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Clock Synchronization  

◆  Why do we need clock synchronization? 
–  process coordination 

»  e.g. real-time process control systems require that accurate timestamps be 
assigned to sensor values to aid in correct data interpretation. 

–  performance monitoring 
»  e.g. performance statistics based on elapsed time 

–  deadline detection 
»  e.g. determination if deadlines have been violated 

–  distributed agreement 
»  e.g. assumed loose synchronization for atomic broadcast 
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Clock Synchronization  
◆  Clocks 

–  atomic clocks  
»  extremely accurate 
»  but: too expensive, too big, too unreliable and complex 

–  crystal oscillator 
»  typical computer clock 
»  small, cheap, simple 
»  fairly reliable with fail rates of about 10-6/h 
»  accuracy of 10-5 to 10-6 

■  resulting in drifts of 1 to 10 µs/s 
■  3.6 to 36 ms/h 

–  clocks based on power-line frequency 
»  power grid in the Northern US typically drifts 4 to 6 seconds from real 

time over the course of an evening 
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Clock Synchronization  

◆  Synchronization 
–  external synchronization 

»  maintain processor clock within some given maximum derivation from a 
time reference external to the system 

–  internal synchronization 
»  keep processor clocks synchronized within some maximum relative 

derivation of each other 
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Clock Synchronization  

◆  Definitions 
–  “Understanding Protocols for Byzantine Clock Synchronization”, Fred 

Schneider, 87-859, Aug. 1987, CS Dept., Cornell University. 
–  Real-Time (t) 

»  unobservable -- can only be approximated 
»  “observes” events of different processors 

■  observes and records all events 
■  all observation delays are identical, i.e. there is no time skew 
■  all events are immediately time-stamped, i.e. there is no processing delay 

–  Real-Clock Cp(t) of processor p 
»  function mapping real time t into a clock reading Cp(t) 
»  thus Cp(t) is the value of the clock in processor p at real time t 



Page: 5   © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems    Sequence 19 

Clock Synchronization  
–  Cp(t) is characterized by µ, ρ and κ  

»  constant µ: defines the range of initial values 
■  hardware initial value 

»  constant κ is the interval between ticks, i.e. the length of a tick, also 
defining the granularity 

»  constant ρ is the upper bound on the clock drift rate 
»  thus at each tick a clock is incremented (advanced) by a varying real 

number value v, with 
 
»  hardware rate 
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Clock Synchronization  
–  physical clock 

»  hardware clock 
»  simple counter 
»  constant rate (+/- ρ) 
»  no correction mode (independent of protocol) 
»  source of clock drift 

–  virtual clock  
»  clock synchronization protocols implement virtual clocks         at each 

processor p. 
»  can be started, stopped, corrected 

Cp
Cp
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Clock Synchronization  
»  mapping 
 
 
 
 
 
 

»  Similarly to real clocks virtual clocks have 
■     defines the range of initial values 

■     is the tick length, may be >> κ 
■     is the upper bound on the clock drift rate 

t C t C tp p→ →( )  ( )
t:  real time
C t tp ( ):  hardware clock reading at 
 ( ):C t tp  virtual clock reading at 
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Clock Synchronization  

◆  Objective 
–  Virtual Synchronization 

»  given two processors p and q 
 
 
»  here     defines how close the virtual clocks are synchronized 
 

–  Virtual Rate 
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Clock Synchronization  

◆  Reliable Time Source (RTS) 
–  a mechanism which periodically makes the “correct” time available 

to all processors so that all processors can adjust their local virtual 
clock to the RTS. 

–  requirements 
»  time is distributed frequently enough 
»  processor clocks will not drift too far apart in the interval between 

adjustment 
»  no processor has to adjust its clock by too much 
»  the adjustment can be spread over the interval that precedes the next 

resynchronization 
–  if these requirements can be met, a reliable time source can solve the 

synchronization problem. 
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Clock Synchronization  

◆  RTS Definitions 
–  RTS is periodic 

»  sequence of events at real times 
 
 

–  Periods are stable within a fixed bound. i.e. 
 
 
      

–        is the real-time at which processor p detects event  

t t tRTS RTS RTS
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Clock Synchronization  
◆  For a process to qualify as an RTS is must satisfy the 

following conditions: 
–  RTS1:  

»  bounded period:  a reliable time source generates a sequence of events at 
real times such that  

 
 
»  bounded reading: the real time at which a processor p detects the event 

produced at           satisfies 
 
 
    
       where β is a constant. 
»  the first part in the above terms indicate that protocol & clocks start at 

real time 0 
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Clock Synchronization  
–  RTS2: 

»  Real Time Source provides a useful value to all non-faulty processors to 
be used for correction, i.e. 

 
 
 

–  Note: it is not implied that the correct time is always available to 
processors, but it is available periodically 

–  RTS1 and RTS2 can be easily implemented using a single clock, but 
this clock is a single-point-of-failure 

»  RTS1 achieved by using individual processor clocks to signal periodic 
resynchronization event 

»  RTS2 achieved by each processor producing fault-tolerant average, e.g. 
median value. 

€ 

At tp
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in adjusting ˆ C p  consistent with (2.3) and (2.4)
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Clock Synchronization  

◆  Resetting a virtual clock 
–  Typically “adjusting” a clock can be thought of as  
“resetting”. 

–  At real time 0, a processor uses virtual clock                 
and starts a new virtual clock         at real time         after      
detecting 

–  Thus in interval                       we have 

Cp
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Clock Synchronization  

◆  Implementing virtual clock 
–  At processor p take hardware clock Cp and add adjustment 

value resulting from clock synchronization protocol, i.e. 
 
 
–  here                                                      is a correction 

function.  
»  note: T is the clock time, whereas t is the real-time 
»  need to implement a “smooth” correction function to avoid big 

jumps in       ,i.e. to not violate the virtual rate (2.4) 
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Clock Synchronization  

–                     spreads any change in its correction to Cp over 
an adjustment interval (AI), or AI clock seconds. 

–  Let           be the cumulative adjustment to implement       
from Cp 

–  Then                           is the additional, incremental 
amount of correction added during period i. 

–  The resulting “gradual” correction function is 
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Clock Synchronization  

◆  Effects of AI 
–  If                then instantaneous resynchronization 
–  Else continuous resynchronization  
–                      is a linear interpolation of the adj. function, 

and is a step-function if clock is discontinuous 

AI ≤ κ
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Clock Synchronization  

◆  Definition of adj. function 
–  define a convergence function CF 
–  then 
 
 
              note that                  is the virtual time when               

         processor p recognizes  
–  Thus function             gives the amount that               

differs from   
–  Note that it is a function of other clock readings 
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Clock Synchronization  

◆  Clock Synchronization Protocol 
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     2) 
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     4) 
end
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Clock Synchronization  

◆  Implementation Issues 
–  step 1: how to “detect event generated at time         “ 
–  step 2: how does one processor read the virtual clocks at 

another processor 
–  step 3: what is a valid CF function 

tRTS
i+1
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Clock Synchronization  

◆  Detecting Resynchronization Events (step 1) 
–  detect event generated at time          by using our own 

approximately synchronized virtual clock 
–  count to some predefined value R, i.e. when                 

start next cycle  
–  can be done using timer etc. 
–  thus  

                time at which processor p starts its cycle 
 
                time at which earliest correct clock starts new cycle 

tRTS
i+1

C iRp
i =

t p
i+ =1

tRTS
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Clock Synchronization  

–  since clock advances with               we get  
 
 
 
–  recall from RTS1 that  
–  furthermore, recall from (2.3) that slowest clock lags 

fastest clock by at most  
 

–  then the slowest clock must reach iR no later than 
–  thus 
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Clock Synchronization  

◆  Reading other Clocks (step 2) 
–  Using Correction Table 

»  Processor p occasionally queries other processors, e.g. q 
»  Processor q responds with time stamped message 
»  Processor p maintains table  
    where              is used to approximate  
    i.e. 
 
    here  C  is  
                is the minimum propagation delay 
                is defined respectively 
»  Is assuming the minimum propagation delay realistic? 

τ p
i N[ ,..., ]1

τ p
i q[ ]  ( )C tq

i

τ p
i

p nowq C C t[ ] ( ( ) )min= − − Γ

Γmin
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Clock Synchronization  
–  Clock Reading Error 

»  Let             be the error in p’s approximation of 
»  Then, assuming Α is the maximum clock reading error 
 
 
 
     where                        is the time since               was logged, 

  and  A  is the max clock reading error. 
 
»  here                      is the dominating term w.r.t. reading error 
»  therefore we focus on minimizing propagation and processing 

delays 
–  Note:  

»  using periodic queries reduces number of messages by half, but 
can result in significant higher  
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Clock Synchronization  

◆  Convergence Functions (CF) (step 3) 
–  Multiset 

»  collection of objects similar in concept to a set 
»  different from set in that not all elements need to be distinct 
»  number of times a particular object (value) appears in a multiset is 

called the multiplicity of that object 

–  Convergence Function arguments are: 
»  processor evaluating CF 
»  values                          of values from processor q x q Nq ,  1≤ ≤
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Clock Synchronization  

1) Monotonicity of CF 
»  given two multisets X and Y (monotonically non-decreasing) 
»  if                                           implies 

 
 
2) Translation Invariance 

»  relative values matter (and not absolute values) 
»  thus  
 
 
»  this allows comparison of values computed by CF at different 

times, i.e. values of CF are not affected by shift in time. 

CF p x x x CF p y y yN N( , , , , ) ( , , , , )1 2 1 2… …≤

x y  i, i Ni i≤ ∀ ≤ ≤, 1

CF p x v x v CF p x x vN N( , , , ) ( , , , )1 1+ + = +… …



Page: 26   © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems    Sequence 19 

Clock Synchronization  
3) Precision Enhancement Property 

»  require convergence 
■  Consider CF value of two processors p and q using at least N-k 

similar values. (k is the number of faulty elements). 
■  CF value of p and q should be closer than xp and xq were. 

»  property: 
 
 
    if 

■  all non-faulty xi are within δ from each other, i.e.  δ = max| xi - xj |  
■  for corresponding yi’s   δ = max| yi - yj |  

–  (recall that δ is the max skew in reading of correct clocks) 
■  for each non-faulty pair  

»                is called the precision function 
                        convergence 

| ( , , , , ) ( , , , , )| ( , )CF p x x x CF q y y yN N1 2 1 2… …− ≤ π δ ε

| |x yi i− ≤ ε

π δ ε( , )
π δ ε δ( , ) < ⇒ 
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Clock Synchronization  

–  4) Accuracy Preservation Property 
»  this basically prevents big jumps 
»  property: 
 
 
    where           is called the accuracy function 
»  if  
 
    then the adjustment is bounded 

| ( , , , , ) | ( )CF p x x x xN p1 2 … − ≤α δ

α δ( )

| | ( )adj adjp
i

p
i+ − ≤1 α δ
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Clock Synchronization  
Examples of functions satisfying 4 conditions 
–  Egocentric Average: 

»  take the average of all values that are no more than δ from xp  

»  note: 
■  watch out, there are definitions of egocentric algorithms that replace all 

values not within the range with your own value. 
–  Example 

»  CF(p,x1,x2,...,xn) = CF(2,4,5,3,4,6,7,11,6,22,4,3,5,5 ) 
»  assume δ = 3, here we have 13 values, 3k+1=N, thus k=4 
»  sorted multiset:  {3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 11, 22} 
»  since  x2 = 5 we have to consider all values in the range [2,8] 

»  CF =  Ave(3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7) = 4.73 
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Clock Synchronization  
Examples of functions satisfying 4 conditions 
–  Fast Convergence Algorithm: 

»  take average of all values that are within δ from at least N-k values 
■  So the question to ask for each value is: is the “neighborhood” of the value 

large enough, i.e., N-k, to be included? 
»  the degree k of fault tolerance is characterized by 3k+1=N,  
≈  δ is the range of values 

–  Example 
»  CF(p,x1,x2,...,xn) = CF(2,4,5,3,4,6,7,11,6,22,4) 
»  assume δ = k = 3, then N-k = 10-3 = 7  
»  sorted multiset:  {3, 4, 4, 4, 5, 6, 6, 7, 11, 22} 
»  ask: “is value x within 3 from at least 7 other values?” 

■  e.g., value 4 results in interval [1,7]. Since there are 8 values in the interval 
value [4-3,4+3] = [1,7] is included. 

»  CF =  Ave(4, 4, 4, 5, 6, 6)  
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Clock Synchronization  
Examples of functions satisfying 4 conditions 
–  Fault-tolerant Midpoint: 

»  reduce k highest and lowest values and average both extreme values  
■  Midpoint:  (max_value + min_value) / 2  (after reduction of k extremes) 
■  note this is not the median value in the sorted array of values!!!! 

–  Example 
»  CF(p,x1,x2,...,xn) = CF(2,4,5,3,4,6,7,11,6,22,4,3,5,5 ) 
»  sorted multiset:  {3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 11, 22} 
»  with k = 3 the reduced multiset is {4, 4, 5, 5, 5, 6, 6} 
»  CF =  (4+6)/2 = 5 
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Clock Synchronization  
Examples of functions satisfying 4 conditions 
–  Fault-tolerant Average: 

»  reduce k highest and lowest values and select average over all remaining 
»  more general: MSR 

–  Example 
»  CF(p,x1,x2,...,xn) = CF(2,4,5,3,4,6,7,11,6,22,4,3,5,5 ) 
»  sorted multiset:  {3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 11, 22} 
»  with k = 3 the reduced multiset is {4, 4, 5, 5, 5, 6, 6} 
»  CF =  Ave(4, 4, 5, 5, 5, 6, 6) = 5 


