary game theory. (3) Evolutionary game theory can 
accommodate potentially infinite number of players, and it 
can be described with differential equations. This is 
particularly suitable for modeling computer networks, 
especially wireless sensor networks, with hundreds or even 
thousands of nodes.  
 
The third property calls for competing risks analysis 
modeling. However, to the best of our knowledge, this has 
not been studied yet. There have been applications of 
various risks assessment modeling in survivability studies.  
However, none of the risks analysis methodology falls in the 
same category as discussed in this paper.  We believe the 
competing risks analysis approach has potential to model 
reliability and survivability under a unified framework.  
This should be similar to Zhao and Elsayed (2004) did in 
accelerated failure test (AFT) planning, categorizing the 
failure types into two categories, one is the catastrophic 
failure and the other is degradation failure. As we suggested 
in the review of survival analysis (Ma and Krings 2008a, b), 
censoring can be used as a mechanism to model 
survivability. This is consistent since in univariate survival 
analysis censoring can be used as a catchall failure 
mechanism. Competing risks analysis should allow more 
flexible modeling of survivability, since there can be at least 
two failure mechanisms, plus the censor event.   
 
However, the challenge of assigning probability does not 
disappear with the adoption of competing risks analysis. In 
this aspect, treating malicious events as random censored, 
such as we suggested in univariate survival analysis (Ma 
and Krings 2008a), could be advantageous.  In addition, the 
integration with two other approaches may relieve the 
problem.  One approach is the evolutionary game theory, 
and the other is the assigning of subjective probability based 
on expert opinions.  Therefore, we expect that the integrated 
approach of evolutionary game theory, competing risks 
analysis, should be appropriate for modeling survivability.  
An additional advantage of this integrated approach is that 
economic and environmental constraints can be easily 
integrated into the modeling.  
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10.2. Software Reliability and Test Measurements.  
 
As we suggested in the univariate survival analysis review 
article (Ma and Krings 2008a), survival analysis can be used 
to model software reliability. However, it may be necessary 
to develop new metrics or adopt existing ones such as 
Kolmogorov complexity (Li and Vitanyi 1997) to replace 
time variable in the survival analysis. Similar adaptation 
may also be needed in the application of competing risks 
analysis.  
 
Sentas and Angelis (2005) applied survival analysis directly 
to the modeling of the software project duration, without 
transforming time random variables.  This reminds us that 
other fields of software test measurements and project 
management also involve time-to-event random variables. 
Consequently, survival analysis and competing risks 
analysis should be ideal for analyzing the data from those 
time-to-event process.  A natural question is: what are the 
advantages for adopting competing risks analysis or survival 
analysis over the classical statistics?  One obvious example 
is that censoring is almost ubiquitous. The software is never 
bug free, and one very likely reason is that the debugging is 
right-censored. Without censoring, in other words, 
continuing the debugging until the discovery of the last bug, 
software should be as reliable as the mathematical 
algorithms. There are other advantages such as dealing with 
non-normal distributions, but the capability to deal with 
censoring is unique and fundamental.  
 
Another follow-up question would be what are the 
advantages of competing risks analysis over univariate 
survival analysis?  One may get the standard answer from 
the discussions in previous sections, such as multi-mode 
failure vs. single mode failure, handling dependency among 
failure risks, etc. When applied to software reliability, we 
suggest the following competing risks analysis model.  
Today's software, perhaps except for a few which is closely 
integrated with operating systems, is developed and tested 
relatively independent of operating system and network 
environment.  The release of application software and 
operating systems may not be synchronized. Furthermore, 
the exploitations of vulnerabilities and patches make the 
synchronizations nearly impossible. Therefore, the failure of 
application software may be due to the failure of the 
package, or the operating system, or the malicious 
exploitation of either the packages or network security 
breaches. What makes the thing even more complicated is 
the dependence between these risks. Given the 
characteristics we describe here, a competing risk analysis 
model will be more advantageous than the univariate 
survival analysis.  
 
As we argue in a separate article on multivariate survival 
analysis, the multivariate has advantages over univariate and 
competing risk analysis (Ma and Krings 2008b). One fair 
question would be, why do not we just use multivariate 
survival analysis as the single most useful approach?  Our 
answer would be: there are niches for univariate, and 

competing risks analysis suits them perfectly.  Generally, 
the complexity and power increases from univariate, 
competing risks analysis to multivariate survival analysis. 
As expected, there are costs associated with the power of the 
multivariate survival analysis. One is the complexity in both 
mathematical derivations and the statistical data modeling. 
Procedures for most univariate survival analysis and simple 
ones for the competing risks analysis are available in major 
standard software packages.  However, this is not the case 
for multivariate survival analysis, which often has to be 
programmed, preferably with statistical software languages, 
such as R and S-Plus.  The other challenge with multivariate 
survival analysis is that it requires more detailed data 
collection or experiment observations. Obviously, even if it 
is known that multi-modes and/or multiple failures are 
involved, but not observable for some reasons, and then it is 
not possible to apply multivariate survival analysis. A third 
potential challenge is that the model identifiability is much 
more complex in multivariate survival analysis, such as 
shared frailty models. This requires both high quality data 
and keen insights and experience from modelers, since in 
high-dimensions the intuitions and graphic representations 
are less helpful.  
 
10.3. Prognostic and Health Management (PHM) 
 
Similar to the arguments made in Ma and Krings (2008a) in 
the context of univariate survival analysis and Ma and 
Krings (2008b) in the context of multivariate survival 
analysis, we believe competing risks analysis should play 
important roles in PHM modeling of reliability, life 
predictions, failure analysis, quality control, risk assessment 
and predictions, etc. The most fundamental and unique 
advantage of competing risks analysis and survival analysis 
over the currently used approaches in PHM are their unique 
capability in handling information censoring. In PHM and 
other logistics management modeling, information 
censoring is a near universal phenomenon.   Furthermore, 
both competing risks analysis and survival analysis are 
developed to analyze time-to-event random variables, of 
which failure events are the most straightforward and 
common. The "built-in" mechanisms in modeling failure 
events are obviously advantageous over the other emerging 
techniques such as artificial neuron networks (ANN), 
evolutionary computing, and Fuzzy logic.  Competing risks 
analysis and multivariate survival analysis should also be 
highly valuable in analyzing various dependence events in 
PHM. Obviously, dependence exists as widely as the 
censoring in PHM modeling.  
 
Keller-McNulty et al. (2006) equated reliability and 
integrated system assessment, which perhaps accurately 
reveals the scope of modern reliability analysis.  Survival 
analysis and competing risks analysis provide powerful 
tools to model reliability as time-to-event random processes. 
Obviously, reliability or the integrated system assessment 
constitutes the core processes in prognostic and health 
management (PHM), competing risks analysis and survival 
analysis should become the standard toolkits for the PHM.  
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