Objective

 Designing systems that are capable of self-diagnoses of multiple faults

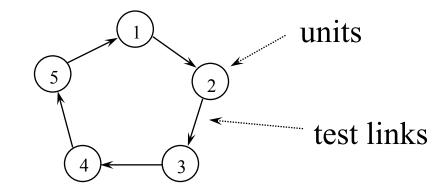
Motivation

- Multiprocessor systems employ increasing numbers of processors. Some of these processors will fail.
- Applications include safety critical systems.
- Inaccessible systems, e.g. remote, under water or ground, space.
- "It is always good to know who your enemies are".

Assumptions

- System is partitioned into units
 - » units need not be identical
 - » units are powerful enough to test and judge other units pass/fail.
- Tests are adequate to detect all faults
 - » perfect coverage. (This is very restrictive since it also implies faults to be permanent).
- There exists a reliable method for collecting and evaluating all test results
 - » e.g. reliable broadcast
- These assumptions are often termed *PMC Model*, after early work by Preparata, Metze and Chien (1967)
 - "On the Connection Assignment Problem of Diagnosable Systems", IEEE Trans. on Electronic Computers, Vol. EC16, No. 6, Dec. 1967.

System Graph



- Definitions
 - Test graph G = (U, E)
 - U: the set of units
 - -E: the set of testing links (edges)
 - a_{ij} : the outcome of test (U_i, U_j)

if U_i is non-faulty then

if U_j is non-faulty $\Rightarrow a_{ij} = 0$

if U_j is faulty $\Rightarrow a_{ij} = 1$

else a_{ij} is unreliable

- Example: single fault, U_1 faulty
 - Then $a_{51} = 1$ and $a_{12} = X$ (0 or 1)
 - Syndrome S = set of all outcomes
 - » order all a_{ij}

$$-> a_{12} -> a_{23} -> a_{34} -> a_{45} -> a_{51} ->^{\land}$$

 $-> X -> 0 -> 0 -> 1 ->^{\land}$

- 2 cases
 - » Single 1 in $a_{51} \Rightarrow U_1$ is faulty
 - note if U_5 was faulty, then $a_{45} = 1$
 - » Pair of adjacent 1's
 - the "upstream" 1 is correct
 - $a_{45} = 1$

- Definition: t-fault-diagnosable
 - Every set of up-to t faulty units can be correctly diagnosed (eventually).
 - » Previous example is 1-fault-diagnosable
 - » not 2-fault diagnosable
 - e.g. assume U1 and U2 faulty and $a_{12} = 0$
 - same syndrome as 1-fault-diagnosable example
- Definition: one-step t-fault-diagnosable
 - For every set of up-to t faulty units there exists a unique syndrome which correctly identifies <u>all</u> faulty units.

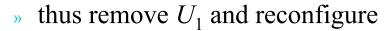
- Definition: Sequential t-fault-diagnosable
 - For every set of up-to t faulty units there exists a unique syndrome which correctly identifies at least one faulty unit.
 - (Can be applied recursively)

Example: dual fault

- Assume U_1 and U_2 are both faulty

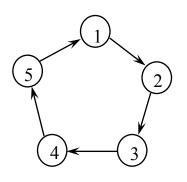
$$(a_{12}, a_{23}, a_{34}, a_{45}, a_{51})$$

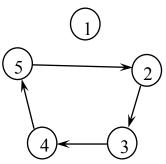
$$\rightarrow$$
 i.e. $(0,0,0,0,1)$



»
$$(a_{23}, a_{34}, a_{45}, a_{52})$$

» still have 001 pattern $\Rightarrow U_2$ diagnosed to be faulty

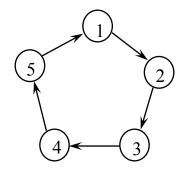


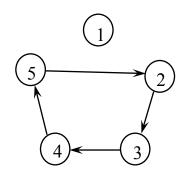


Example: dual fault

- Assume U_1 and U_3 are both faulty
 - $(a_{12}, a_{23}, a_{34}, a_{45}, a_{51})$
 - (X, 1, X, 0, 1)

- (1,1,1,0,1)
- » still points to one faulty unit $\Rightarrow U_1$
- » after reconfiguration
 - \blacksquare $(a_{23}, a_{34}, a_{45}, a_{52})$
 - $\blacksquare (1, X, 0, 0)$
- » points to one faulty unit => U_3





- Necessary and Sufficient Conditions
 - t = # of faults
 - » n = # of units
 - » N = # of testing links
 - One-step t-fault-diagnosable system $n \ge 2t + 1$
 - » each unit is tested by **more** than t-1 other units (or: at least t)
 - » this implies $N \ge n \cdot t$
 - » optimal: replace ≥ with =
 - Sequentially t-fault-diagnosable system
 - $n \ge 2t + 1$ ← necessary
 - $N \ge n + 2t 2$ ← and sufficient

- Single Loop System (Ring)
 - Let $t = 2m + \lambda$ integer 0 or 1 (even or odd)
 - Loop is sequentially t-fault-diagnosable if $n \ge 1 + (m+1)^2 + \lambda(m+1)$
 - » proof given in paper Pre67
 - e.g.

$$m = 1 \implies m = 0, \lambda = 1, \qquad n = 1 + 1 + 1 = 3$$

$$n = 1 + 1 + 1 = 3$$

$$m = 1, \lambda = 0,$$
 $n = 1 + 2^2 + 0 = 5$

$$n = 1 + 2^2 + 0 = 5$$

$$m = 1, \lambda = 1, n = 1 + 2^2 + 2 = 7$$

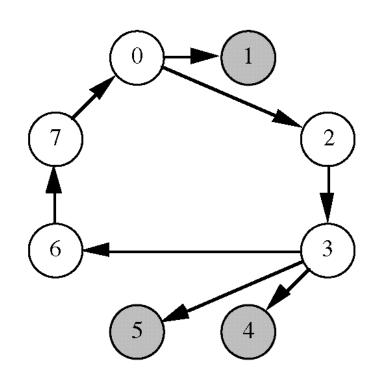
$$n = 1 + 2^2 + 2 = 7$$

- Inefficiency of PMC
 - PMC requires for t-diagnosability, that each node must be tested by at least *t* other nodes.
 - Problem: many diagnosis!
 - Alternative: adaptive models
 - » the term adaptive stems from allowing the choice of which test(s) to perform depend on the results of previous tests.

Adaptive Distributed System Diagnosis

- "Implementation of On-Line Distributed System-Level Diagnosis Theory" by Bianchini and Buskens, Trans. on Computers, May 1992
- Uses array TESTED_UP_x at each node n_x
- Meaning of TESTED_UP_x[i]
 - » TESTED_UP_x[i] = j implies that node n_x has received information from fault-free node n_i , that n_i found n_i to be fault-free.
- Idea:
 - » each node finds first node that is fault-free
 - n_i checks n_i $j > i \mod N$, where N is the number of nodes.
 - » get other TESTED_UP_i values from TESTED_UP_i
 - » implies that node n_x has received information from fault-free node n_j , that n_i found n_i to be fault-free.

Example: assume nodes 1, 4 and 5 are faulty



TESTED_UP₂[0] =
$$\begin{bmatrix} 2 \\ TESTED_UP_2[1] = \\ x \end{bmatrix}$$
TESTED_UP₂[2] = $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$
TESTED_UP₂[3] = $\begin{bmatrix} 6 \\ 4 \end{bmatrix}$
TESTED_UP₂[4] = $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$
TESTED_UP₂[5] = $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$
TESTED_UP₂[6] = $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$

Bia92, fig 4 and 6

Adaptive Distr.Sys.Diag. Algorithm (Bia92 fig 5)

```
/* ADAPTIVE DSD
                                                                                           */
             /* The following is executed at each n_x, 0 \le x \le N-1 at predefined
                                                                                           */
             /* testing intervals.
                                                                                           */
1.
             y = x;
2.
             repeat {
2.1.
                      y = (y + 1) \mod N;
2.2.
                      request n_v to forward TESTED_UP_y to n_x; \leftarrow
2.3.
             } until (n<sub>x</sub> tests n<sub>y</sub> as "fault-free");
                                                                               request issued before
3.
             TESTED_UP<sub>x</sub>[x] = y;
                                                                               node is tested fault-free
             for i = 0 to N-1
4
                                                                               => keep data only if n<sub>v</sub> ok
4.1.
                      if (i \neq x)
4.1.1.
                               TESTED\_UP_x[i] = TESTED\_UP_v[i];
```

(Bia92 fig 5)

Diagnosis

- accomplished at any node n_x by following the fault-free paths from n_x to other fault-free nodes.

```
/* DIAGNOSE
                                                                                     */
            /* The following is executed at each n_x, 0 \le x \le N-1 when n_x
                                                                                     */
            /* desires diagnosis of the system.
                                                                                     */
            for i = 0 to N-1
1.1.
                    STATE_{\mathbf{v}}[i] = faulty;
            node_pointer = x;
3.
            repeat {
3.1.
                    STATE_{x}[node\_pointer] = fault-free;
                    node\_pointer = TESTED\_UP_x[node\_pointer];
3.2.
3.3.
             } until (node pointer == x);
```

Bia92 fig. 7