### Applications

- General Purpose Computing
- High-Availability Systems
  - » rapid error detection and correction => minimize downtime
  - » unacceptable downtime for software installation/updates
  - » examples AT&T switching systems, Tandem: software-intensive approach, Stratus: hardware approach.
- Long-Life Systems
  - » mobile systems: airplanes, mass transit systems etc.
  - » the concept of deferred maintenance
  - » special considerations: highly redundant spacecraft systems
    - automatic reconfiguration vs. remote access
  - » down-times might not be of great concern

- Critical Computations
  - » real-time control systems and their timing sensitivity
  - » heavy computational workloads => multiple processors
  - » hard real-time environment
    - tasks have hard/soft deadlines
    - failure to meet deadlines => catastrophic results
  - » need for provably correct algorithms
    - formal verification methods
    - no unexpected side effects
  - » classic systems

- Brief discussion of some classic systems
  - AT&T (highly available switching systems)
    - » goal: 2 hours downtime in 40 years (3 min/year :-)
    - » Pra96 table 2.7, pg 104: Probability of operational outage due to various sources.
    - » User implements part of redundancy, i.e. redial
    - » Pra96 table 2.8, pg 105: Levels of recovery in a switching system.
    - » system features include
      - hardware lock-step duplication
      - online processors write to both stores
      - byte parity on data paths
      - modified hamming code on main memory
      - maintenance channel for observability/controllability of processors
      - extensive self checking hardware (30% +)

| :<br>2.1.4  | AT&T<br>Switching<br>Systems <sup>b</sup><br>(Toy, 1978) | Bellcore <sup>b</sup><br>(Ali, 1986) | Japanese<br>Commercial<br>Users | Tandem<br>(Gray, 1985) | Tandem<br>(Gray, 1987) | Northern<br>Telecom | Mainframe<br>Users |
|-------------|----------------------------------------------------------|--------------------------------------|---------------------------------|------------------------|------------------------|---------------------|--------------------|
| Hardware    | 0.20                                                     | 0.26 <sup>d</sup>                    | *g                              | 0.18                   | 0.19                   | .19                 | .45                |
| Software    | 0.15                                                     | 0.30 <sup>e</sup>                    | 0.75g                           | 0.26                   | 0.43                   | .19                 | .20                |
| Maintenance |                                                          | 1                                    | *g                              | 0.25                   | 0.13                   |                     | .05                |
| Operations  | 0.65 <sup>c</sup>                                        | $0.44^{\mathrm{f}}$                  | 0.11                            | 0.17                   | 0.13                   | .33                 | .15                |
| Environment | 1. m 1. m.           |                                      | 0.13                            | 0.14                   | 0.12                   | .28 <sup>h</sup>    | .15                |

### Table 2.7: Probability of Operational Outage Due to Various Sources<sup>a</sup>

<sup>a</sup>Dashes indicate that no separate value was reported for that category in the cited study.

<sup>b</sup>Fraction of downtime attributed to each source. Downtime is defined as any service disruption that exceeds 30 seconds duration. The Bellcore data represented a 3.5-minute downtime per year per system.

<sup>c</sup>Split between procedural errors (0.3) and recovery deficiencies (0.35).

<sup>d</sup>47% of the hardware failures occurred due to the second unit failing before the first unit could be replaced. <sup>e</sup>Recovery software.

<sup>f</sup>Split between procedural errors (0.42) and operational software (0.02).

<sup>8</sup>Study only reported probability of vendor-related outage (i.e., 0.75 is split between vendor hardware, software, and maintenance).

h(.15) attributed to power.

| Phase | Recovery Action                                                                                                                                                          | Effect                                                                           |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 1     | Initialize transient memory                                                                                                                                              | Affects temporary storage, no calls lost                                         |
| 2     | Reconfigure peripheral<br>hardware; initialize all<br>transient memory                                                                                                   | Lose calls in process of being<br>established, calls in progress<br>not lost     |
| 3     | Verify memory operation,<br>establish a workable proces-<br>sor configuration, verify<br>program, configure peri-<br>pheral hardware, initialize<br>all transient memory | Lose calls in process of being<br>established, calls in progress not<br>affected |
| 4     | Establish a workable processor<br>configuration; configure<br>peripheral hardware,<br>initialize all memory                                                              | All calls lost                                                                   |

### Table 2.8: Levels of Recovery in a Switching System

### – Tandem

- » High-availability systems for transaction processing.
- » NonStop1 -- first commercial OS designed for high availability.
- » Design objectives
  - nonstop operation: non-intrusive fault detection, reconfiguration and repair.
  - data integrity: no single hardware failure can compromise data integrity.
  - modular system expansion: software application not affected by adding expansion hardware.
- » No single point of failure: dual paths to all system components, including disks, I/O controllers, processor replication, power supplies, RAID 1 disks, and message based OS.

- » Pra96 fig 2.4, pg 112
  - loosely shared-memory architecture
  - duplication of all components
- » Hardware/Software modules designed to behave like a FSP
- » Retries on I/O devices
  - 1) hardware retry, assuming transient fault
  - 2) software retry
  - 3) alternate path retry
  - 4) alternate device retry
- » Check point recovery mechanism
- » Maintenance and diagnosis system analyzes the event log and automatically calls for field replaceable units.





- Stratus
  - » Continuous checking of duplexed components
  - » Pair and Spare Architecture Pra96, fig 2.7, pg 117
    - 2 processor boards with 2 microprocessors each
    - each board operates independently
    - bus halves are wired-ORed with their counterparts
  - » One module consists of replicated power, backplane buses
  - » Modules can be interconnected => communicate via message passing SIB (Stratus Intermodule Bus).
  - » Boards compare their halves and remove themselves upon disagreement between A and B halves, indicating maintenance interrupt => FSP behavior
  - » Board is diagnosed for transient fault and possibly returned to service. Permanent failure is reported by phone to customer assistance center.



- Spacecraft Systems: Long period of unattended operation
  - » Design considerations include effects of environment, power, temperature, stability, vibration etc.
  - » Systems range from weather, and communication satellites in varies orbits to deep-space probes.
  - » Propulsion: controlling fuels and stabilization.
  - » Power: regulating and storing power from different sources, e.g. solar panels, batteries.
    - Table 2.13, pg 125, Typical Power Subsystem
  - » Data Communication: communication with earth using uplinks, data stream from craft using redundant downlinks
  - » Attitude Control: redundant sensors, gyros, momentum wheels
  - » Command and Control: hardware testing of parity, illegal instructions, mem. addresses, sanity checks, timing mechanisms

| Element    | Tracking<br>Solar Array                                                                                                   | Solar<br>Array Drive                      | Slip-Ring<br>Assembly                   | Charge<br>Controller                                                 | Batteries                                                | Power<br>Regulation | Power<br>Distribution         |
|------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|---------------------|-------------------------------|
| Redundancy | Extra capacity<br>series/parallel<br>connections<br>of individual<br>solar cells<br>allows for<br>graceful<br>degradation | Redundant<br>drive elements<br>and motors | Parallel rings<br>for power<br>transfer | Automatic<br>monitoring<br>and control of<br>battery charge<br>state | Series/parallel<br>connections;<br>diode protec-<br>tion | Redundant<br>spares | Automatic<br>load<br>shedding |

#### Table 2.13: Typical Power Subsystem

#### Table 2.14: Attributes of the Voyager Spacecraft

| Systems<br>Characteristics                                        | Propulsion          | Power                                                          | Data<br>Communications                                              | Attitude<br>Control                                     | Command<br>and Payload                                                 |
|-------------------------------------------------------------------|---------------------|----------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------|
| Planetary probe<br>Three-axis stabilized<br>Mission life: 7 years | Hydrazine thrusters | Three radioactive ther-<br>mal generators;<br>430 W at Jupiter | Downlink, 2; uplink, 1;<br>two antennas (high<br>gain and low gain) | Reduncant sun sensors<br>and Canopus (star)<br>trackers | Command rate: 16 bps<br>Redundant<br>computers, 4K<br>words each; data |

- SIFT (software implemented fault tolerance) (70s)
  - » intended for real-time aircraft control
  - » assumption that future airplanes would be designed to be unstable
  - » loss of computer for even milliseconds could lead to catastrophe
  - » how does one verify systems when fail rates are  $10^{-10}$ ?
  - » approach: mathematically prove correctness of system software
  - » hardware is assumed to use independent computers using fully connected graph topology, implementing unidirectional series links.
  - » software divided into tasks, results from redundant tasks are voted upon. (Actually it is the inputs to tasks that is voted on).
  - » 3 processor example Pra96, fig 2.11, pg 130
    - input to A is output of voter with 3 inputs



**Figure 2.11:** Arrangement of application tasks within SIFT configuration. (Adapted from Wensley 1978).