Chapter 3: Data Transmission

CS420/520 Axel Krings

Page 1

Sequence 3

Terminology (1)

- Transmitter
- Receiver
- Medium
 - -Guided medium
 - e.g. twisted pair, optical fiber
 - —Unguided medium
 - e.g. air, water, vacuum

CS420/520 Axel Krings

Page 2

Terminology (2)

- Direct link
 - —No intermediate devices
- Point-to-point
 - —Direct link
 - —Only 2 devices share link
- Multi-point
 - —More than two devices share the link

CS420/520 Axel Krings

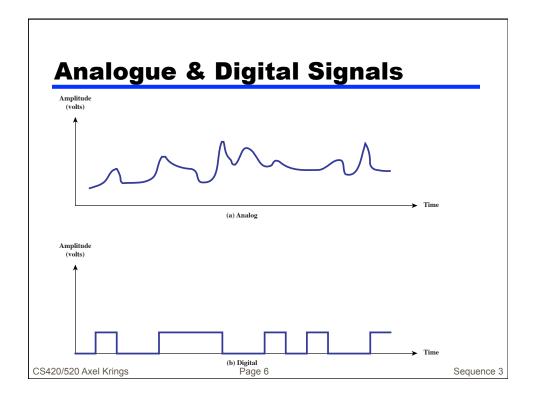
Page 3

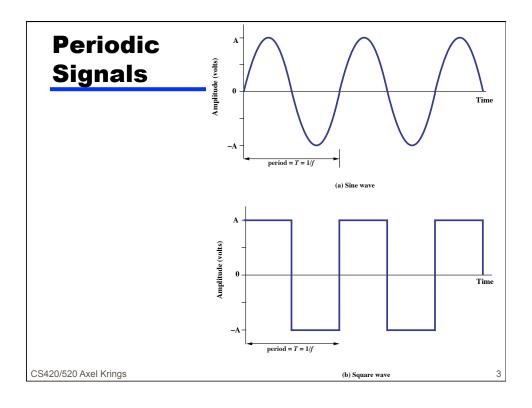
Sequence 3

Terminology (3)

- Simplex
 - —One direction
 - e.g. Television
- Half duplex
 - —Either direction, but only one way at a time
 - e.g. police radio
- Full duplex
 - —Both directions at the same time
 - e.g. telephone

CS420/520 Axel Krings

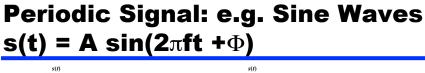

Page 4

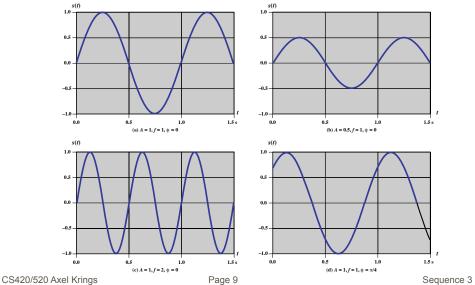

Frequency, Spectrum and Bandwidth

- Time domain concepts
 - -Analog signal
 - · Varies in a smooth way over time
 - -Digital signal
 - Maintains a constant level then changes to another constant level
 - —Periodic signal
 - Pattern repeated over time
 - —Aperiodic signal
 - Pattern not repeated over time

CS420/520 Axel Krings

Page 5




Sine Wave

- Peak Amplitude (A)
 - -maximum strength of signal, in volts
- Frequency (f)
 - Rate of change of signal, in Hertz (Hz) or cycles per second
 - —Period = time for one repetition (T), T = 1/f
- Phase (φ)
 - -Relative position in time
- Periodic signal s(t + T) = s(t)
- General wave $s(t) = A \sin(2\pi f t + \Phi)$

CS420/520 Axel Krings

Page 8

Wavelength

- Distance occupied by one cycle
- Distance between two points of corresponding phase in two consecutive cycles
- $\bullet \ \ \text{Wavelength} \ \lambda$
- Assuming signal velocity v

$$\lambda = vT$$
 [unit is m] $\lambda f = v$

 $c = 3*10^8$ m/s (speed of light in free space)

CS420/520 Axel Krings

Page 10

Frequency Domain Concepts

- Signal is usually made up of many frequencies
- Components are sine waves
- It can be shown (Fourier analysis) that any signal is made up of component sine waves
- One can plot frequency domain functions

CS420/520 Axel Krings

Page 11

Sequence 3

Building block for waves

- What is a square wave?
 - —What frequency components are digital signals composed of?
 - —How many components do I need to recreate a square wave?
 - —What is a realistic spectrum?
 - —Where is the main energy of the signal?
 - Below is a representation of a square wave with amplitude A:

$$s(t) = \frac{A4}{\pi} \sum_{k \text{ odd }, k=1}^{\infty} \frac{1}{k} \sin(2\pi k f t)$$

CS420/520 Axel Krings

Page 12

Physical Aspects

- Limited Bandwidth
 - -Fourier Analysis

$$v(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + \sum_{n=1}^{\infty} b_n \sin n\omega_0 t$$

$$a_0 = \frac{1}{T} \int_0^T v(t) dt$$

$$a_n = \frac{2}{T} \int_0^T v(t) \cos(n\omega_0 t) dt$$

$$b_n = \frac{2}{T} \int_0^T v(t) \sin(n\omega_0 t) dt$$

$$v(t) = \text{voltage as a function of time}$$

$$\omega_0 = \text{fundamental frequency component in radians/second}$$

 f_0 = fundamental frequency in Hz

 $T = 1/f_0$ = period in seconds

CS420/520 Axel Krings

Page 13

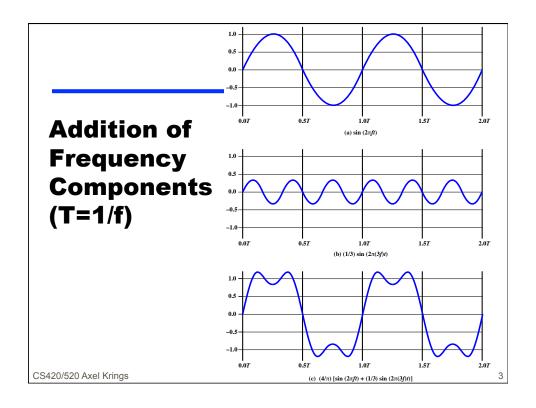
Sequence 3

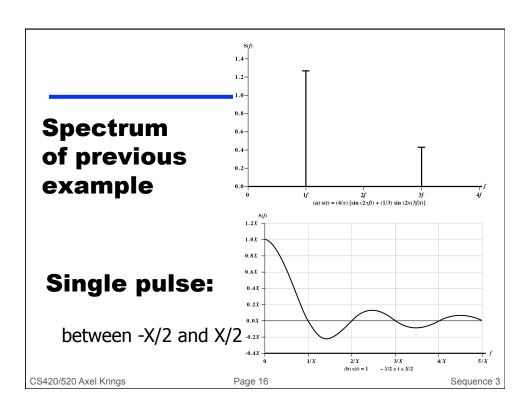
Physical Aspects

- Limited Bandwidth (cont.)
 - —Unipolar

$$v(t) = \frac{V}{2} + \frac{2V}{\pi} \left\{ \cos \omega_0 t - \frac{1}{3} \cos 3\omega_0 t + \frac{1}{5} \cos 5\omega_0 t - \dots \right\}$$

—Bipolar

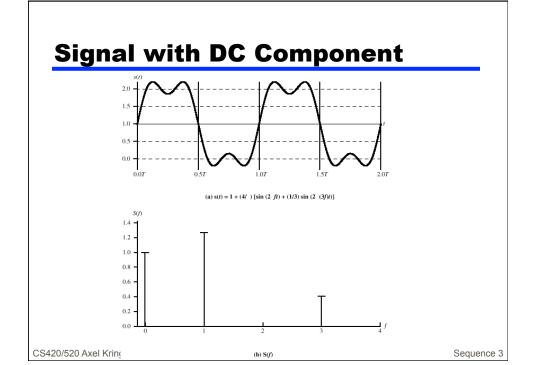

$$v(t) = \frac{4V}{\pi} \left\{ \cos \omega_0 t - \frac{1}{3} \cos 3\omega_0 t + \frac{1}{5} \cos 5\omega_0 t - \dots \right\}$$


How much bandwidth do we need?

What are the trade-offs if we compromise bandwidth?

CS420/520 Axel Krings

Page 14



Spectrum & Bandwidth

- Spectrum
 - —range of frequencies contained in signal
- Absolute bandwidth
 - -width of spectrum
- Effective bandwidth
 - —Often just bandwidth
 - Narrow band of frequencies containing most of the energy
- DC Component
 - —Component of zero frequency

CS420/520 Axel Krings

Page 17

Data Rate and Bandwidth

- Any transmission system has a limited band of frequencies
- This limits the data rate that can be carried
- Issues
 - —The more bandwidth the less distortion
 - —Where is the bulk of the energy?

CS420/520 Axel Krings

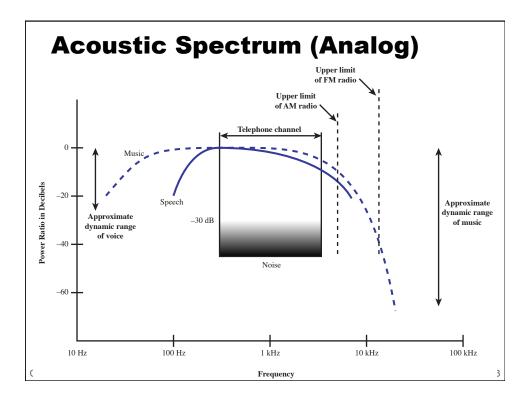
Page 19

Sequence 3

Analog and Digital Data Transmission

- Data
 - —Entities that convey meaning
- Signals
 - -Electric or electromagnetic representations of data
- Transmission
 - Communication of data by propagation and processing of signals

CS420/520 Axel Krings


Page 20

Analog and Digital Data

- Analog
 - —Continuous values within some interval
 - -e.g. sound, video
- Digital
 - —Discrete values
 - -e.g. text, integers

CS420/520 Axel Krings

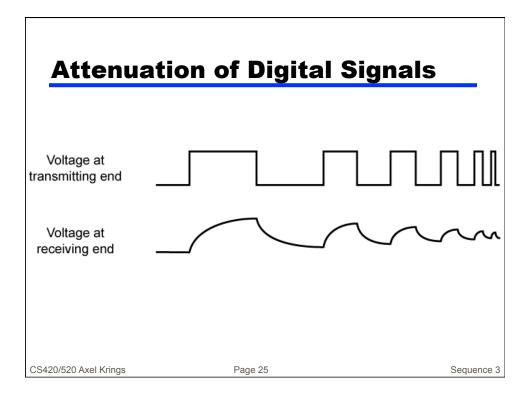
Page 21

Analog and Digital Signals

- · Means by which data are propagated
- Analog
 - —Continuously variable
 - -Various media
 - wire, fiber optic, space
 - -Speech bandwidth 100Hz to 7kHz
 - —Telephone bandwidth 300Hz to 3400Hz
 - -Video bandwidth 4MHz
- Digital
 - —Use two DC components

CS420/520 Axel Krings

Page 23


Sequence 3

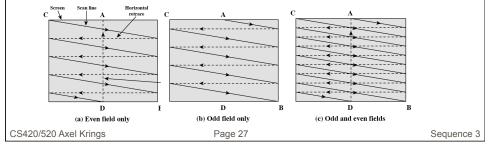
Advantages & Disadvantages of Digital

- Cheaper
- · Less susceptible to noise
- Greater attenuation
 - -Pulses become rounded and smaller
 - —Leads to loss of information

CS420/520 Axel Krings

Page 24

Components of Speech


- Frequency range (of hearing) 20Hz-20kHz
 —Speech 100Hz-7kHz
- Easily converted into electromagnetic signal for transmission
- Sound frequencies with varying volume converted into electromagnetic frequencies with varying voltage
- Limit frequency range for voice channel
 —300-3400Hz

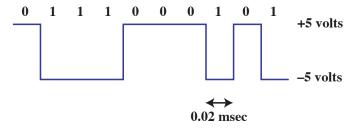
CS420/520 Axel Krings

Page 26

Video Components

- USA 483 lines scanned per frame at 30 frames per second
 - 525 lines but 42 lost during vertical retrace
- So 525 lines x 30 scans = 15750 lines per second
 - 63.5μs per line, (11μs for retrace, so 52.5 μs per video line)
- Max frequency if line alternates black and white
- Horizontal resolution is about 450 lines giving 225 cycles of wave in 52.5 μs
- · Max frequency of 4.2MHz

Binary Digital Data


- From computer terminals etc.
- Two dc components
- Bandwidth depends on data rate

CS420/520 Axel Krings

Page 28

Conversion of PC Input to Digital Signal

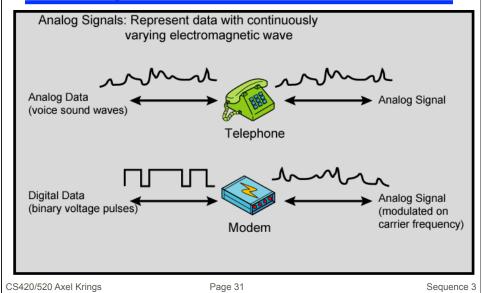
- as generated by computers etc.
- has two dc components
- bandwidth depends on data rate

User input at a PC is converted into a stream of binary digits (1s and 0s). In this graph of a typical digital signal, binary one is represented by –5 volts and binary zero is represented by +5 volts. The signal for each bit has a duration of 0.02 msec, giving a data rate of 50,000 bits per second (50 kbps).

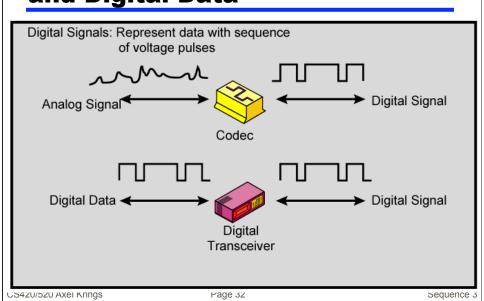
CS420/520 Axel Krings

Page 29

Sequence 3


Data and Signals

- Usually use digital signals for digital data and analog signals for analog data
- · Can use analog signal to carry digital data
 - -Modem
- Can use digital signal to carry analog data
 - —Compact Disc audio


CS420/520 Axel Krings

Page 30

Analog Signals Carrying Analog and Digital Data

Digital Signals Carrying Analog and Digital Data

Transmission Impairments

- Signal received may differ from signal transmitted causing:
 - -analog degradation of signal quality
 - -digital bit errors
- Most significant impairments are
 - —attenuation and attenuation distortion
 - -delay distortion
 - -noise

Attenuation

- Signal strength falls off with distance
- Depends on medium
- Received signal strength:
 - -must be enough to be detected
 - —must be sufficiently higher than noise to be received without error
- Attenuation is an increasing function of frequency

CS420/520 Axel Krings

Page 34

Delay Distortion

- Only in guided media
- Propagation velocity varies with frequency

CS420/520 Axel Krings

Page 35

Sequence 3

Noise (1)

- Additional signals inserted between transmitter and receiver
- Thermal
 - —Due to thermal agitation of electrons
 - -Uniformly distributed
 - -White noise
- Intermodulation
 - —Signals that are the sum and difference of original frequencies sharing a medium

CS420/520 Axel Krings

Page 36

Noise (2)

- Crosstalk
 - —A signal from one line is picked up by another
- Impulse
 - —Irregular pulses or spikes
 - —e.g. External electromagnetic interference
 - -Short duration
 - -High amplitude

CS420/520 Axel Krings

Page 37

Sequence 3

Digital Transmission

- Concerned with content
- Integrity endangered by noise, attenuation etc.
- Repeaters
 - -Repeater receives signal
 - —Extracts bit pattern
 - -Retransmits
 - —Attenuation is overcome
 - -Noise is not amplified

CS420/520 Axel Krings

Page 38

Analog Transmission

- Analog signal transmitted without regard to content
- May be analog or digital data
- Attenuated over distance
- Use amplifiers to boost signal
- Also amplifies noise

CS420/520 Axel Krings

Page 39

Sequence 3

Advantages of Digital Transmission

- Digital technology
 - Low cost LSI/VLSI technology
- Data integrity
 - Longer distances over lower quality lines
- Capacity utilization
 - High bandwidth links economical
 - High degree of multiplexing easier with digital techniques
- Security & Privacy
 - Encryption
- Integration
 - Can treat analog and digital data similarly

CS420/520 Axel Krings

Page 40

Channel Capacity

- Data rate
 - —In bits per second, bps (not Bps)
 - -Rate at which data can be communicated
- Bandwidth
 - —In cycles per second of Hertz, Hz
 - —Constrained by transmitter and medium
- Convention: not all k's are equal
 - data rates are given as power of 10
 - e.g., kHz is 1000Hz
 - data is given in terms of power of 2
 - · e.g., KByte is 1024 Bytes

CS420/520 Axel Krings

Page 4'

Sequence 3

Nyquist Bandwidth

- If rate of signal transmission is 2B then a signal with frequencies no greater than B is sufficient to carry the signal rate.
 - —Why? Assume we have a square wave of repeating 101010. If a positive pulse is a 1 and a negative pulse is 0, then each pulse lasts $1/2 T_1 (T_1 = 1/f_1)$ and the data rate is $2f_1$ bits per second.

CS420/520 Axel Krings

Page 42

Nyquist Bandwidth

- If we limit the components to a maximum frequency (restrict the bandwidth) we need to make sure the signal is accurately represented.
- Based on the accuracy we require, the bandwidth can carry a particular data rate. The theoretical maximum communication limit is given by the **Nyquist** formula:

$$C = 2B \log_2 M$$

C = capacity or data transfer rate in bps

B = bandwidth (in hertz)

M = number of possible signaling levels

CS420/520 Axel Krings

Page 43

Sequence

Signal Strength

- —An important parameter in communication is the strength of the signal transmitted. Even more important is the strength being received.
- —As signal propagates it will be attenuated (decreased)
- —Amplifiers are inserted to increase signal strength
- Gains, losses and relative levels of signals are expressed in decibels
 - This is a logarithmic scale, but strength usually falls logarithmically
 - Calculation of gains and losses involves simple addition and subtraction
- —Decibel measure of difference in two power levels is

$$N_{dB} = 10 \log_{10} \frac{P_1}{P_2}$$

CS420/520 Axel Krings

Page 44

Physical Aspects

- Signal Attenuation and Distortion
 - —As a signal propagates across a transmission medium its amplitude decreases. This is known as **signal** attenuation.
 - —A typical signal consists of a composition of many frequency components (Fourier Analysis). Due to the limited transmission bandwidth of a medium, the higher frequency components may not be able to be transmitted.
 - Recall the Nyquist formula

$$C = 2B \log_2 M \qquad \log_2(x) = \frac{\ln(x)}{\ln(2)}$$

CS420/520 Axel Krings

Page 45

Sequence 3

Delay Distortion

- —Different frequency components of a signal
 - are attenuated differently, and
 - travel at different speeds through guided media
- —This may lead to **delay distortion**

CS420/520 Axel Krings

Page 46

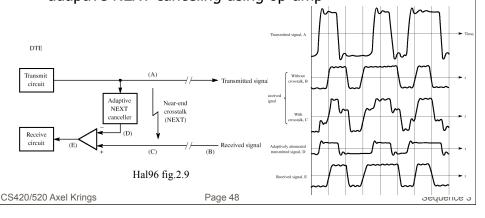
Shannon capacity

—A transmission line may experience interference from a number of sources, called **noise**. Noise is measured in terms of signal to noise <u>power</u> ratio, expressed in decibels:

$$\left(\frac{S}{N}\right)_{dB} = 10 \log_{10} \left(\frac{S}{N}\right) dB$$

—The effects of noise on channel capacity can be seen using the **Shannon-Hartley Law:**

$$C = B \log_2(1 + \frac{S}{N})$$
 bps $C = \text{data transfer rate in bps}$
 $B = \text{bandwidth (in hertz)}$


CS420/520 Axel Krings

Page 47

Sequence 3

Cross Talk -- NEXT canceling

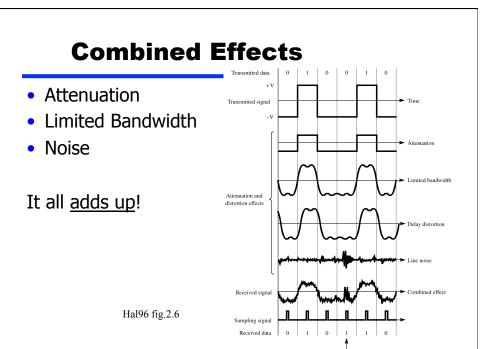
- near-end crosstalk (NEXT), cross talk of strong transmit (output) signal to weak receive (input) signal.
- —adaptive NEXT canceling using op-amp

Noise

- Impulse Noise
 - —impulse caused by switching, lightning etc.
- Thermal Noise
 - —present irrespective of any external effects
 - —caused by thermal agitation of electrons

CS420/520 Axel Krings

Page 49


Sequence 3

Noise

- White Noise
 - -random noise entire spectrum
- Pink Noise
 - -- "realistic spectrum"
 - —the power spectral density is inversely proportional to the frequency

CS420/520 Axel Krings

Page 50

Thermal Noise

—Energy (in joules = watts x seconds) per bit in a signal:

Page or

$$E_b = ST_b$$
 $S = \text{signal power in watts}$
 $T_b = \text{time period for 1 bit in seconds}$

- —Data Transmission rate $R = 1/T_b$
- —Thermal noise N_0 in a line is: (T is temperature in K)

$$N_0 = kTW$$
 where $k = 1.3803 \times 10^{-23}$ joule K⁻¹ k is Boltzmann constant

$$\frac{E_b}{N_0} = \frac{S/R}{N_0} = \frac{S/R}{kTW}$$
Page 52

CS420/520 Axel Krings

CS420/520 Axel Krings

Signal Delay

- —There exists a transmission propagation delay in any medium
 - Speed of light 3 x 108 ms⁻¹
 - Speed of EM in cable/wire 2 x 108 ms⁻¹
- Important parameter is round-trip-delay (time from first bit sent to last bit acknowledged)

CS420/520 Axel Krings

Page 53

Sequence 3

Signal Delay

—Propagation delay T_p and transmission delay T_x

$$T_P = \frac{d}{V}, T_x = \frac{n}{R}$$

—Important ratio $\frac{T_P}{T_x}$

d =distance in meters V =EM speed

n = number of bits transmitted R = link bit rate in bits per second

CS420/520 Axel Krings

Page 54