- Why do we need clock synchronization?
 - process coordination
 - » e.g. real-time process control systems require that accurate timestamps be assigned to sensor values to aid in correct data interpretation.
 - performance monitoring
 - » e.g. performance statistics based on elapsed time
 - deadline detection
 - » e.g. determination if deadlines have been violated
 - distributed agreement
 - » e.g. assumed loose synchronization for atomic broadcast

- Clocks
 - atomic clocks
 - » extremely accurate
 - » but: too expensive, too big, too unreliable and complex
 - crystal oscillator
 - » typical computer clock
 - » small, cheap, simple
 - » fairly reliable with fail rates of about 10⁻⁶/h
 - » accuracy of 10^{-5} to 10^{-6}
 - resulting in drifts of 1 to 10 μs/s
 - 3.6 to 36 ms/h
 - clocks based on power-line frequency
 - » power grid in the Northern US typically drifts 4 to 6 seconds from real time over the course of an evening

Synchronization

- external synchronization
 - » maintain processor clock within some given maximum derivation from a time reference external to the system
- internal synchronization
 - » keep processor clocks synchronized within some maximum relative derivation of each other

Definitions

- "Understanding Protocols for Byzantine Clock Synchronization", Fred Schneider, 87-859, Aug. 1987, CS Dept., Cornell University.
- Real-Time (t)
 - » unobservable -- can only be approximated
 - » "observes" events of different processors
 - observes and records all events
 - all observation delays are identical, i.e. there is no time skew
 - all events are immediately time-stamped, i.e. there is no processing delay
- Real-Clock $C_p(t)$ of processor p
 - » function mapping real time *t* into a clock reading $C_p(t)$
 - » thus $C_p(t)$ is the value of the clock in processor p at real time t

- $C_p(t)$ is characterized by μ , ρ and κ
 - » constant μ : defines the range of initial values
 - hardware initial value

 $0 \le C_p(0) \le \mu$

- » constant κ is the interval between ticks, i.e. the length of a tick, also defining the granularity
- » constant ρ is the upper bound on the clock drift rate
- » thus at each tick a clock is incremented (advanced) by a varying real number value *v*, with

$$(1-\rho)\kappa \leq v \leq (1+\rho)\kappa$$

» hardware rate

$$0 < (1 - \rho) \le \frac{C_p(t + \kappa) - C_p(t)}{\kappa} \le (1 + \rho) \text{ for } 0 \le t$$

- physical clock
 - » hardware clock
 - » simple counter
 - » constant rate (+/- ρ)
 - » no correction mode (independent of protocol)
 - » source of clock drift
- virtual clock \hat{C}_p
 - » clock synchronization protocols implement virtual clocks \hat{C}_p at each processor *p*.
 - » can be started, stopped, corrected

» mapping

$$t \to C_p(t) \to \hat{C}_p(t)$$

t: real time $C_p(t)$: hardware clock reading at *t* $\hat{C}_p(t)$: virtual clock reading at *t*

- » Similarly to real clocks virtual clocks have
 - $\hat{\mu}$ defines the range of initial values
 - \hat{K} is the tick length, may be >> K
 - ${\scriptstyle \blacksquare}\,\hat{\rho}\,$ is the upper bound on the clock drift rate

Objective

- Virtual Synchronization
 - » given two processors p and q

$$|\hat{C}_q(t) - \hat{C}_p(t)| \le \hat{\delta}$$
(2.3)

» here $\hat{\delta}$ defines how close the virtual clocks are synchronized

- Virtual Rate

$$0 < (1 - \hat{\rho}) \le \frac{\hat{C}_p(t + \hat{\kappa}) - \hat{C}_p(t)}{\hat{\kappa}} \le (1 + \hat{\rho}) \text{ for } 0 \le t$$
(2.4)

Reliable Time Source (RTS)

- a mechanism which periodically makes the "correct" time available to all processors so that all processors can adjust their local virtual clock to the RTS.
- requirements
 - » time is distributed frequently enough
 - » processor clocks will not drift too far apart in the interval between adjustment
 - » no processor has to adjust its clock by too much
 - » the adjustment can be spread over the interval that precedes the next resynchronization
- if these requirements can be met, a reliable time source can solve the synchronization problem.

RTS Definitions

- RTS is periodic
 - » sequence of events at real times

$$t_{RTS}^{1}, t_{RTS}^{2}, t_{RTS}^{3}, \dots$$

– Periods are stable within a fixed bound. i.e.

$$r_{\min} \leq r_{period} \leq r_{\max}$$

where r_{\min} and r_{\max} are constants

- t_p^i is the real-time at which processor p detects event t_{RTS}^i

- For a process to qualify as an RTS is must satisfy the following conditions:
 - RTS1:
 - » *bounded period*: a reliable time source generates a sequence of events at real times such that

$$(t_{RTS}^1 = 0) \land (\forall i: 0 < i: r_{\min} \le t_{RTS}^{i+1} - t_{RTS}^i \le r_{\max})$$

» bounded reading: the real time at which a processor p detects the event produced at t_{RTS}^i satisfies

$$(t_P^1 = 0) \land (\forall i: 1 \le i: 0 \le t_p^i - t_{RTS}^i \le \beta)$$

where β is a constant.

» the first part in the above terms indicate that protocol & clocks start at real time 0

- RTS2:
 - » Real Time Source provides a useful value to all non-faulty processors to be used for correction, i.e.

At t_p^i processor p obtains a value V_p^i that can be used in adjusting \hat{C}_p consistent with (2.3) and (2.4)

- Note: it is not implied that the correct time is always available to processors, but it is available periodically
- RTS1 and RTS2 can be easily implemented using a single clock, but this clock is a single-point-of-failure
 - » RTS1 achieved by using individual processor clocks to signal periodic resynchronization event
 - » RTS2 achieved by each processor producing fault-tolerant average, e.g. median value.

- Resetting a virtual clock \hat{C}_p
 - Typically "adjusting" a clock can be thought of as "resetting".
 - At real time 0, a processor uses virtual clock \hat{C}_p^1 and starts a new virtual clock \hat{C}_p^{i+1} at real time t_p^{i+1} after detecting t_{RTS}^{i+1}
 - Thus in interval $t_p^i \le t < t_p^{i+1}$ we have $\hat{C}_p(t) = \hat{C}_p^i(t)$

- Implementing virtual clock \hat{C}_{p}^{i}
 - At processor p take hardware clock C_p and add adjustment value resulting from clock synchronization protocol, i.e.

$$\hat{C}_p^i(t) \equiv C_p(t) + FIX_p^i(C_p(t))$$

- here $FIX_p^i(C_p(t)) = FIX_p^i(T)$ is a correction function.
 - » note: *T* is the clock time, whereas *t* is the real-time
 - » need to implement a "smooth" correction function to avoid big jumps in \hat{C}_p^i , i.e. to not violate the virtual rate (2.4)

- $FIX_p^i(T)$ spreads any change in its correction to C_p over an *adjustment interval* (AI), or AI clock seconds.
- Let adj_p^i be the cumulative adjustment to implement \hat{C}_p^i from C_p
- Then $adj_p^i adj_p^{i-1}$ is the additional, incremental amount of correction added during period *i*.
- The resulting "gradual" correction function is

Effects of AI

- If $AI \leq \hat{\kappa}$ then instantaneous resynchronization
- Else continuous resynchronization
- $FIX_p^i(T)$ is a linear interpolation of the adj. function, and is a step-function if clock is discontinuous

• Definition of *adj*. function

- define a *convergence function* CF
- then

$$adj_{p}^{i+1} = \operatorname{CF}[p, \hat{C}_{1}^{i}(t_{p}^{i+1}), \dots, \hat{C}_{N}^{i}(t_{p}^{i+1})] - C_{p}(t_{p}^{i+1})$$

note that $\hat{C}_{j}^{i}(t_{p}^{i+1})$ is the virtual time when processor *p* recognizes t_{RTS}^{i+1}

- Thus function adj_p^{i+1} gives the amount that $C_p(t_p^{i+1})$ differs from $\hat{C}_p(t_p^{i+1})$
- Note that it is a function of other clock readings

Clock Synchronization Protocol

$$i=1;adj_p^0=adj_p^1=0$$

do forever

1) detect event generated at time t_{RTS}^{i+1} ; $t_p^{i+1} = \text{real time now}$ 2) $adj_p^{i+1} = CF[p, \hat{C}_1(t_p^{i+1}), \dots, \hat{C}_N(t_p^{i+1})] - C_p(t_p^{i+1})$ 3) calculate $FIX_p^i(C_p(t))$ from adj_p^{i+1} 4) i = i + 1end

Implementation Issues

- step 1: how to "detect event generated at time t_{RTS}^{i+1} "
- step 2: how does one processor read the virtual clocks at another processor
- step 3: what is a valid CF function

Detecting Resynchronization Events (step 1)

- detect event generated at time t_{RTS}^{i+1} by using our own approximately synchronized virtual clock
- count to some predefined value *R*, i.e. when $\hat{C}_p^i = iR$ start next cycle
- can be done using timer etc.
- thus

 t_p^{i+1} = time at which processor p starts its cycle

 t_{RTS}^{i+1} = time at which *earliest* correct clock starts new cycle

- since clock advances with $(1 \pm \hat{\rho})$ we get

$$r_{\min} = \frac{R}{1 + \hat{\rho}}$$
 $r_{\max} = \frac{R}{1 - \hat{\rho}}$

- recall from RTS1 that $0 \le (t_p^i t_{RTS}^i) \le \beta$
- furthermore, recall from (2.3) that slowest clock lags fastest clock by at most $\hat{\delta}$
- then the slowest clock must reach *iR* no later than $\frac{\hat{\delta}}{1-\hat{\rho}}$
- thus

$$\beta = \frac{\hat{\delta}}{1 - \hat{\rho}}$$

Reading other Clocks (step 2)

- Using Correction Table
 - » Processor p occasionally queries other processors, e.g. q
 - » Processor *q* responds with time stamped message
 - » Processor *p* maintains table $\tau_p^i[1,...,N]$ where $\tau_p^i[q]$ is used to approximate $\hat{C}_q^i(t)$ i.e.

$$\tau_p^i[q] = C - (C_p(t_{now}) - \Gamma_{\min})$$

here C is $\hat{C}_q(t_{reply})$

- Γ_{\min} is the minimum propagation delay
- Γ_{\max} is defined respectively
- » Is assuming the minimum propagation delay realistic?

- Clock Reading Error
 - » Let $\lambda_p^i(q)$ be the error in p's approximation of $\hat{C}_q^i(t)$
 - » Then, assuming A is the maximum clock reading error

$$\begin{split} \lambda_p^i(q) \leq \\ \Gamma_{\max} - \Gamma_{\min} + (\rho + \hat{\rho})(lread_p(q)) \leq A \end{split}$$

where $lread_p(q)$ is the time since $\tau_p^i[q]$ was logged, and A is the max clock reading error.

- » here $\Gamma_{max} \Gamma_{min}$ is the dominating term w.r.t. reading error
- » therefore we focus on minimizing propagation and processing delays
- Note:
 - » using periodic queries reduces number of messages by half, but can result in significant higher $\Gamma_{max} \Gamma_{min}$

Convergence Functions (CF) (step 3)

- Multiset
 - » collection of objects similar in concept to a set
 - » different from set in that not all elements need to be distinct
 - » number of times a particular object (value) appears in a multiset is called the multiplicity of that object
- Convergence Function arguments are:
 - » processor evaluating CF
 - » values x_q , $1 \le q \le N$ of values from processor q

1) Monotonicity of CF

- » given two multisets *X* and *Y* (monotonically non-decreasing)
- » if $x_i \le y_i$, $\forall i, 1 \le i \le N$ implies

$$CF(p, x_1, x_2, ..., x_N) \le CF(p, y_1, y_2, ..., y_N)$$

- 2) Translation Invariance
 - » relative values matter (and not absolute values)
 - » thus

$$CF(p, x_1 + v, ..., x_N + v) = CF(p, x_1, ..., x_N) + v$$

» this allows comparison of values computed by CF at different times, i.e. values of CF are not affected by shift in time.

3) Precision Enhancement Property

- » require convergence
 - Consider CF value of two processors *p* and *q* using at least *N-k* similar values. (*k* is the number of faulty elements).
 - CF value of p and q should be closer than x_p and x_q were.
- » property:

$$|CF(p, x_1, x_2, \dots, x_N) - CF(q, y_1, y_2, \dots, y_N)| \le \pi(\delta, \varepsilon)$$

if

- all non-faulty x_i are within δ from each other, i.e. $\delta = \max |x_i x_j|$
- for corresponding y_i 's $\delta = \max |y_i y_j|$
 - (recall that δ is the max skew in reading of correct clocks)
- for each non-faulty pair $|x_i y_i| \le \varepsilon$
- » $\pi(\delta, \varepsilon)$ is called the *precision function*

 $\pi(\delta,\varepsilon) < \delta \Rightarrow \text{convergence}$

- 4) Accuracy Preservation Property
 - » this basically prevents big jumps
 - » property:

$$|CF(p, x_1, x_2, \dots, x_N) - x_p| \le \alpha(\delta)$$

where $\alpha(\delta)$ is called the *accuracy function* » if $|adj_p^{i+1} - adj_p^i| \le \alpha(\delta)$

then the adjustment is bounded

- Egocentric Average:
 - » take the average of all values that are no more than δ from x_p
 - » note:
 - watch out, there are definitions of egocentric algorithms that replace all values not within the range with your own value.
- Example
 - » $CF(p,x_1,x_2,...,x_n) = CF(2,4,5,3,4,6,7,11,6,22,4,3,5,5)$
 - » assume $\delta = 3$, here we have 13 values, 3k+1=N, thus k=4
 - » sorted multiset: {3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 11, 22}
 - » since $x_2 = 5$ we have to consider all values in the range [2,8]
 - » CF = Ave(3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7) = 4.73

- Fast Convergence Algorithm:
 - » take average of all values that are within δ from at least *N*-*k* values
 - So the question to ask for each value is: *is the "neighborhood" of the value large enough, i.e., N-k, to be included?*
 - » the degree k of fault tolerance is characterized by 3k+1=N,
 - $\approx \delta$ is the range of values
- Example
 - » $CF(p,x_1,x_2,...,x_n) = CF(2,4,5,3,4,6,7,11,6,22,4)$
 - » assume $\delta = k = 3$, then N-k = 10-3 = 7
 - » sorted multiset: {3, 4, 4, 4, 5, 6, 6, 7, 11, 22}
 - » ask: "is value x within 3 from at least 7 other values?"
 - e.g., value 4 results in interval [1,7]. Since there are 8 values in the interval value [4-3,4+3] = [1,7] is included.
 - » CF = Ave(4, 4, 4, 5, 6, 6)

- Fault-tolerant Midpoint:
 - » reduce *k* highest and lowest values and average both extreme values
 - Midpoint: (max_value + min_value) / 2 (after reduction of k extremes)
 - note this is **not** the median value in the sorted array of values!!!!
- Example
 - » $CF(p,x_1,x_2,...,x_n) = CF(2,4,5,3,4,6,7,11,6,22,4,3,5,5)$
 - » sorted multiset: {3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 11, 22}
 - » with k = 3 the reduced multiset is {4, 4, 5, 5, 5, 6, 6}
 - » CF = (4+6)/2 = 5

- Fault-tolerant Average:
 - » reduce *k* highest and lowest values and select average over all remaining
 - » more general: MSR
- Example
 - » $CF(p,x_1,x_2,...,x_n) = CF(2,4,5,3,4,6,7,11,6,22,4,3,5,5)$
 - » sorted multiset: {3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 11, 22}
 - with k = 3 the reduced multiset is {4, 4, 5, 5, 5, 6, 6}
 - » CF = Ave(4, 4, 5, 5, 5, 6, 6) = 5