
 1

Survival Analysis Approach to Reliability, Survivability 
and Prognostics and Health Management (PHM) 

 
Zhanshan (Sam) Ma  Axel W. Krings       

   sam@cs.uidaho.edu                 krings@cs.uidaho.edu   
Computer Science Department, 

University of Idaho 
Moscow, ID 83844, USA 

  
Abstract—Survival analysis, also known as failure time 
analysis or time-to-event analysis, is one of the most 
significant advancements of mathematical statistics in the 
last quarter of the 20th century. It has become the de facto 
standard in biomedical data analysis. Although reliability 
was conceived as a major application field by the 
mathematicians who pioneered survival analysis, survival 
analysis failed to establish itself as a major tool for 
reliability analysis. In this paper, we attempt to demonstrate, 
by reviewing and comparing the major mathematical models 
of both fields, that survival analysis and reliability theory 
essentially address the same mathematical problems.  
Therefore, survival analysis should become a major 
mathematical tool for reliability analysis and related fields 
such as Prognostics and Health Management (PHM).  This 
paper is the first in a four part series in which we review 
state-of-the-art studies in survival (univariate) analysis, 
competing risks analysis, and multivariate survival analysis, 
with focusing on their applications to reliability and 
computer science. The present article discusses the 
univariate survival analysis (survival analysis hereafter).  
 
INDEX TERMS:  Survival Analysis, Reliability, Network 
Survivability, Prognostic and Health Management (PHM),  
Software Reliability.  
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1. INTRODUCTION 
 
The modern mathematical theory of reliability was 
established more than half a century ago, predominantly 
based on probability theory (e.g., Bazovsky 1961).  Indeed, 
the probability-based reliability theory has been considered 
a very successful field in applied mathematics.  An example 
that shows the importance of reliability research in the 
mathematical literature is a survey conducted by Aven and 
Jensen (1999); they found that 1% of the literature (then 
indexed by Zentralblatt/ Mathematical Abstracts and 
Mathematical Reviews) are associated with the keyword 
reliability.  In practice, the success of reliability engineering 
is obvious, embedded in every engineering endeavor 
performed by human being, ranging from the Apollo Moon-
landing project, commercial airplanes, to consumer 
electronics.  However, like many scientific theories, 
reliability theory is far from perfect. Computer networks and 
software, in particular, create serious challenges for 
traditional reliability theory. The challenges have been well 
recognized (e.g., Krings 2008, Munson 2003, Shooman 
2002, Xie 1991). For example, in software engineering, the 
notion of failure time, which is the core of any traditional 
reliability model, often becomes less relevant, since most 
failures are latent until the software features which cause the 
failure are triggered. An even more obvious difference is 
that software does not wear out; nevertheless, the outdated-
ness caused by the environment updates (such as Operating 
Systems) can cause massive failures or even render the 
software useless under new environments. Similarly, 
computer viruses or other security breaches render 
traditional reliability theory of limited value. In emerging 
technologies such as wireless sensors and ad hoc networks, 
spatial topology or organizational geometry may not be 
ignorable due to the limited signal range. All these 
challenges point to the same conclusion, there is an urgent 
need to develop new approaches for modeling reliability and 
survivability for computer software and networks.   
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The problems with software and computer networking are 
so serious that the paradigm of survivable network systems 
(SNS) was proposed as a new discipline in the late 1990s 
(e.g., Ellison et al. 1997, Krings and Ma 2006, Krings 
2008). Survivability can conceptually be considered as a 
system's capability to endure catastrophic failures, such as a 
network system under malicious intrusions, but still 
preserve mission critical functionalities.  To some extent, 
reliability is the foundation of security and survivability. A 
survivable system generally has to be reliable, and an 
insecure and/or unreliable system generally is not 
survivable. What makes survivable network system (SNS) 
or survivability so important is the fact that today's 
computer networks control critical national infrastructures.  
 
An obvious point is that it is desirable to develop a theory of 
survivability that can be put into a unified framework with 
reliability. An intuitive idea could be to define both 
reliability and survivability in a single unified probability 
space with some mechanism to differentiate the malicious 
events over which the probability measures may be 
unknown. The difficulty lies in the reality that most events 
associated with survivability are generally unpredictable due 
to the nature of malicious intrusions. In addition, it appears 
that a probability definition for survivability alone, similar 
to that for reliability, may be equally infeasible, since 
mathematically the malicious intrusions correspond to the 
event points where probability measures may not exist. 
Indeed, despite its critical importance and significant efforts, 
there is not a well-accepted mathematical definition for 
survivability. One of the objectives of this article is to 
propose treating unpredictable events such as malicious 
intrusions as censoring in a survival analysis model; in this 
way, survivability can be assessed with a survival (survivor) 
function, which has the exact same definition as tradition 
reliability. We argue that this unorthodox use of censoring 
to model survivability with survival analysis should be 
feasible at least for some computer networks, such as 
wireless sensor networks, given the essential similarity 
between a population of patients in a clinical trial and a 
population of sensor nodes in a wireless sensor network.  
 
1.1. Important Definitions in Reliability Theory  
 
Let us recall some of the most essential definitions of 
reliability theory.  Assume we are concerned with a device 
that fails at an unforeseen or unpredictable random time (or 
age), T > 0, with distribution function F(t) 
 

+∈≤= RttTPtF ),()(     (1) 
and probability density function (pdf) )(tf .    
The reliability )(tR is defined as 
 

)(1)( tFtR −=     (2) 
 
This has the exactly same definition as the survival function 
in survival analysis.  
 

The failure rate )(tλ  is defined as the ratio of pdf to 
reliability, 
 

λ (t) = f (t) /R(t).    (3) 
 
Failure rate λ (t) measures inclination to failure at time t 
given λ (t)Δt ≈ P(T ≤ t + Δt |T > t)  for all Δt. It is also 
called as instantaneous failure rate, hazard rate, force of 
mortality, intensity rate, or conditional failure rate.  
Obviously tt Δ)(λ is the conditional probability that a device 
surviving to time t will fail in the interval ],( ttt Δ+ .     
 
The cumulative hazard rate (function), simply called hazard 
function, )(tH is defined as, 
 

∫ −==
t

tRdsstH
0

)](ln[)()( λ   (4) 

This derives 

.])(exp[)](exp[)(
0∫−=−=
t

dsstHtR λ          (5) 

 
The reliability modeling is then mainly concerned with 
collect information about the state of the system being 
investigated, and one should be alerted that different 
information level might lead to different reliability models 
(Aven and Jensen 1991). 
 
1.2. Important Modeling Strategies   
 
The following is a brief description of important modeling 
approaches for reliability, mainly based on Aven and Jensen 
1999).  
 
1.2.1. Compounded Systems 
 
Compounded Systems is what Aven and Jensen (1991) 
called complex systems.  It is made of n components with 
positive random lifetimes Ti,i = 1,2,...,n,n ∈ N . Let 
Φ : {0,1}n → {0,1}  be the structure function of the system, 
e.g., a parallel or series structure of n components.  The 
possible states of a component can be intact and failed, 
which is indicated by the number 1 or 0, respectively.  Let 

)()( tXt Φ=Φ denote the state of the system at time t, where 
X (t) = (Xt (1), Xt (2),..., Xt (n)) and Xt(i) denotes the 

indicator function for component i at time t, i.e., Xt(i) = 1, if 
Ti > t  and  Xt(i) = 0 otherwise.  The system lifetime is then 
given by, 

}0)(:inf{ =Φ∈= + tRtT .    (6) 
 
For example, in simple series or parallel systems, Φ  may 
take the ∧  (min) or ∨  (max).   
 
Under the assumption of independent component failures, 
the random variables iT  are i.i.d. (independent and 
identically distributed). There are standard problems such as 
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(Aven and Jensen. 1999): (1) inferring the system lifetime 
distribution from the lifetime distributions of its 
components; (2) assessing the effects of component 
reliability on the whole system; (3) finding if certain 
properties of the component lifetime distribution, such as 
IFR (increasing failure rate), are lost by forming a monotone 
system. A monotone system is characterized by the property 
that its structure function )(tΦ is non-decreasing with each 
argument, which guarantees that system reliability never 
gets hurt by improving the reliability of a component (Aven 
and Jensen. 1999).     
 
1.2.2. Damage Models.  
 
Another reliability formulation can be based on the damage 
or state observation of the system at time t.  Let X(t) be the 
damage or state random variable at time t and let S be the 
level of damage that leads to failure.  Then the system 
lifetime can be defined as  
 

 })(:inf{ StXRtT ≥∈= +    (7) 
 
where S can be a constant or a random variable independent 
of the damage process.  For example, a Wiener process with 
positive drift starting at 0 and the failure threshold of 
constant S may be used to describe the damage process, and 
the resulting system lifetime follows the inverse Gauss 
Distribution (Aven and Jensen. 1999). 
 
1.2.3. Compound Point Process.  
 
This category of model describes the so-called shock 
process where the shocks cause random amounts of damage 
to the system (Aven and Jensen. 1999).  The consecutive 
occurrence times of shocks form an increasing sequence 

∞<<< ...0 21 TT  of random variables.  Each time point Tn is 
assigned a real-valued random mark Vn, which is the 
additional damage caused by the n-th shock.  Let the 
marked point process be (T ,V ) = (Tn ,Vn ), n ∈ N . The 
resulting compound point process (X) is defined as 
 

 n
n

n VtTItX )()(
1

≤= ∑
∞

=

   (8) 

 
where I(Tn) is the indicator function for Tn.  Note that X(t) 
represents the accumulated damage up to time t.  The 
simplest form for X(t) is a compound Poisson process, in 
which the shock arrival time follows Poisson distribution 
and the shock amounts (Vn) are i.i.d. random variables 
(Aven and Jensen. 1999). The system lifetime T is the first 
hit time when the damage process )(tX  reaches level S. 
The level S may be constant or be a random variable.  A 
random failure level S is adopted when the observed damage 
process does not carry deterministic information about the 
system failure state (Aven and Jensen. 1999).  
 

The above process is elegantly described by the martingale 
theory as exemplified in Aven and Jensen 1999. A 
martingale is the mathematical model for a fair game with 
constant expectation function equal to zero across the time 
domain. It provides an effective and flexible mathematical 
tool for studying lifetime random processes, which is often 
properly described by a point process. A point process can 
be described by an increasing sequence of random variables, 
by a purely atomic random measure, or via corresponding 
counting process. The Poisson process is one of the simplest 
point processes with a semi-martingale representation.  
Markov chains generally have smooth semi-martingale 
(SSM) representation. A very desirable property of a 
stochastic process with SSM representation is that it can be 
decomposed into a drift or regression part and an additive 
fluctuation described by a martingale (Aven and Jensen 
1999). The latter can have an expectation of zero across 
time domain.  With respect to survival analysis, the rigorous 
mathematical theory of survival analysis can be derived 
from the counting process and its martingale models.  This 
again demonstrate that both reliability and survival analysis 
address the same or very similar mathematical problems.  
 
1.2.4. A General Failure Model.  
 
Aven and Jensen (1999) summarized a general failure 
model based on modern stochastic and Martingale theory.  
Several terms need to be defined first. 
 
Path set: A path set is a set of components whose 
functioning guarantees the functioning of the system.  
 
Smooth semimartingale (SSM): A stochastic process Z = 
Z(t) is termed SSM if it has a decomposition of the form 
 

  t
t

s MsdfZtZ ++= ∫ )()(
0

0   (9) 

 
Filtration: Let ),,( PFΩ be the probability space, where Ω  
is the sample space, F is the −σ algebra of measurable sets, 
and P is the probability measure.  The information up to 
time t is expressed by the pre-t-history Ft, which consists of 
all events in F that can be distinguished up to and including 
time t.  The filtration F ,),( +∈= RttF  is the family of 
increasing pre-t-histories that follow the standard conditions 
of completeness and right continuity.  
 
Let )()( tTItZ ≤= denote the simple indicator process and 
T be the lifetime random variable defined on the basic 
probability space ),,( PFΩ . Z is the counting process 
corresponding to the simple point process (Tn) with 

1TT = and ∞=nT for .2≥n  The paths of this indicator 
process Z are constant, but one jump from 0 to 1 at T.  
Assume that this indicator process has a smooth  
F-semimartingale representation with an F-martingale 

0MM ∈  and a nonnegative stochastic process, :)(tλλ =    
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.,)()()(
0

+∈+>=≤ ∫ RtMdsssTItTI t
t

λ   (10) 

 
The filtration F and the corresponding F-SSM 
representation of the indicator process then define a general 
lifetime model.  
 
The process λ = λ (t) , t ∈ R+ in the above SSM-
representation is termed the F-failure rate (or F-hazard rate 
process). 
   
The compensator is defined as,   
 

 dsssTItH
t

)()()(
0∫ >= λ    (11) 

 
which is also called F-hazard process. 
 
A key point in the above general model is that the failure 
rate )(tλ  is interpreted as the limit of the conditional 
expectation with respect to the pre-t-histories 
F ,),( +∈= RttF  
 

}./)|({lim)(
0

hFhtTPt th
+≤=

+>−
λ   (12) 

 
Aven and Jensen (1999) demonstrated that this general 
failure model could conveniently derive all above models 
and resolve issues such as Simpson's paradox. They 
indicated that the main advantage of the semi-martingale 
representation is the random evolution of a stochastic 
process on different information levels.  They warned that 
the monotonicity properties in general are not preserved 
when changing the observation or information level.  
 
1.3. Does reliability exists independently of  mathematical 
 modeling?  
 
Reliability, intuitively, should be the property of a physical 
system and exist independent of the mathematical theory 
adopted to measure it.  Although it is beyond the scope of 
this paper to argue whether or not mathematical objects are 
discovered or created, the answer to the question seems 
elusive even if we choose to ignore the philosophical 
argument.  Let us use some examples to make the points.  
 
Assume that there is a well-accepted definition for 
reliability such as described above.  However, depending on 
the information available to evaluate system reliability, the 
results can be different.  Simpson's paradox is a revealing 
example. As Aven and Jensen (1999) demonstrated that 
Simpson's paradox may occur in parallel systems in some 
parameter ranges, but not in series systems. They revealed 
that this has to do with the fact that the failure time of a 
parallel system consisting of components with constant 
failure rates does not follow exponential distribution and the 
system failure rate is non-monotonic. In the case of series 
construction, however, the system lifetime still follows the 

exponential distribution. This problem is called "change of 
information level" in Aven and Jensen (1999).  
Unfortunately, monotonicity is not preserved when 
changing the observation or information level. Therefore, 
even with the well-defined probability theoretic definition, 
the measurement of reliability is strongly influenced by the 
information collected, and by the assumptions made about 
the components. This implies that the mathematically 
correct models supported with rational assumptions at 
particular levels may not be sufficient to determine the 
system level reliability (Aven and Jensen 1999).     
 
1.4. Who studies reliability? 
 
Is there a difference between reliability theory and 
reliability engineering?  Researchers involved in reliability 
theory come largely from three groups. The first is pure 
mathematicians who are mostly interested in mathematical 
problems such as reliability on graphs, reliability 
polynomial, and connectivity of abstract electric networks 
(which leads to random cluster model, a field that integrates 
probability, graph theory and stochastic geometry) 
(Grimmett 2006). Reliability is an important topic in 
percolation theory, which started with the studies of 
disordered media (Grimmett 1999).  Similarly, reliability 
has been studied in random graphs (e.g., Bollobás 2001, 
Graver and Sobel 2005). Overall, the reliability studied by 
pure mathematicians is often related to connectivity of 
graph models of networks.  Although the reliability models 
of this type are rarely directly applicable in reliability 
engineering, their studies often provide deep insights to the 
second group of researchers, who are applied 
mathematicians and statisticians.  They are responsible for 
much of the formal theory like what was described above.  
The third group refers to reliability engineers whose 
engineering designs require modeling of specific engineered 
systems, which demands both the deep understanding of the 
physical system involved as well as the reliability theory 
(Aven and Jensen (1999).  As expected, there are no clear 
boundaries among the three groups. Two excellent 
monographs, among many others, show the cross-boundary 
examples: Aven and Jensen (1999) may belong to the first 
and second groups, while Meeker and Escobar (1998) may 
belong to the second and third groups.   
 
The probabilistic nature and the mission criticality of 
applications, such as heart pacemaker, space shuttle, 
commercial airplane, and large scale civil architectures such 
as bridges and dams, make reliability engineering among the 
most challenging and demanding profession.  
Understandably, the high dependability demands the 
extreme caution when transferring theory into practice.  
That may explain apparently occasional disconnection 
between reliability theory and practice, since reliability 
engineering may be hesitant to adopt untested reliability 
theory due to the huge stakes involved. This paper is an 
attempt to bring survival analysis or failure time analysis, 
largely done by mathematicians (especially bio-
mathematicians and bio-statisticians) and widely adopted as 
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the de facto standard in biomedicine fields to the attention 
of engineering reliability research.   
 
In this introduction, we briefly introduced the essential 
models in reliability theory.  The discussion of survival 
analysis actually starts in the next section.  However, it is 
necessary to note two points. (1) The major definitions in 
subsection 1.1 in reliability theory [equations (1)–(5)] are 
mathematically the same as their counterparts in survival 
analysis.  The only difference is that reliability R(t) is 
equivalent to survivor function S(t).  Therefore, we will not 
repeat these essential definitions, but they form the 
foundational definitions in survival analysis too. (2) The 
modeling strategy, especially the general failure model of 
Aven and Jensen (1999), represents the state-of-the-art of 
theoretical modeling in reliability theory, which is based on 
measure theoretic stochastic processes.  This approach is 
very similar to the formal theory of survival analysis, which 
is based on the counting stochastic process and Martingale 
central limit theorem.  We will have a brief introduction on 
this in section 2.6.  
 
The remaining of this paper presents a review of the 
essential elements of survival analysis (Section 2) and 
advantages of survival analysis over tradition reliability 
theory. In Section 3, we briefly survey and analyze the 
status of survival analysis applications in IEEE related 
engineering and computer science fields. Specifically, we 
analyze why survival analysis has been frequently 
associated with artificial neuronal networks (ANN) in 
engineering and computer science applications and its 
relationships with ANN.  The final section is a brief 
summary and perspective for its further applications in 
reliability engineering, survivability modeling, and 
computer science.  It should be noted that in this paper we 
limit the discussion of survival analysis to univariate 
survival analysis. We postpone the discussion of competing 
risks analysis and multivariate survival analysis to Ma and 
Krings (2008a, b & c).  

 
 

2. ESSENTIALS OF SURVIVAL ANALYSIS THEORY 
 
2.1. A Brief History.  
 
Survival analysis (SA), or failure time analysis, is a 
specialized field of mathematical statistics, developed to 
study a special type of random variable of positive values 
with censored observations, of which failure time or 
survival time events are the most common.  The events are 
not necessarily associated with failure or survival at all, and 
perhaps time-to-event is a better term.  Examples of time-to-
event random variables are the lifetimes of organisms, 
failure time of machine components, survival times of 
cancer patients, occurrence of the next traffic accident, or 
durations of economic recessions.  Survival or failure times 
are often used to represent time-to-event random variables.  
However, the scope and generality of time-to-event random 
variables are much broader than the "survival" or "failure" 

times in their strict literal meaning.  The generality and 
ubiquitousness of time-to-event random variables will 
become self-evident if we look into the nature of time-
dependent processes.  There are two major categories of 
observation data in studying time-dependent processes: one 
is the time-series data, which is well recognized, and the 
other is time-to-event data, which is perhaps less recognized 
but equally important and ubiquitous.  
 
A particular challenge in analyzing survival data is 
information censoring, i.e., the observation of survival times 
is often incomplete.  For example, in a medical clinical trial 
of a new drug, some individuals under observation may be 
dropped from the experiment for various reasons, ranging 
from complications from other diseases to death caused by 
accident.  This kind of censoring may be treated as random 
censoring. In other cases, the observation may be terminated 
before the process is fully developed, which leads to 
observation truncation.  One example is the information 
recorded in the black box of an airplane up to a crash.  This 
is a typical case of right censoring or truncation where the 
observation is terminated at a fixed time.  Besides random 
and right censoring, left censoring or truncation is also 
possible.  For example, the time an enemy aircraft crosses a 
border may never be known exactly and thus the radar 
detection time may be left censored.  Traditional statistics 
and reliability theory simply do not have mechanisms to 
extract the partial information from the censored 
observations.  Either including or excluding the censored 
observations from analysis will induce statistical bias, which 
could lead to incorrect inferences.  In survival analysis, 
unique mathematical models and methodologies have been 
developed to extract the partial information from the 
censored observations maximally, without inducing 
unwarranted bias, as long as censoring is not too severe.  
The ability to handle censoring in an effective manner is the 
most important and unique advantage of survival analysis.  
However, observation censoring or incomplete information 
are not necessary for the application of survival analysis. 
 
Survival analysis was initially advanced at the UC Berkeley 
in the 1960s to provide a better analysis method for Life 
Table data.  Chiang's (1960) papers expanded Kaplan & 
Meier's (1958) classic work on the survivor function.  
Aalen's (1975) established rigorous mathematical theory of 
survival analysis based on the Martingale theory and 
Counting stochastic process.  It is interesting that Aalen's 
work probably was not fully appreciated until the late 
1980s.  Fleming & Harrington (1991) and Andersen, 
Borgan, Gill & Keiding's (1995) seem to be the only 
expansion (in the form of monographs) of the theoretic 
foundation set by Aalen (1975). As expected, besides the 
monographs, there are numerous theoretic research articles, 
which we choose to skip given our discussion is largely 
application-oriented.   
 
On the statistical science frontline, the development of 
statistical procedures and models for survival analysis 
exploded in the 1970s and 1980s were mostly derived from 
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asymptotic methodology.  By the late 1980s and early 
1990s, survival analysis had established itself as the de facto 
standard statistical method in biomedical research.  In 
medical schools, survival analysis became a dominant part 
of the standard biostatistics curriculum, and survival 
analysis is almost universally adopted for data analysis in 
major medical journals such as JAMA and the New England 
Journal of Medicine. Between the publishing of the first 
version of key monographs (such as Kalbfleisch & Prentice 
1980 and Lawless 1982) to their second editions 
(Kalbfleisch & Prentice 2002 and Lawless (2003)), more 
than one dozen of monographs about survival analysis have 
been published.  Besides the classics, such as the above-
mentioned two, Cox and Oakes (1984), and Klein and 
Moeschberger (2003), two other monographs stand out: 
"Analysis of Multivariate Survival Data" by Hougaard 
(2000) and "Bayesian Survival Analysis" by Ibrahim, Chen 
& Sinha (2004).  The titles of the later two monographs 
indicate their special contributions.   
 
If asked to pick out a single fundamental model of survival 
analysis, it would be the Proportional Hazard Model 
originally proposed by D. R. Cox (1972).  The Cox 
proportional model was initially developed as an empirical 
regression model.  Furthermore, it was found that the 
empirical model captures some of the most fundamental 
properties of hazard functions and the basic framework of 
Cox's model still holds after numerous extensions (e.g., 
Therneau and Grambsch 2000).   
 
Outside of biomedical fields, survival analysis has not been 
widely adopted, not even in ecology and other non-medical 
biology fields. Industry reliability analysis was actually 
envisioned as one of the most promising fields for survival 
analysis, besides the biomedical statistics. In 1991, NATO 
organized an Advanced Research Workshop on survival 
analysis and published proceedings from the workshop 
(Klein & Goel 1992), including a section on the application 
of survival analysis in industrial reliability.  Meeker and 
Escobar (1998) published an excellent monograph, with 
strong emphasis on survival analysis approach to reliability 
modeling.  
 
Two relevant international conferences are particularly 
worthy mentioning: the first is the biannual International 
Conference on Mathematical Methods in Reliability (MMR) 
and the latest conference proceedings was published in a 
volume edited by Wilson et al. (2005). The second is the 
International Conference on Reliability and Survival 
Analysis (ICRSA), last held in 2005. It appears that no 
conference proceedings were published other than the 
abstracts posted at http://www.isid.ac.in/~statmath/smuconferences/ 
conference05/abstracts.html.   
 
In our opinion, the potential of survival analysis in 
engineering reliability has not been fully explored yet. It 
appears that the application in computer science and IEEE 
related engineering is still limited to a handful of ad hoc 
applications. For example, in a recent online search of the 

IEEE digital library, we found about 40 entries with the 
keyword survival analysis, however only about a half of 
which is the application of survival analysis in engineering 
reliability and the others are  survival analysis application in 
biomedicine or other fields. In addition, among the 40 
papers, about one-fourth is the application of artificial 
neural networks (ANN) to model fitting for survival 
analysis.  Furthermore, with the keyword competing risks 
analysis, we obtained about 20 papers, but found no paper 
with the keywords multivariate survival analysis or shared 
frailty.  The latter two fields are the areas that most of the 
new advances in survival analysis are made (which are 
discussed in Ma and Krings 2008a, b & c, and this article is 
limited to univariate survival analysis).   
 
2.2. Censoring and Statistical Models 
 
It is largely accurate to treat survival analysis as the 
statistics for lifetime data with censoring.  Information or 
observation censoring is common in failure time data and 
reliability analysis.  Censoring refers to the situations in 
which exact lifetimes are fully observed for only a portion 
of the individuals in a statistical population sample. 
Formally, an observation is right censored at C if the 
lifetime (T) is only known to be greater than or equal to C.  
Similarly, an observation is left censored if the lifetime is 
only known to be less than or equal to C (Lawless 1982, 
2003). More precise definitions can be achieved by further 
distinguishing censoring as type-I, type-II and random 
censoring, each of which can be referred to as either left or 
right censoring. For simplicity, we only discuss their 
meaning for right censoring, which is the most common in 
failure time data.  
 
Type II censoring only knows the r smallest (shortest 
lifetimes) in a random sample of n individuals )1( nr ≤≤ .  
The observation data consists of the r smallest lifetimes 

)()2()1( ... rTTT ≤ out of a random sample of n lifetimes T1, 
T2,...,Tn.  If T1, T2,...,Tn are i.i.d. and have a continuous 
distribution with pdf  f(t) and survivor function S(t), then the 
joint pdf of right censoring )()2()1( ... rTTT ≤  is:  

rn
rr tStftftf

rn
n −

−
)]()[()...()(

)!(
!

)()()2()1(  (14) 

 
With the pdf for censored sample individuals, statistical 
inference can be made based on it.  
 
In type-I censoring, observation is cut off at some pre-
specified time and an individual's lifetime will be known 
exactly only if it is less than the pre-specified value.  One 
difference between the two types of censorings is that for 
type-I the number of fully observed individuals is a random 
variable, but for the type-II it is fixed.  In a sample of n 
individuals, each individual (i) is associated with  a lifetime 
Ti and a possible fixed censoring time Ci. The Ti are 
assumed to be i.i.d. with pdf  f(t) and survivor function S(t).  
The exact lifetime Ti of an individual will be observed only 
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if Ti ≤ Ci .   When all the Ci are equal, it is called singly 
Type-I censored.  The data from type-I censoring consists of 
n pairs of random variables (ti ,δ i), where ),min( iii CTt =  
 

  iiiiii CTifCTif >=≤= 01 δδ   (15) 
The joint pdf of ),( iit δ is: 

 ii
ii CStf δδ −1)()(     (16) 

 
ti is a mixed random variable with both discrete (if 
censored) and continuous parts.  
 
If the pairs ),( iit δ are independent, the likelihood function 
is: 

 ii
i

n

i
i CStfL δδ −

=
∏= 1

1

)()(    (17) 

An observation from the above likelihood function is:  that 
each observed lifetime contributes a term f(t) and each 
censored time contributes a term S(Ci).  This observation 
has wide applicability (Lawless 2003, Kalbfleisch and 
Prentice 2002). 
 
Random censoring occurs naturally.  For example, in 
medical research, patients may be admitted into the study in 
somewhat random fashion contingent on their diagnostic 
times.   If the study is terminated at some pre-specified time, 
then the censoring times, which start from the random entry, 
points until the termination, are random. If Ci is specified 
with different distributions, each with density mass at one 
fixed point, Type-I censoring can then be treated as a special 
case of random censoring. Often the likelihood function for 
type-I can be used to approximate that of random censoring.   
 
If censorings and failure events are dependent, although it 
might be difficult to write down a model that represent the 
process, the above likelihood function structure still largely 
holds (Lawless 2003, Kalbfleisch and Prentice 2002). The 
above discussion of censoring is simplified greatly to 
highlight the principles of censoring and lifetime 
observations. The study of the failure-censoring pair random 
variables influences nearly every aspect of survival analysis.  
 
2.3. Modeling Survivability with Random Censoring  
 
From the discussion of censoring in the previous section, in 
particular the random censoring mechanism, we propose to 
use the random censoring mechanism to describe the 
unpredictable events such as malicious intrusions in the 
modeling of network survivability.  A comparative analysis 
of random censoring and malicious intrusions to computer 
networks (or any survivable systems) will support our 
arguments.  The most significant similarity is that both 
random censoring and malicious intrusions are 
unpredictable.  In other words, we generally do not even 
know the probability that the event may happen.  
Specifically, the striking time of malicious act can be 
considered largely random but the event is only describable 

after it occurs.  Therefore, the striking times can be treated 
as the censoring events. Similarly, in a clinical trial of 
biomedicine, censoring should be unpredictable, otherwise 
the experiment is biased.   Furthermore, by introducing 
different levels of censoring (e.g., percentage of censored 
individuals), one can simulate the effects of the strike 
intensity on the survivor function.  If one defines 
survivability as a threshold of reliability breakdown (e.g., 
survivor function crosses some threshold value), then this 
kind of simulation can produce very important insights.  
 
2.4. Survival Distribution Models—Parametric Models 
 
As we have mentioned previously, the basic definitions of 
survival analysis, such as hazard rate (failure rate), 
cumulative hazard function, probability density function, 
distribution functions are exactly the same as those in 
reliability theory introduced in Subsection 1.1 [Equations 
(1)–(5)]. The only difference is the terminology, i.e. 
survivor function vs. reliability, but both have exactly the 
same mathematical definitions. However, beyond the 
similarity at the definition level the two fields diverged 
significantly.  Through the remainder of this paper, the 
major concepts and models are drawn from the survival 
analysis literature.   
 
The following three concepts exist in both fields; however, 
there are slight differences in their formulations: mean 
residual lifetime, median lifetime, and p-th quantile (also 
known as the 100p-th percentile).  
 
The mean residual life (mrl) is the expected remaining 
lifetime for an individual of age t and is defined as 
mrl (t) = E(T − t |T > t).  It can be proved that the following 
equation holds.  
  

)(

)(

)(

)()(
)(

tS

dxxS

tS

dxxftT
tmrl tt ∫∫

∞∞

=
−

=  (18) 

 
The mrl is the area under the survival curve to the right of t 
divided by S(t).  In contrast, the mean lifetime, equivalent to 
the "mean time to failure" (MTTF) in reliability theory, is 
the total area under the survival curve  
 

MTTF = E(T ) = tf (t)dt = S(t)dt
0

∞∫0

∞∫ .       (19) 

 
The variance of T is related to the survival function by 
 

2

0 0
)()(2)( ∫ ∫

∞ ∞

⎥⎦
⎤

⎢⎣
⎡−= dttSdtttSTVar    (20) 

 
The p-th quantile of the distribution of T is the smallest tp 
such that, 
 

}.1)(:inf{.,.,1)( ptStteiptS pp −≤=−≤   (21) 
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If T is a continuous random variable, then the p-th quantile 
can be found by solving ptS p −=1)( . 
 
The median lifetime (mlt) is the 50-th percentile t0.5 of the 
distribution of T and is obtained by solving the following 
equation: S(t p ) = 1− 0.5 = 0.5. 
    
Since failure time (or lifetime) is simply a non-negative 
random variable, the most natural approach is to study its 
probability distributions. Again, the probability distributions 
used in both reliability and survival analysis are often the 
same.  The most commonly used distributions include: 
exponential, Weibull, extreme value distribution, gamma 
distribution, log-gamma, lognormal, generalized gamma, 
logistic, log-logistic, and inverse Gaussian.  Distribution 
models discussed in this section are referred to as parametric 
models in the literature.   
  
We will look at two examples, exponential distribution and 
Weibull distribution.  The exponential distribution can serve 
as the baseline for more complex models, given its constant 
failure rate 

0,0)( >≥= λλ tth        (22) 
with pdf 

  f (t) = λe −λ t.    (23) 
 
The survivor function is 

  tetS λ−=)(    (24) 
 
and the mean and variances are λθ /1=  and 2θ , 
respectively.   
 
Whenθ = λ = 1, it is termed standard exponential 
distribution.  In addition, exponential distribution is special 
cases of both the Weibull and gamma distributions.  
 
The Weibull distribution is perhaps the most widely used 
lifetime distribution.  Its hazard rate is: 
 

 1)()( −= βλλβ tth     (25) 
 
where λ > 0 and β > 0are parameters.  When β = 1, 
Weibull distribution becomes exponential distribution.  Its 
pdf and survivor functions are: 

       0])(exp[)()( 1 >−= − ttttf ββ λλλβ   (26) 
           S(t) = exp[(−λt)β ] t > 0.  (27) 

 
The hazard function of Weibull distribution is monotonic 
increasing if ,1>β  decreasing if ,1<β  and constant for 

,1=β  β is therefore termed shape parameter. The λ  is 
called scale parameter.  
 
Weibull distribution can be derived from uniform 
distribution U in the interval [0, 1] conveniently,   
 

  ./]))ln([( /1 λβUT −=   (28) 
 
This formula can be used for Monte Carlo simulation of 
Weibull distribution.  
 
There is also a three-parameter version Weibull distribution 
by replacing the variable t with (t–u), where u is called 
location parameter.  
 
The following two distributions are with bathtub-shaped 
hazards functions: 

 t
t

th δ
γ

β
+

+
=)(    (29) 

 

 .exp)(
1 ββ

ααα
β

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

− ttth   

 (30) 
 
Klein and Moeschberger (2003) summarized a near 
exhaustive list of distributions used in survival analysis. The 
distribution models described above are for continuous 
failure time data.  Any of the continuous failure time models 
can be used to generate a discrete model by introducing 
grouping on the time axis (Kalbfleisch and Prentice 1980, 
2002, Klein and Moeschberger (2003).  
 
The estimation and comparison of survival function S(t), 
which is equivalent to the reliability R(t) in reliability 
theory, with the above distribution models form a 
significant part of the early development  of  survival 
analysis.  Estimating survival function or fitting lifetime 
data to survival distributions was the earliest endeavor in 
this field.  Three approaches stand out: the Kaplan-Meier 
estimator for survivor function (Kaplan and Meier 1958), 
Chiang's (1960) life table approach, and the Nelson-Aalen 
estimator for cumulative hazard functions (Nelson 1969).  
The life table approach is particularly important in 
population demography and actuarial study.  To compare 
the survival functions, several statistics have been devised 
or extended from classical statistics to censored data, such 
as the Wilcoxon test, Savage log-rank test, and the Kruskal-
Wallis test (Kalbfleisch and Prentice 1980, 2002).  In recent 
years, great progress has been made in improving the 
estimations and comparisons of survivor functions, such as 
the integration of Bayesian approach and Markov Chain 
Monte Carlo (MCMC) simulation, and kernel-smoothed 
estimation. One can refer to Klein and Moeschberger (2003) 
for comprehensive details.   
 
2.5.  Covariates Regression Models: Proportional Hazards 
  Models and Accelerated Failure Time Models   
 
The previous section focused on using probability 
distributions to model survival of a homogenous population. 
Translated into the reliability field, a homogenous 
population implies that devices experience exactly the same 
environmental covariates, and the covariates are not 
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correlated to failure times.  For example, this would imply 
that operation environment parameters such as temperature 
have no effects on the failure rates of devices.  The 
covariates regression approach introduced in this section 
eliminate this restriction.  The basic problem can be formed 
as follows: given survival time T > 0, a vector 

),...,( 21 szzzz = of covariates that may influence T is 
observed.  Furthermore, the vector z itself can also be time 
dependent and may include both quantitative and qualitative 
indicative variables. In this approach, Cox's (1972) 
proportional hazards model was initially treated as largely 
an empirical regression model, but later it was found that the 
framework of the model possesses exceeding flexibility to 
capture major hazards effects and failure mechanisms.  The 
Cox model has been extended numerously and it forms the 
foundation for the covariates regression approach (Therneau 
and Grambsch 2000).  
 
There are two ways to construct covariates regression 
models. The first is to extend survivor distributions such as 
the exponential and Weibull distribution, and this approach 
forms so-called mixture models. The second approach has 
no assumptions on the survival distribution, also called 
distribution-free approach, which is the approach adopted 
by Cox (1972, 1975). We briefly introduce the first 
approach by using exponential and Weibull distributions as 
examples. The approach can be extended to other 
distributions, including discrete distributions (Kalbfleisch 
and Prentice 1980, 2002).  
 
2.5.1. Distribution-Dependent Regression Models:  
  Parametric Regression Models 
 
With exponential distribution, the hazard rate λ is constant.  
The hazard rate at time t for an individual with covariates z 
can be written as 
 

  λ (t; z) = λ (z),   (31) 
 
i.e, the hazard for a given vector z is constant; however, it 
varies with covariates z.  The λ(z) may be modeled in many 
ways.  In the simplest case it assumes a linear relationship, 

,βz and thus 
  λ (t; z) = λg(zβ),    (32) 

 
where β  is the vector of regression coefficients for vector  
z, and βz  is the inner product of the two vectors.  Here g is 
a function form, for example,  
 

  g(x) = exp(x).   (33)  
 
With g(.) taking on an exponential form — the exponential 
distribution models under covariates (z) — the hazard 
function is 

λ (t; z) = λ exp[(zβ)].   (34) 
 
The conditional pdf of T, given z, is 
 

 f (t,z) = λezβ exp(−λtezβ ).  (35) 
 
The above hazard function implies that the log failure rate is 
a linear function of covariates z. Let Y = ln(T ) ,  α = − ln(λ), 
and W be a random variable with extreme value distribution, 
the log of the exponential failure time (T) under covariates z 
can be expressed as 
 

 Y = α − zβ +W .    (36) 
 
This is a log-linear model with many nice properties.  
 
Similar to the previous extension, Weibull distribution can 
be extended with covariates regression.  The conditional 
hazard for Weibull distribution is 
 

 λ (t; z) = λβ (λt)β −1ezγ .     (37) 
 
where γ  represent the covariate regression vector to avoid 
the confusion with the parameter β  of Weibull distribution.  
The conditional pdf for Weibull distribution is then: 
 

])(exp[)();( 1 γβγβ λλλβ zz etetztf −= −          (38) 
 
The effects of covariates also act multiplicatively on the 
hazard in the Weibull distribution.  In terms of the log 
failure time, the above conditional hazard function specifies 
the log-linear model. With Y = ln(T ) , α = − ln(λ), 

,/1 βσ =  and ,* σγγ −=  we get the log-linear Weibull  
model 

  WzY σγα ++= *   (39) 
 
where W follows the extreme value distribution.  The above 
extensions of exponential and Weibull distributions 
demonstrate two important properties (Lawless 2003, 
Kalbfleisch and Prentice 2002). First, the effects of 
covariates act multiplicatively on the hazard function.  This 
general relationship inspired the general proportional 
hazards model.  Second, the log-linear models suggest that 
the covariates act additively on the log failure time.  This 
inspired the development of the accelerated failure time 
model.  Both models are described briefly below.  
 
2.5.2. Distribution-Free Regression Models:  
  Semi-parametric Regression Models. 
 
The next two subsections introduce two of the most 
important survival analysis models.  They do not assume 
any specific statistical distributions, and are therefore called 
distribution-free or semi-parametric approaches.  Both 
models have been extended numerously.  The Cox 
proportional hazard model is probably the most influential 
one in the entire survival analysis subject. 
 
Cox's Proportional Hazards Model (PHM) — Let λ (t; z) be 
the hazard function at time t for an individual with 
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covariates z.  The proportional hazards model (PHM), first 
proposed by Cox (1972, 1975), is 
 

  λ (t; z) = λ0 (t)ezβ  ,  (40) 
 

where λ0 (t)  is an arbitrary unspecified base-line hazard 
function for continuous failure time T.  In the PHM, the 
covariates act multiplicatively on the hazard function.  By 
substituting λ0 (t)  with the corresponding hazard function 
for exponential or Weibull distributions, the previous 
distribution-dependent models for exponential or Weibull 
distribution can be derived as special cases.  
 
The conditional pdf of T, given z, corresponding to the 
general hazard function );( ztλ  is 
 

.)(exp)();(
0

00 ⎥⎦
⎤

⎢⎣
⎡−= ∫

tzz duueetztf λλ ββ             (41) 

 
The conditional survival function for T under z is 
 

 S(t; z) = [S0 (t)]exp(zβ ),   (42) 
 
where   

.)(exp)(
0

00 ⎥⎦
⎤

⎢⎣
⎡−= ∫

t
duutS λ    (43) 

 
The allowance of an arbitrary λ0 (t)  makes the model 
sufficiently flexible for many applications.  
 
Extensions of Cox's Proportional Hazards Model 
(PHM)—There are numerous extensions to Cox's PHM 
(Therneau and Grambsch 2000). Among those extensions, 
two of the extensions: strata and time-dependent covariates 
are particularly important, but do not substantially 
complicate the parameters estimation (Kalbfleisch and 
Prentice 2002, Lawless 2003).  
 
Suppose there is a factor that occurs on q levels and for 
which the proportionality assumption of PHM may be 
violated.  The hazard function for an individual in the j-th 
stratum or level of this factor is 
 

 )exp()(),( 0 βλλ ztzt jj =    (44) 
for j = 1,2,...q,where z is the vector of covariates for PHM.  
The baseline hazard functions, λ01(.),...,λ0q (.)  for the q 
strata are permitted to be arbitrary and are completely 
unrelated.  The direct product of the group (stratum) 
likelihood can be utilized to estimate the common parameter 
vector, .β   Once the parameter β  is estimated, the survivor 
function for each stratum can be estimated separately.   
 
The second generalization to the proportional hazards model 
is to let the variable z depend on time itself.  For un-
stratified PHM, the hazard function is 

 ])(exp[)()](;[ 0 βλλ tzttzt =   (45)  
 
and for stratified PHM it is 
 
 ])(exp[)()](;[ 0 βλλ tzttzt jj =     ....,,2,1 rj =     (46)  
 
The procedure used to estimate the β is to maximize the so-
called partial likelihood functions as described by Cox 
(1975) and Kalbfleisch & Prentice (1980, 2002).   
 
Time-dependent covariates may be classified into two broad 
categories: external and internal (Kalbfleisch and Prentice 
2002, Lawless 2003, Klein and Moeschberger. 2003). The 
failure mechanism does not directly involve external 
covariates. External covariates may be distinguished into (1) 
fixed (measured in advance and fixed during the 
observation), (2) defined (determined in advance but not 
fixed, for example, controlled stress levels), and (3) 
ancillary (output of a stochastic process external to an 
observed object).  An internal covariate is attached to the 
individual, and its existence depends on the survival of the 
individual. It is the output of a stochastic process that is 
induced by the individual under study.  The process is only  
observable if the individual survives and is uncensored.  
 
The Accelerated Failure Time (AFT) model—The PHM 
represents the multiplicative influences of covariates (z) on 
the hazard.  However, without specific ),(0 tλ   this model 
does not tell how z affects failure time itself. The previous 
log-linear models for T answer this question.  
 
Suppose that Y = ln(T ) is related to the covariance z in a 
linear model,  

  Y = α + zβ +σW ,   (47) 
 
where α  is a constant or intercept parameter, z is a vector of 
covariates, β  is a vector of parameters to be estimated, σ is 
a scale parameter which is the reciprocal of the shape 
parameter, and W is a random variable with a specified 
distribution.  Many distributions, including the Weibull, 
exponential, log-normal, and log-logistic, can be used to 
describe W.    
 
Exponentiation of Y gives  

  ')exp( TzT βα +=   (48)  
where 0)exp(' >= WT σ  has a hazard function λ0 (t' )  that is 
independent of β .  It follows that the hazard function for T 
can be written in terms of this baseline hazard (.)0λ as 
 

 )exp()]exp([);( 0 βαβαλλ zztzt −−=  (49) 
 
The survival function is 
 

S(t; z) = exp − λ0 (u)du
0

t exp(α−zβ )∫⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥             (50) 

and the pdf is the product of );( ztλ and S(t; z).    
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This model specifies that covariates act multiplicatively on 
time (t), rather than on the hazard function.  That is, we 
assume a baseline hazard function to exist and that the 
effects of the covariates are to alter the rate at which an 
individual proceeds along the time axis.  In other words, the 
covariates z accelerates or decelerates the time to failure 
(Kalbfleisch and Prentice 2002, Lawless 2003).  
 
It should be pointed out that the distribution-based 
regression models for exponential and Weibull distributions 
in the previous section are the special cases of both PHM 
and AFT.  This correspondence is not necessarily true for 
models based on other distributions. Indeed, two-parameter 
Weibull distribution has the unique property that it is closed 
under both multiplication of failure time and multiplication 
of the hazard function by an arbitrary nonzero constant 
(Lawless 2003, Kalbfleisch & Prentice 2002, Klein & 
Moeschberger 2003).  
 
2.6. Counting Process and Survival Analysis  
 
In the previous sections, we introduced censoring and 
survival analysis models that can handle the censored 
information; however, we did not discuss how the censored 
information is processed.  Accommodating and maximally 
utilizing the partial information from the censored 
observations is the most challenging and also the most 
rewarding task in survival analysis.  This also establishes 
survival analysis as a unique field in mathematical statistics.  
Early statistical inferences for censored data in survival 
analysis were dependent on asymptotic likelihood theory 
(Severini 2000). Cox (1972, 1975) proposed partial 
likelihood as an extension to classical maximum likelihood 
estimation in the context of his proportional hazards model 
as a major contribution. Asymptotic likelihood has been and 
still is the dominant theory for developing survival analysis 
inference and hypothesis testing methods (Klein and 
Moeschberger 2003, Severini 2000). There are many 
monographs and textbooks of survival analysis containing 
sufficient details for applying survival analysis (Cox and 
Oakes 1984, Kalbfleisch and Prentice 1980, 2002, Lawless 
1982, 2003, Klein and Moeschberger, 2003). A problem 
with traditional asymptotic likelihood theory is that the 
resulting procedures can become very complicated when 
handling more complex censoring mechanisms (Klein & 
Moeschberger 2003). A more elegant but requiring rigorous 
measure-theoretic probability theory is the approach with 
counting stochastic processes and the Martingale central 
limit theorems.  Indeed, this approach was used by Aalen 
(1975) to set the rigorous mathematical foundation for 
survival analysis, and later further developed and 
summarized by Fleming and Harrington (1991), Andersen et 
al. (1993) and several research papers.  In reliability theory, 
Aven and Jensen (1999) demonstrated such an approach by 
developing a general failure model, which we briefly 
introduced in Section 1.2. However, the counting process 
and Martingale approach require measure theoretic 
treatments of probability and stochastic processes, which is 
often not used in engineering or applied statistics.  A 

detailed introduction of the topic is obviously beyond the 
scope of this paper, and we only present a brief sketch of the 
most important concepts involved.  Readers are referred to 
the excellent monographs by Andersen et al. (1993), 
Fleming and Harrington (1991), Aven and Jensen (1999) for 
comprehensive details, and Kalbfleisch and Prentice (2002), 
Klein and Moeschberger (2003), Lawless (2003) for more 
application–oriented treatments.  The following discussion 
on this topic is drawn from Klein and Moeschberger (2003).  
 
A counting stochastic process N(t), t ≥ 0, possesses the  
properties that N(0) is zero and N (t) < ∞  with probability 
one. The sample paths of N(t) are right continuous and 
piecewise constant with jumps of size 1 (step function).  In a 
right-censored sample, (we assume only right censoring in 
this section), the processes, N i (t) = I[Ti ≤ t,δ i = 1], which 
keep the value 0 until individual i fails and then jump to 1, 
are counting processes. The accumulation of Ni(t) process, 

)()(
1

tNtN
n

i i∑ =
= , is again a counting process, which counts 

the number of failures in the sample at or before time t.     
 
The counting process keeps track of the information on the 
occurrences of events,   for instance, the history information 
such as which individual was censored prior to time t and 
which individual died at or prior to time t, as well as the 
covariates information. This accumulated history 
information of the counting process at time t is termed 
filtration at time t, denoted by Ft.  For a given problem, Ft 
rests on the observer of the counting process.  Thus, two 
observers with different recordings at different times will 
get different filtrations.  This is what Aven and Jensen 
(1999) referred to as "different information levels", or the 
amount of actual available information about the state of a 
system may vary.   
  
If the failure times Xi and censoring times Ci are 
independent,  then the probability of an event occurs at time 
t, given the history just prior to t, (Ft-), can be expressed as: 
   

tTifdtthtCtXdttCdttXtP
FdttTtP

iiiiiir

tiir

≥=≥≥+>+≤≤=
=+≤≤ −

)(],|,[
]|1,[ δ

 
     tTifFdttTtP itiir <==+≤≤ − 0]|1,[ δ   (51) 

 
Let dN(t)  be the change in the process N(t) over a short time 
interval ).,[ ttt Δ+  Ignoring the negligible chance of ties, 

1)( =tdN  if a failure occurred and 0)( =tdN  otherwise.  
 
Let Y(t) denote the number of individuals with an 
observation time Ti ≥ t .  Then the conditional expectation 
of dN(t) is: 
 

dtthtYFdttCdttXt
withnsobservatioofnumberEFtdNE

tiii

t

)()(]|,
[]|)([

=+>+≤≤
=

−

−  (52) 
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The process λ (t) = Y (t)h(t)  is called the intensity process 
of the counting process.  It is a stochastic process that is 
determined by the information contained in the history 
process, Ft, via Y(t).  Note that Y(t) is the process that 
records the number of individuals experiencing the risk at a 
given time t.   
 
As it will become clear that )(tλ  is equivalent to the failure 
rate or hazard function in traditional reliability theory, but 
here it is treated as a stochastic process, the most general 
form one can assume for it. It is this generalization that 
encapsulates the power that counting stochastic process 
approach can offer to survival analysis.  
 
Let the cumulative intensity process H(t) be defined as: 
 

 ∫ ≥=
t

tdsstH
0

0,)()( λ    (53) 

 
It has the property that  
 

E[N (t) | Ft− ] = E[H (t) | Ft− ] = H (t) .           (54) 
 
This implies that filtration, Ft-, is known, the value of Y(t) is 
fixed and H(t) becomes deterministic. H(t)  is equivalent to 
the cumulative hazards in traditional reliability theory.  
 
A stochastic process with the property that its expectation at 
time t, given history at time s < t, is equal to its value at s, is 
called a martingale. That is, M(t) is a martingale if  
 

 .),(]|)([ tssMFtME s <∀=   (55) 
 
It can be verified that the stochastic process  
 

 )()()( tHtNtM −=    (56) 
 
is a martingale, and it is called the counting process 
martingale. The increments of the counting process 
martingale have an expected value of zero, given its 
filtration Ft-. That is,  

  0]|)([ =−tFtdME .   (57) 
The first part of the counting process martingale [Equation 
(56)] N(t) is a non-decreasing step function.  The second 
part H(t) is a smooth process which is predictable in that its 
value at time t is fixed just prior to time t. It is known as the 
compensator of the counting process and is a random 
function. Therefore, the martingale can be considered as 
mean-zero noise and that is obtainable when one subtracts 
the smoothly varying compensator from the counting 
process.  
 
Another key component in the counting process and 
martingale theory for survival analysis is the notion of the 
predictable variation process of M(t), denoted by ).(tM  It 

is defined as the compensator of process ).(2 tM   

The term predictable variation process comes from the 
property that, for a martingale M(t), it can be verified that 
the conditional variance of the increments of M(t) [i.e., 
dM(t)] equals the increments of ).(tM   That is,  
 

 )(]|)([ tMdFtdMVar t =− .  (58) 
 
To obtain ]|)([ −tFtdMVar , one needs the random variable 
N(t), which is a zero-one random variable with probability 

)(tλ  of having a jump of size 1 at time t.  The variance of 
N(t) is λ (t) [1- λ (t) ] since it follows binomial distribution.  
Ignoring the ties in the censored data, λ2 (t) is close to zero 
and Var[dM (t) | Ft− ]= λ (t) = Y (t)h(t).   This implies that  
the counting process N(t), conditional on the filtration Ft-, 
behaves like a Poisson process with rate λ (t).   
 
Why do we need to convert the previous very intuitive 
concepts in survival analysis into more abstract martingales?  
The key is that many of the statistics in survival analysis can 
be derived as the stochastic integrals of the basic 
martingales described above. The stochastic integral 
equations are mathematically well structured and some 
standard mathematical techniques for studying them can be 
adopted. 
 
Here, let )(tK be a predictable process. An example of a 
predictable process is the process ).(tY  Over the interval 0 
to t, the stochastic integral of such a process, with respect to 

a martingale, is denoted by )()(
0

udMuK
t

∫ . It turns out that 

such stochastic integrals themselves are martingales as a 
function of t ,  and their predictable variation process can be 
found from the predictable variation process of the original 
martingale by   

 )()()()(
0

2

0
uMduKudMuK

tt

∫∫ = . (59)  

The above discussion was drawn from Klein and 
Moeschberger (2003).   They also provide examples of how 
the above process is applied. In the following, we briefly 
introduce one of their examples — the derivation of the 
Nelson-Aalen cumulative hazard estimator.  
 
First, the model is formulated as: 
 

 )()()()( tdMdtthtYtdN +=   (60) 
 
If )(tY is non-zero, then  
 

 
)(
)()()(

)(
)(

tY
tdMtdth

tY
tdN

+=    (61) 

 
Let )(tI be the indicator of whether )(tY   is positive and 
define 0/0 = 0, then integrating both sides of above (61), 
One get 
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The left side integral is the Nelson-Aalen estimator of H(t). 
 

 )(
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uItH

t

∫=    (63) 

 
The second integral on the right side,   
 

  )(
)(
)()(

0
udM

uY
uItW

t

∫=    (64) 

 
is the stochastic integral of the predictable process 

)(/)( uYuI with respect to a martingale, and hence is also a 
martingale.  
 
The first integral on the right side is a random quantity 

)(* tH  

 ∫=
t

duuhuItH
0

* )()()(    (65) 

 
For right-censored data it is equal to )(tH   in the data 
range, if the stochastic uncertainty in the )(tW is negligible.  

Therefore, the statistic )(
~

tH is a nonparametric estimator of 

the random quantity ).(* tH  
 
We would like to mention one more advantage of the new 
approach, that is, the martingale central limit theorem.  The 
central limit theorem of martingales ensures certain 
convergence property and allows the derivations of 
confidence intervals for many statistics.  In summary, most 
of the statistics developed with asymptotic likelihood theory 
in survival analysis can be derived as the stochastic integrals 
of some martingale.  The large sample properties of the 
statistics can be found by using the predictable variation 
process and martingale central limit theorem (Klein and 
Moeschberger (2003).  
 
2.7. Bayesian Survival Analysis 
 
Like many other fields of statistics, survival analysis has 
also witnessed the rapid expansion of the Bayesian 
paradigm.  The introduction of the full-scale Bayesian 
paradigm is relative recent and occurred in the last decade, 
however, the "invasion" has been thorough.  Until the recent 
publication of a monograph by Ibrahim, Chen and Sinhaet 
(2005), Bayesian survival analysis has been either missing 
or occupy at most one chapter in most survival analysis 
monographs and textbooks.  Ibrahim's et al. (2005) changed 
the landscape, with their comprehensive discussion of 
nearly every counterparts of frequentist survival analysis, 
from univariate to multivariate, from nonparametric, semi-

parametric to parametric models, from proportional to non-
proportional hazards models, as well as the joint model of 
longitudinal and survival data.  It should be pointed out that 
Bayesian survival analysis has been studied for quite a while 
and can be traced back at least to the 1970s.   
 
A natural but fair question is what advantages the Bayesian 
approach can offer over the established frequentist survival 
analysis. Ibrahim et al. (2005) identified two key 
advantages. First, survival models are generally very 
difficult to fit, due to the complex likelihood functions to 
accommodate censoring.  A Bayesian approach may help by 
using the MCMC techniques and there is available software, 
e.g., BUGS.  Second, the Bayesian paradigm can 
incorporate prior information in a natural way by using 
historical information, e.g., from clinical trials. The 
following discussion in this subsection draws from 
Ibrahim's et al. (2005).  
 
The Bayesian paradigm is based on specifying a probability 
model for the observed data, given a vector of unknown 
parameters θ .  This leads to likelihood function L(θ | D).   
Unlike in traditional statistics, θ  is treated as random and 
has a prior distribution denoted by ).(θπ  Inference 
concerning θ  is then based on the posterior distribution, 
which can be computed by Bayes theorem  

∫Θ

=
ϑθπϑ

θπϑ
θπ

dDL

DLD
)()|(

)()|()|( ,     (66) 

where Θ  is the parameter space.   
 
The term )|( Dθπ  is proportional to the likelihood )|( DL θ , 
which is the information from observed data, multiplied by 
the prior, which is quantified by π (θ ) , i.e., 
 )()|()|( θπθθπ DLD ∝ .   (67) 
The denominator integral, m(D), is the normalizing constant 
of )|( Dθπ  and often does not have an analytic closed form. 
Therefore, )|( Dθπ  often has to be computed numerically.  
The Gibbs sampler or other MCMC algorithms can be used 
to sample )|( Dθπ  without knowing the normalizing 
constant m(D).  There exist large amount of literature for 
solving the computational problems of m(D) and )|( Dθπ .  
 
Given that the general Bayesian algorithms for computing 
the posterior distributions should equally apply to Bayesian 
survival analysis, the specification or elicitation of 
informative prior needs much of the attention.  In survival 
analysis with covariates such as Cox's proportional hazards 
model, the most popular choice of informative prior is the 
normal prior, and the most popular choice for non-
informative is the uniform.  Non-informative prior is easy to 
use but they cannot be used in all applications, such as 
model selection or model comparison. Moreover, non-
informative prior does not harness the real prior 
information. Therefore, research for informative prior 
specification is crucial for Bayesian survival analysis.  
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Reliability estimation is influenced by the level of 
information available such as information on components or 
sub-systems. Bayesians approach is likely to provide such 
flexibility to accommodate various levels of information. 
Graves and Hamada (2005) introduced the YADAS, a 
statistical modeling environment that implements the 
Bayesian hierarchical modeling via MCMC computation.  
They showed the applications of YADES in reliability 
modeling and its flexibility in processing hierarchical 
information. Although this environment seems not designed 
with Bayesian survival analysis, similar package may be the 
direction if Bayesian survival analysis is applied to 
reliability modeling.   
 
2.8. Spatial Survival Analysis 
 
To the best of our knowledge, spatial survival analysis is an 
uncharted area, and there has been no spatial survival 
analysis reported with rigorous mathematical treatment.  
There are some applications of survival analysis to spatial 
data; however, they do not address the spatial process, 
which in our opinion should be the essential aspect of any 
spatial survival analysis. To develop formal spatial survival 
analysis, one has to define the spatial process first.   
 
Recall, for survival analysis in the time domain, there is 
survival function 
 

 +∈>= RttTtS ),Pr()( ,   (68) 
 
where T is the random variable and S(t) is the cumulative 
probability that the lifetime will exceed time t.  In spatial 
domain, what is the counterpart of t? One may wonder why 
do not we simply define the survival function in the spatial 
domain as  
 

 S(s) = Pr(S > s),s ∈ Rd , R > 0,  (69) 
 
where s is some metric for d-dimensional space Rd, and the 
space is restricted to the positive region.  S is the "space to 
event" measurement, e.g., the distance from some origin 
where we detect some point object.  The problem is that the 
metric itself is an attribute of space, rather than space itself.  
Therefore, it appears to us that the basic entity for studying 
the space domain has to be broader than in the time domain.  
This is probably why spatial process seems to be a more 
appropriate entity for studying.  
 
The following is a summary of descriptions of spatial 
processes and patterns, which intends to show the 
complexity of the issues involved.  It is not an attempt to 
define the similar survival function in spatial domain 
because we certainly understand the huge complexity 
involved. There are several monographs discussing the 
spatial process and patterns (Schabenberger and Gotway 
2005).  The following discussion heavily draws from 
Cressie (1993) and Schabenberger and Gotway (2005).  
 

It appears that the most widely adopted definition for spatial 
process is proposed in Cressie (1993), which defines a 
spatial process Z(s) in d-dimensions as 
 

  { Z (s) :s∈ D ⊂ Rd }    (70) 
 
Here, Z(s) denotes the attributes we observe, which are 
space dependent. When d = 2 the space (R2) is a plane.  
 
The problem is how to define randomness in this process?  
According to Schabenberger and Gotway (2005), Z(s) can 
be thought of as located (indexed) by spatial coordinates 
s = [s1,s2,...,sn ],  the counterpart of time series Y(t),  t = t1, 
t2, ...,tn, indexed by time.  The spatial process is often called 
random field.   
 
To be more explicit, we denote Z(s) as Z (s,ω)  to emphasize 
that Z is the outcome of a random experiment ω.  A 
particular realization of ω  produces a surface ).,( ωsZ   
Because the surface from which the samples are drawn is 
the result of the random experiment, Z(s) is also called a 
random function.  
 
One might ask what is a random experiment like in a spatial 
domain? Schabenberger and Gotway (2005) offered an 
imaginary example briefly described below.  Imagine 
pouring sand from a bucket onto a desktop surface, and one 
is interested in measuring the depth of the poured sand at 
various locations, denoted as Z(s).  The sand distributes on 
the surface according to the laws of physics.  With enough 
resources and patience, one can develop a deterministic 
model to predict exactly how the sand grains are distributed 
on the desktop surface.  This is the same argument used to 
determine the head-tail coin flipping experiment, which is 
well accepted in statistical science. The probabilistic coin-
flip model is more parsimonious than the deterministic 
model that rests on the exact (perfect) but hardly feasible 
representation of a coin's physics. Similarly, 
deterministically modeling the placement of sand grains is 
equally daunting.  However, the issue here is not placement 
of sand as a random event, as Schabenberger and Gotway 
(2005) emphasized.  The issue is that the sand was poured 
only once, regardless how many locations one measures the 
depth of the sand.  With that setting, the challenge is how do 
we define and compute the expectation of the random 
function Z(s)?  Would E[Z (s)] = μ (s) make sense? 
 
Schabenberger and Gotway (2005) further raised the 
questions: (1) to what distribution is the expectation being 
computed? (2) if the random experiment of sand pouring 
can only be counted once, how can the expectation be the 
long-term average?  
 
According to the definition of expectation in traditional 
statistics, one should repeat the process of sand pouring 
many times and consider the probability distributions of all 
surfaces generated from the repetitions to compute the 
expectation of Z(s). This complication is much more serious 
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than what we may often realize. Especially, in practice, 
many spatial data is obtained from one time space sample 
only. There is not any independent replication in the sense 
of observing several independent realizations of the spatial 
process (Schabenberger and Gotway 2005).   
 
How is the enormous complexity in spatial statistics 
currently dealt with? The most commonly used 
simplification, which has also been vigorously criticized, is 
the stationarity assumption.  Opponents claim that 
stationarity often leads to erroneous inferences and 
conclusions.  Proponents counter-argue that little progress 
can be made in the study of non-stationary process, without 
a good understanding of the stationary issues 
(Schabenberger and Gotway 2005).  
 
The strict stationarity is a random field whose spatial 
distribution is invariant under translation of the 
coordination.  In other words, the process repeats itself 
throughout its domain (Schabenberger and Gotway 2005).   
There is also a second-order (or weak) stationarity of a 
random field.  
 
For random fields in the spatial domain, the model of 
Equation (70), i.e., { Z (s) :s∈ D ⊂ Rd } , is still too general 
to allow statistical inference.  It can be decomposed into 
several sub-processes (Cressie 1993): 

 
 ),()()()()( sssWssZ εημ +++=   Ds ∈ ,         (71) 

 
where μ (s) ≡ E[Z (.)] is a deterministic mean structure called 
large-scale variation.  W(s) is the zero-mean intrinsically 
stationary process, (with second order derivative), and it is 
called smooth small-scale variation.  )(sη  is the zero-mean 
stationary process independent of W(s) and is called 
microscale variation.  ε(s)  is zero-mean white noise, also 
called measurement error. This decomposition is not unique, 
and is largely operational in nature (Cressie 1993).  The 
main task of a spatial algorithm is to determine the 
allocations of the large, small, and microscale components.  
However, the form of the above equation is fixed (Cressie 
(1993), implying that it is not appropriate to sub-divide one 
or more of the items. Therefore, the key issue here is to 
obtain the deterministic μ(s) , but in practice, especially with 
limited data, it is usually very difficult to get a unique μ (s) .   
Alternative to the spatial domain decomposition approach, 
the frequency domain methods or spectral analysis used in 
time series analysis can also be used in spatial statistics.  
Again, one may refer to Schabenberger and Gotway (2005).  
 
So, what are the implications of the general discussion on 
spatial process above to spatial survival analysis?  One point 
is clear, Equation (69), S(s) = Pr(S > s) , s ∈ Rd  is simply 
too naive to be meaningful.  There seem, at least, four 
fundamental challenges when trying to develop survival 
analysis in space domain. (1) Space process is often 
multidimensional, while time process can always be treated 
as uni-dimensional in the sense that it can be represented as 

{Z (t) : t ∈ R1}. The multidimensionality certainly 
introduces additional complications, but that is still not the 
only complication, perhaps not even the most significant. 
(2) One of the fundamental complications is the frequent 
lack of independent replication in the sense of observing 
several independent realizations of the spatial process, as 
pointed out by Cressie (1993).  (3) The superposition of (1) 
and (2) brings up even more complexity, since coordinates 
(s) of each replication are a set of stochastic spatial process, 
rather than a set of random variables. (4) Even if the 
modeling of the spatial process is separable from the time 
process, it is doubtful how useful the resulting model will 
be.  In time process modeling, if a population lives in a 
homogenous environment, the space can be "condensed" as 
a single point.  However, the freezing of time seems to leave 
out too much information, at least for survival analysis.  
Since the traditional survival analysis is essentially a time 
process, therefore, it should be expanded to incorporate 
spatial coordinates into original survival function.  For 
example, when integrating space and time, one gets a space-
time process, such as   
 }   ,:),({ +∈⊂∈ RtRDstsZ d ,    
where s is the spatial index (coordinate) and t is time.  We 
may define the spatial-temporal survival function as 
 

 S(s, t) = Pr{T > t,  s ∈ D},   (72) 
 
where D is a subset of the d-dimensional Euclidean space.  
That is, the spatial-temporal survival function represents the 
cumulative probability that an individual will survive up to 
time T, within hyperspace D, which is a subset of the d-
dimensional Euclidian space.  One may define different 
scales for D, or even divide D into a number of unit 
hyperspaces of measurement 1 unit.  
 
2.9. Survival Analysis and Artificial Neural Network 
 
In the discussion on artificial neuron networks (ANN), 
Robert & Casella (2004) noted, "Baring the biological 
vocabulary and the idealistic connection with actual 
neurons, the theory of neuron networks covers: (1) modeling 
nonlinear relations between explanatory and dependent 
(explained) variables; (2) estimation of the parameters of 
these models based on a (training) sample."  Although 
Robert & Casella (2004) did not mentioned survival 
analysis, their notion indeed strike us in that the two points 
are also the essence of Cox's (1972) Proportional Hazards 
model.    
 
We argue that the dissimilarity might be superficial.  One of 
the most obvious differences is that ANN usually avoids 
probabilistic modeling, however, the ANN models can be 
analyzed and estimated from a statistical point of view, as 
demonstrated by Neal (1999), Ripley (1994), (1996),  
Robert & Casella (2004).  What is more interesting is that 
the most hailed feature of ANN, i.e., the "identifiability" of 
model structure, if one review carefully, is very similar to 
the work done in survival analysis for the structure of the 
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Cox proportional hazards model. The multilayer ANN 
model, also known as back-propagation ANN model, is 
again very similar to the stratified proportional hazards 
model.   
 
There are at least two advantages of survival analysis over 
the ANN.  (1) Survival analysis has a rigorous mathematical 
foundation. Counting stochastic processes and the 
Martingale central limit theory form the survival analysis 
models as stochastic integrals, which provide insight for 
analytic solutions. (2) In ANN, simulation is usually 
necessary (Robert & Casella (2004), which is not the case in 
survival analysis.  
 
Our conjecture may explain a very interesting phenomenon.  
Several studies have tried to integrate ANN with survival 
analysis.  As reviewed in the next section, few of the 
integrated survival analysis and ANN made significant 
difference in terms of model fittings, compared with the 
native survival analysis alone. The indifference shows that 
both approaches do not complement each other.  If they are 
essentially different, the integrated approach should produce 
some results that are significantly different from the pure 
survival analysis alone, either positively or negatively. 
Again, we emphasize that our discussion is still a pure 
conjecture at this stage.  

 
 

3.  BRIEF CASE REVIEW OF SURVIVAL ANALYSIS 
APPLICATIONS    

 
3.1. Applications Found in IEEE Digital Library.  
 
In this section, we briefly review the papers found in the 
IEEE digital library with the keyword of "survival analysis" 
search. The online search was conducted in the July of 
2007, and we found about 40 papers in total. There were a 
few biomedical studies among the 40 survival-analysis 
papers published in IEEE publications. These are largely 
standard biomedical applications and we do not discuss 
these papers, for obvious reasons.  
 
Mazzuchi et al. (1989) seemed to be the first to actively 
advocate the use of Cox's (1972) proportional hazards 
model (PHM) in engineering reliability.  They quoted Cox's 
(1972) original words "industrial reliability studies and 
medical studies" to show Cox's original motivation.  
Mazzuchi et al (1989) stated, "while this model had a 
significant impact on the biomedical field, it has received 
little attention in the reliability literature."  Nearly two 
decades after the introduction paper of Mazzuchi et al. 
(1989), it appears that little significant changes have 
occurred in computer science and IEEE related engineering 
fields with regard to the proportional hazards models and 
survival analysis as a whole.    
 
Stillman et al. (1995) used survival analysis to analyze the 
data for component maintenance and replacement programs. 
Reineke et al. (1998) conducted a similar study for 

determining the optimal maintenance by simulating a series 
system of four components. Berzuini and Larizza (1996) 
integrated time-series modeling with survival analysis for 
medical monitoring.  Kauffman and Wang (2002) analyzed 
the Internet firm survival data from IPO (initial public offer) 
to business shutdown events, with survival analysis models.  
 
Among the 40 survival analysis papers, which we obtained 
from online search of the IEEE digital library, significant 
percentage is the integration of survival analysis with 
artificial neural networks (ANN). In many of these studies, 
the objective was to utilize ANN to modeling fitting or 
parameter estimation for survival analysis.  The following is 
an incomplete list of the major ANN survival analysis 
integration papers found in IEEE digital library, Arsene et 
al. (2006),  Bakker and Heskes (1999), Cawley et al. (2006), 
Eleuteri et al. (2003), Lisboa and Wong (2001),  Mani et al. 
(1999).  The parameter estimation in survival analysis is 
particular complex due to the requirements for processing 
censored observations. Therefore, approach such as ANN 
and Bayesian statistics may be helpful to deal with the 
complexity. Indeed, Bayesian survival analysis has been 
expanded significantly in recent years (Ibrahim, et al. 2005).  
We expect that evolutionary computing will be applied to 
survival analysis, in similar way to ANN and Bayesian 
approaches.   
 
With regard to the application of ANN to survival analysis, 
we suggest three cautions: (1) The integrated approach 
should preserve the capability to process censoring; 
otherwise, survival analysis loses its most significant 
advantage. (2)  Caution should be taken when the integrated 
approach changes model structure because most survival 
analysis models, such as Cox's proportional hazards models 
and accelerated failure time models, are already complex 
nonlinear models with built-in failure mechanisms.  The 
model over-fitting may cause model identifiability 
problems, which could be very subtle and hard to resolve. 
(3)  If the integrated approach does not produce significant 
improvement in terms of model fitting or other 
measurements, which seemed to be the case in majority of 
the ANN approach to survival analysis, then the extra 
complication should certainly be avoided. Even if there is 
improvement, one should still take caution with the censor- 
handling and model identifiability issues previously 
mentioned in (1) and (2).   
 
3.2. Selected Papers Found in MMR-2004.   
 
In the following, we briefly review a few survival analysis 
related studies presented in a recent International 
Conference on Mathematical Methods in Reliability, MMR 
2004 (Wilson et al. 2005).     
 
Pena and Slate (2005) addressed the dynamic reliability. 
Both reliability and survival times are more realistically 
described with dynamic models. Dynamic models generally 
refer to the models that incorporate the impact of actions or 
interventions as well as their accumulative history, which 
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can be monitored (Pena and Slate 2005). The complexity is 
obviously beyond simple regression models, since the 
dependence can play a crucial role. For example, in a load-
sharing network system, failure of a node will increase the 
loads of other nodes and influences their failures.     
 
Duchesne (2005) suggested incorporating usage 
accumulation information into the regression models in 
survival analysis.  To simplify the model building, 
Duchesne (2005) assumes that the usage can be represented 
with a single time-dependent covariate.  Besides reviewing 
the hazard-based regression models, which are common in 
survival analysis, Duchesne (2005) reviewed three classes 
of less commonly used regression models: models based on 
transfer functionals, models based on internal wear and the 
so-called collapsible models. The significance of these 
regression models is that they expand reliability modeling to 
two dimensions. One dimension is the calendar time and the 
other is the usage accumulation.  Jin (2005) reviewed the 
recent development in statistical inference for accelerated 
failure time (AFT) model and the linear transformation 
models that include Cox proportional hazards model and 
proportional odds models as special cases. Two approaches, 
rank-based approach and least-squares approach were 
reviewed in Jin (2005). Osborn (2005) presented a case 
study of utilizing the remote diagnostic data from embedded 
sensors to predict system aging or degradation.  This 
example should indicate the potential of survival analysis 
and competing risks analysis in the prognostic and health 
management (PHM) since the problem Osborn (2005) 
addressed is very similar to PHM. The uses of embedded 
sensors to monitor the health of complex systems, such as 
power plants, automobile, medical equipment, and aircraft 
engine, are common. The main uses for these sensor data 
are real time assessment of the system health and detection 
of the problems that need immediate attention.  Of interest is 
the utilization of those remote diagnostic data, in 
combination with historical reliability data, for modeling the 
system aging or degradation. The biggest challenge with this 
task is the proper transformation of wear time. The wear is 
not only influenced by internal (temperature, oil pressures, 
etc) and external covariates (ambient temperature, air 
pressure, etc), but also different each time.  
 
 

4.  SUMMARY AND PERSPECTIVE. 
 
4.1. Summary 
 
Despite the common foundation with traditional reliability 
theory, such as the same probability definitions for survival 
function [S(t)] and reliability [R(t)], i.e., S(t)=R(t), as well as 
the hazards function (the exact same term and definition are 
used in both fields), survival analysis has not achieved 
similar success in the field of reliability as in biomedicine. 
The applications of survival analysis seem still largely 
limited to the domain of biomedicine.  Even in the sister 
fields of biomedicine such as biology and ecology, few 
applications have been conducted (Ma 1997, Ma and 

Bechinski 2008). In the engineering fields, the Meeker and 
Escobar (1998) monograph, as well as the Klein and Goel 
(1992) still seem to be the most comprehensive treatments.  
 
In Section 2, we reviewed the essential concepts and models 
of survival analysis. In Section 3, we briefly reviewed some 
application cases of survival analysis in engineering 
reliability.  In computer science, survival analysis seems to 
be still largely unknown.  We believe that the potential of 
survival analysis in computer science is much broader than 
network and/or software reliability alone. Before suggesting 
a few research topics, we note two additional points.  
 
First, in this article, we exclusively focused on univariate 
survival analysis. There are two other related fields: one is 
competing risks analysis and the other is multivariate 
survival analysis.  The relationship between multivariate 
survival analysis and survival analysis is similar to that 
between multivariate statistical analysis and mathematical 
statistics.  The difference is that the extension from 
univariate to multivariate in survival analysis has been much 
more difficult than the development of multivariate analysis, 
because of (1) observation censoring, and (2) dependency, 
which is much more complex when multivariate normal 
distribution does not hold in survival data.  On the other 
hand, the two essential differences indeed make multivariate 
survival analysis unique and extremely useful for analyzing 
and modeling time-to-event data. In particular, the 
advantages of multivariate survival analysis in addressing 
the dependency issue are hardly matched by any other 
statistical method.  We discuss competing risks analysis and 
multivariate survival analysis in separate articles (Ma and 
Krings 2008a, b, & c).   
 
The second point we wish to note is: if we are asked to point 
out the counterpart of survival analysis model in reliability 
theory, we would suggest the shock or damage model.   The 
shock model has an even longer history than survival 
analysis and the simplest shock model is the Poisson 
process model that leads to exponential failure rate model.  
The basic assumption of the shock model is the notion that 
engineered systems endure some type of wear, fatigue or 
damage, which leads to the failure when the strengths 
exceed the tolerance limits of the system (Nakagawa 2006).  
There are extensive research papers on shock models in the 
probability theory literature, but relatively few monographs.  
The monograph by Nakagawa (2006) seems to be the latest.  
The shock model is often formulated as a Renewal 
stochastic process or point process with Martingale theory.  
The rigorous mathematical derivation is very similar to that 
of survival analysis from counting stochastic processes, 
which we briefly outlined in section 2.6.    
 
It is beyond the scope of the paper to compare the shock  
model with survival analysis; however, we would like to 
make the two specific comments. (1) Shock models are 
essentially the stochastic process model to capture the 
failure mechanism based on the damage induced on the 
system by shocks, and the resulting statistical models are 
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often the traditional reliability distribution models such as 
exponential and Weibull failure distributions.  Survival 
analysis does not depend on specific shock or damage.  
Instead, it models the failure with abstract time-to-event 
random variables.  Less restrictive assumptions with 
survival analysis might be more useful for modeling 
software reliability where the notions of fatigue, wear and 
damage apparently do not apply.  (2) Shock models do not 
deal with information censoring, the trademark of failure 
time data.  (3) Shock models, perhaps due to mathematical 
complexity, have not been applied widely in engineering 
reliability yet.  In contrast, the applications of survival 
analysis in biomedical fields are much extensive.  While 
there have been about a dozen monographs on survival 
analysis available, few books on shock models have been 
published.  We believe that survival analysis and shock 
models are complementary, and both are very needed for 
reliability analysis, with shock model more focused on 
failure mechanisms and the survival analysis on data 
analysis and modeling.   
 
4.2. Perspective.  
 
Besides traditional industrial and hardware reliability fields, 
we suggest that the following fields may benefit from 
survival analysis. 
 
Software reliability—Survival analysis is not based on the 
assumptions of wear, fatigue, or damage, as in traditional 
reliability theory.  This seems close to software reliability 
paradigm. The single biggest challenge in applying above 
discussed approaches to software systems is the requirement 
for a new metric that is able to replace the survival time 
variable in survival analysis. This "time" counterpart needs 
to be capable of characterizing the "vulnerability" of 
software components or the system, or the "distance" to the 
next failure event. In other words, this software metric 
should represent the metric-to-event, similar to time-to-
event random variable in survival analysis.  We suggest that 
the Kolmogorov complexity (Li and Vitanyi 1997) can be a 
promising candidate. Once the metric-to-event issue is 
resolved, survival analysis, both univariate and multivariate 
survival analysis can be applied in a relative straightforward 
manner. We suggest that the shared frailty models are most 
promising because we believe latent behavior can be 
captured with the shared frailty (Ma and Krings 2008b).  
 
There have been a few applications of univariate survival 
analysis in software reliability modeling, including 
examples in Andersen et al.'s (1995) classical monograph. 
However, our opinion is that without the fundamental shift 
from time-to-event to new metric-to-event, the success will 
be very limited. In software engineering, there is an 
exception to our claim, which is the field of software test 
modeling, where time variable may be directly used in 
survival analysis modeling.    
 
Modeling Survivability of Computer Networks—As 
described in Subsection 2.3, random censoring may be used 

to model network survivability.  This modeling scheme is 
particularly suitable for wireless sensor network, because 
(1) of the population nature of wireless nodes and (2) the 
limited lifetime of the wireless nodes.  Survival analysis has 
been advanced by the needs in biomedical and public health 
research where population is the basic unit of observation.  
As stated early, a sensor network is analogically similar to a 
biological population. Furthermore, both organisms and 
wireless nodes are of limited lifetimes. A very desirable 
advantage of survival analysis is that one can develop a 
unified mathematical model for both the reliability and 
survivability of a wireless sensor network (Krings and Ma 
2006).  
 
Prognostic and Health Management in Military 
Logistics—PHM involves extensive modeling analysis 
related to reliability, life predictions, failure analysis, burn-
in elimination and testing, quality control modeling, etc.  
Survival analysis may provide very promising new tools.  
Survival analysis should be able to provide alternatives to 
the currently used mathematical tools such as ANN, genetic 
algorithms, and Fuzzy logic.  The advantage of survival 
analysis over the other alternatives lies in its unique 
capability to handle information censoring.  In PHM and 
other logistics management modeling, information 
censoring is a near universal phenomenon. Survival analysis 
should provide new insights and modeling solutions.   
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