Clock Synchronization

Reading a Remote Clock
— Paper by Flaviu Cristian (Cri89a)
— “Probabilistic Clock Synchronization”
— Method for reading remote clocks
— Systems assumed to have random unbounded communication delays.

— Approach does not guarantee that a processor can always read a
remote clock.

— A process can read the clock of another process with a given precision
with a probability as close to 1 as desired.

— After reading clock, the actual reading precision is known.

© 2016 A.W. Krings Page: 1 CS449/549 Fault-Tolerant Systems Sequence 20

Clock Synchronization

The Problem of Reading Remote Times
~ Process P sends message (“time = ?”) to process Q. Process O replies
with message (“time = T")

— When P receives the message (“time = 7"), what time is it in O’ s
clock?

i.e. what is the time displayed by O’ s clock?
one can only try to derive an interval.
— Definitions:
t = the real-time when P receives the message from Q.
Co(?) = value displayed by O’ s clock at real-time ¢
min = minimal delay to send message from P to Q or vice versa.

D = half the roundtrip delay measured by P.
— Note: small letters/symbols indicate real times

© 2016 A.W. Krings Page: 2 CS449/549 Fault-Tolerant Systems Sequence 20

Clock Synchronization

~ Let (min +a),(min +), a,B =0 be the real time
delays for sending and returning a message.
message path: P —= Q — P
min + o accounts for message time from P to QO

min + 3 accounts for message time from Q to P

— Let 2d be the real time roundtrip delay, then

2d =2min+ o + 3
—- We are interested in 3, since this 1s the time that has

passed since QO wrote its time in the message to P.
How big 1s 3?

© 2016 A.W. Krings Page: 3 CS449/549 Fault-Tolerant Systems Sequence 20

Clock Synchronization
_ Using 2d =2mmm+a+ £ we get
O=<fB =2d-2min

since o could be 0.

~ (O’ s clock can run at any speed in [1 - p, 1 + p], where p
1s again the clock drift rate.

— Thus

C, (1) E[T + (min+ B)(1 - p), T + (min+ B)(1 + p)]
substituting § from above

C,(1) e

[7+ (min)(1 — p), 7 + (min+ 2d — 2 min)(1 + p)]

© 2016 A.-W. Krings Page: 4 CS449/549 Fault-Tolerant Systems Sequence 20

Clock Synchronization

— Now, relate
C, (1) €T+ (min)(1- p), T+ (2d — min)(1 + p)]

to the time measured 1in P.
_ Since P’ s clock could have maximum drift we must

assume
d =D(l+ p)

Co,(OE[T +min(1-p), T+ 2D+ p)—min)(1+ p)]
=[7 +min(1- p),T +2D(1+ p)* —min(l + p)]

~[7T+min(l-p), T +2D(A+2p)—-min(l1+ p)]

— This 1s the smallest interval possible p* is ignored

© 2016 A.W. Krings Page: 5 CS449/549 Fault-Tolerant Systems Sequence 20

Clock Synchronization

— Processor P cannot determine where in the interval O’ s
clock value is.

~ Suggestion:
Estimate C,, by function Cg, (7', D)
— The actual error 1s

|C5 (T, D) = Cy(0)

~ What is a good choice for Cg (7', D)
best choice for function is to choose midpoint

© 2016 A.W. Krings Page: 6 CS449/549 Fault-Tolerant Systems Sequence 20

Clock Synchronization

~ Midpoint

(T +min(l1— p)+ 7T +2D(1+2p) — min(1 + p)) =
S QT +min(1-p—1-p)+2D(1+2p)) =
7T — pmin+ D(1+2p)

~ Thus CH(7T', D) =T — pmin+ D(1+ 2p)

this is “P’ s reading of Q” s clock”

— The maximal error this can cause 1s half the largest
possible interval.

|77+ min(l—), 7T +2D(1+2p)—min(l+ p)]

© 2016 A.W. Krings Page: 7 CS449/549 Fault-Tolerant Systems Sequence 20

Clock Synchronization

AT +2D(+2p)—min(l+ p) — (7 + min(1 — p))] =
AT +2D(1+2p)—min(l+ p)—7 —min(l — p)] =
A[2D(1+2p) —min(1+ p) — min(1 — p)] =
Y[2D(1 +20) — 2 min] =

D(1+2p0)—min

N

— Thus largest possible error is:

e=D(l+2p0)— min

~ Any other estimate choice leads to a bigger maximum
erTor.

© 2016 A.W. Krings Page: 8 CS449/549 Fault-Tolerant Systems Sequence 20

