
Page: 1 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

◆  Why do we need clock synchronization?
–  process coordination

»  e.g. real-time process control systems require that accurate timestamps be
assigned to sensor values to aid in correct data interpretation.

–  performance monitoring
»  e.g. performance statistics based on elapsed time

–  deadline detection
»  e.g. determination if deadlines have been violated

–  distributed agreement
»  e.g. assumed loose synchronization for atomic broadcast

Page: 2 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization
◆  Clocks

–  atomic clocks
»  extremely accurate
»  but: too expensive, too big, too unreliable and complex

–  crystal oscillator
»  typical computer clock
»  small, cheap, simple
»  fairly reliable with fail rates of about 10-6/h
»  accuracy of 10-5 to 10-6

■  resulting in drifts of 1 to 10 µs/s
■  3.6 to 36 ms/h

–  clocks based on power-line frequency
»  power grid in the Northern US typically drifts 4 to 6 seconds from real

time over the course of an evening

Page: 3 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

◆  Synchronization
–  external synchronization

»  maintain processor clock within some given maximum derivation from a
time reference external to the system

–  internal synchronization
»  keep processor clocks synchronized within some maximum relative

derivation of each other

Page: 4 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

◆  Definitions
–  “Understanding Protocols for Byzantine Clock Synchronization”, Fred

Schneider, 87-859, Aug. 1987, CS Dept., Cornell University.
–  Real-Time (t)

»  unobservable -- can only be approximated
»  “observes” events of different processors

■  observes and records all events
■  all observation delays are identical, i.e. there is no time skew
■  all events are immediately time-stamped, i.e. there is no processing delay

–  Real-Clock Cp(t) of processor p
»  function mapping real time t into a clock reading Cp(t)
»  thus Cp(t) is the value of the clock in processor p at real time t

Page: 5 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization
–  Cp(t) is characterized by µ, ρ and κ

»  constant µ: defines the range of initial values
■  hardware initial value

»  constant κ is the interval between ticks, i.e. the length of a tick, also
defining the granularity

»  constant ρ is the upper bound on the clock drift rate
»  thus at each tick a clock is incremented (advanced) by a varying real

number value v, with

»  hardware rate

0 0≤ ≤Cp () µ

() ()1 1− ≤ ≤ +ρ κ ρ κv

0 1 1< − ≤
+ −

≤ + ≤()
() ()

()ρ
κ

κ
ρ

C t C t
tp p for 0

Page: 6 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization
–  physical clock

»  hardware clock
»  simple counter
»  constant rate (+/- ρ)
»  no correction mode (independent of protocol)
»  source of clock drift

–  virtual clock
»  clock synchronization protocols implement virtual clocks at each

processor p.
»  can be started, stopped, corrected

Cp
Cp

Page: 7 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization
»  mapping

»  Similarly to real clocks virtual clocks have
■  defines the range of initial values

■  is the tick length, may be >> κ
■  is the upper bound on the clock drift rate

t C t C tp p→ →() ()
t: real time
C t tp (): hardware clock reading at
 ():C t tp virtual clock reading at

µ
κ
ρ

Page: 8 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

◆  Objective
–  Virtual Synchronization

»  given two processors p and q

»  here defines how close the virtual clocks are synchronized

–  Virtual Rate

| () ()| C t C tq p− ≤ δ

0 1 1< − ≤
+ −

≤ + ≤()
 () ()

 ()ρ
κ

κ
ρ

C t C t
tp p for 0

(2.3)

(2.4)

δ

Page: 9 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

◆  Reliable Time Source (RTS)
–  a mechanism which periodically makes the “correct” time available

to all processors so that all processors can adjust their local virtual
clock to the RTS.

–  requirements
»  time is distributed frequently enough
»  processor clocks will not drift too far apart in the interval between

adjustment
»  no processor has to adjust its clock by too much
»  the adjustment can be spread over the interval that precedes the next

resynchronization
–  if these requirements can be met, a reliable time source can solve the

synchronization problem.

Page: 10 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

◆  RTS Definitions
–  RTS is periodic

»  sequence of events at real times

–  Periods are stable within a fixed bound. i.e.

–  is the real-time at which processor p detects event

t t tRTS RTS RTS
1 2 3, , ,...

r r rperiodmin max≤ ≤

where and are constantsr rmin max

t p
i tRTS

i

Page: 11 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization
◆  For a process to qualify as an RTS is must satisfy the

following conditions:
–  RTS1:

»  bounded period: a reliable time source generates a sequence of events at
real times such that

»  bounded reading: the real time at which a processor p detects the event

produced at satisfies

 where β is a constant.
»  the first part in the above terms indicate that protocol & clocks start at

real time 0

€

(tRTS
1 = 0)∧(∀i : 0 < i : rmin ≤ tRTS

i+1 − tRTS
i ≤ rmax)

tRTS
i

() (: :)t i i t tP p
i

RTS
i1 0 1 0= ∧ ∀ ≤ ≤ − ≤ β

Page: 12 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization
–  RTS2:

»  Real Time Source provides a useful value to all non-faulty processors to
be used for correction, i.e.

–  Note: it is not implied that the correct time is always available to
processors, but it is available periodically

–  RTS1 and RTS2 can be easily implemented using a single clock, but
this clock is a single-point-of-failure

»  RTS1 achieved by using individual processor clocks to signal periodic
resynchronization event

»  RTS2 achieved by each processor producing fault-tolerant average, e.g.
median value.

€

At tp
i processor p obtains a value Vp

i that can be used

in adjusting ˆ C p consistent with (2.3) and (2.4)

Page: 13 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

◆  Resetting a virtual clock
–  Typically “adjusting” a clock can be thought of as
“resetting”.

–  At real time 0, a processor uses virtual clock
and starts a new virtual clock at real time after
detecting

–  Thus in interval we have

Cp

Cp
1

Cp
i+1 t p

i+1

tRTS
i+1

t t tp
i

p
i≤ < +1 () ()C t C tp p

i=

Page: 14 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

◆  Implementing virtual clock
–  At processor p take hardware clock Cp and add adjustment

value resulting from clock synchronization protocol, i.e.

–  here is a correction

function.
»  note: T is the clock time, whereas t is the real-time
»  need to implement a “smooth” correction function to avoid big

jumps in ,i.e. to not violate the virtual rate (2.4)

 () () (())C t C t FIX C tp
i

p p
i

p≡ +

Ĉp
i

FIX C t FIX Tp
i

p p
i(()) ()=

Cp
i

Page: 15 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

–  spreads any change in its correction to Cp over
an adjustment interval (AI), or AI clock seconds.

–  Let be the cumulative adjustment to implement
from Cp

–  Then is the additional, incremental
amount of correction added during period i.

–  The resulting “gradual” correction function is

FIX Tp
i ()

adjp
i Cp

i

adj adjp
i

p
i− −1

FIX T

adj
adj adj C t C t AI

AI

p
i

p
i p

i
p
i

p p p
i

()

()(min(() (),))

≡

+
− −

−

−

1
1

previous accumulated
correction

elapsed real clock reading
since beginning of period

Page: 16 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

◆  Effects of AI
–  If then instantaneous resynchronization
–  Else continuous resynchronization
–  is a linear interpolation of the adj. function,

and is a step-function if clock is discontinuous

AI ≤ κ

FIX Tp
i ()

t p
i+1t p

i

adjp
i−1

adjp
i

Page: 17 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

◆  Definition of adj. function
–  define a convergence function CF
–  then

 note that is the virtual time when

 processor p recognizes
–  Thus function gives the amount that

differs from
–  Note that it is a function of other clock readings

adj p C t C t C tp
i i

p
i

N
i

p
i

p p
i+ + + += −1

1
1 1 1CF[, (),..., ()] ()

 ()C tj
i

p
i+1

tRTS
i+1

adjp
i+1

 ()C tp p
i+1

C tp p
i()+1

Page: 18 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

◆  Clock Synchronization Protocol

i adj adj

t
t

adj CF p C t C t C t

FIX C t adj
i i

p p

RTS
i

p
i

p
i

p
i

N p
i

p p
i

p
i

p p
i

= = =

=

= −

= +

+

+

+ + + +

+

1 0

1

0 1

1

1

1
1

1 1 1

1

;

;

[, (),..., ()] ()

(())

do forever

 1) detect event generated at time

 real time now

 2)

 3) calculate from

 4)
end

Page: 19 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

◆  Implementation Issues
–  step 1: how to “detect event generated at time “
–  step 2: how does one processor read the virtual clocks at

another processor
–  step 3: what is a valid CF function

tRTS
i+1

Page: 20 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

◆  Detecting Resynchronization Events (step 1)
–  detect event generated at time by using our own

approximately synchronized virtual clock
–  count to some predefined value R, i.e. when

start next cycle
–  can be done using timer etc.
–  thus

 time at which processor p starts its cycle

 time at which earliest correct clock starts new cycle

tRTS
i+1

C iRp
i =

t p
i+ =1

tRTS
i+ =1

Page: 21 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

–  since clock advances with we get

–  recall from RTS1 that
–  furthermore, recall from (2.3) that slowest clock lags

fastest clock by at most

–  then the slowest clock must reach iR no later than
–  thus

()1± ρ

r
R

min =
+1 ρ

r
R

max =
−1 ρ

0 ≤ − ≤()t tp
i

RTS
i β

δ

β
δ
ρ

=
−

1

δ
ρ1−

Page: 22 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

◆  Reading other Clocks (step 2)
–  Using Correction Table

»  Processor p occasionally queries other processors, e.g. q
»  Processor q responds with time stamped message
»  Processor p maintains table
 where is used to approximate
 i.e.

 here C is
 is the minimum propagation delay
 is defined respectively
»  Is assuming the minimum propagation delay realistic?

τ p
i N[,...,]1

τ p
i q[] ()C tq

i

τ p
i

p nowq C C t[] (())min= − − Γ

Γmin
Γmax

 ()C tq reply

Page: 23 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization
–  Clock Reading Error

»  Let be the error in p’s approximation of
»  Then, assuming Α is the maximum clock reading error

 where is the time since was logged,

 and A is the max clock reading error.

»  here is the dominating term w.r.t. reading error
»  therefore we focus on minimizing propagation and processing

delays
–  Note:

»  using periodic queries reduces number of messages by half, but
can result in significant higher

λp
i q() ()C tq

i

λ

ρ ρ
p
i

p

q
lread q

()

()(())max min

≤

− + + ≤Γ Γ Α

lread qp () τ p
i q[]

Γ Γmax min−

Γ Γmax min−

Page: 24 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

◆  Convergence Functions (CF) (step 3)
–  Multiset

»  collection of objects similar in concept to a set
»  different from set in that not all elements need to be distinct
»  number of times a particular object (value) appears in a multiset is

called the multiplicity of that object

–  Convergence Function arguments are:
»  processor evaluating CF
»  values of values from processor q x q Nq , 1≤ ≤

Page: 25 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

1) Monotonicity of CF
»  given two multisets X and Y (monotonically non-decreasing)
»  if implies

2) Translation Invariance

»  relative values matter (and not absolute values)
»  thus

»  this allows comparison of values computed by CF at different

times, i.e. values of CF are not affected by shift in time.

CF p x x x CF p y y yN N(, , , ,) (, , , ,)1 2 1 2… …≤

x y i, i Ni i≤ ∀ ≤ ≤, 1

CF p x v x v CF p x x vN N(, , ,) (, , ,)1 1+ + = +… …

Page: 26 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization
3) Precision Enhancement Property

»  require convergence
■  Consider CF value of two processors p and q using at least N-k

similar values. (k is the number of faulty elements).
■  CF value of p and q should be closer than xp and xq were.

»  property:

 if

■  all non-faulty xi are within δ from each other, i.e. δ = max| xi - xj |
■  for corresponding yi’s δ = max| yi - yj |

–  (recall that δ is the max skew in reading of correct clocks)
■  for each non-faulty pair

»  is called the precision function
 convergence

| (, , , ,) (, , , ,)| (,)CF p x x x CF q y y yN N1 2 1 2… …− ≤ π δ ε

| |x yi i− ≤ ε

π δ ε(,)
π δ ε δ(,) < ⇒

Page: 27 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

–  4) Accuracy Preservation Property
»  this basically prevents big jumps
»  property:

 where is called the accuracy function
»  if

 then the adjustment is bounded

| (, , , ,) | ()CF p x x x xN p1 2 … − ≤α δ

α δ()

| | ()adj adjp
i

p
i+ − ≤1 α δ

Page: 28 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization
Examples of functions satisfying 4 conditions
–  Egocentric Average:

»  take the average of all values that are no more than δ from xp

»  note:
■  watch out, there are definitions of egocentric algorithms that replace all

values not within the range with your own value.
–  Example

»  CF(p,x1,x2,...,xn) = CF(2,4,5,3,4,6,7,11,6,22,4,3,5,5)
»  assume δ = 3, here we have 13 values, 3k+1=N, thus k=4
»  sorted multiset: {3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 11, 22}
»  since x2 = 5 we have to consider all values in the range [2,8]

»  CF = Ave(3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7) = 4.73

Page: 29 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization
Examples of functions satisfying 4 conditions
–  Fast Convergence Algorithm:

»  take average of all values that are within δ from at least N-k values
■  So the question to ask for each value is: is the “neighborhood” of the value

large enough, i.e., N-k, to be included?
»  the degree k of fault tolerance is characterized by 3k+1=N,
≈  δ is the range of values

–  Example
»  CF(p,x1,x2,...,xn) = CF(2,4,5,3,4,6,7,11,6,22,4)
»  assume δ = k = 3, then N-k = 10-3 = 7
»  sorted multiset: {3, 4, 4, 4, 5, 6, 6, 7, 11, 22}
»  ask: “is value x within 3 from at least 7 other values?”

■  e.g., value 4 results in interval [1,7]. Since there are 8 values in the interval
value [4-3,4+3] = [1,7] is included.

»  CF = Ave(4, 4, 4, 5, 6, 6)

Page: 30 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization
Examples of functions satisfying 4 conditions
–  Fault-tolerant Midpoint:

»  reduce k highest and lowest values and average both extreme values
■  Midpoint: (max_value + min_value) / 2 (after reduction of k extremes)
■  note this is not the median value in the sorted array of values!!!!

–  Example
»  CF(p,x1,x2,...,xn) = CF(2,4,5,3,4,6,7,11,6,22,4,3,5,5)
»  sorted multiset: {3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 11, 22}
»  with k = 3 the reduced multiset is {4, 4, 5, 5, 5, 6, 6}
»  CF = (4+6)/2 = 5

Page: 31 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization
Examples of functions satisfying 4 conditions
–  Fault-tolerant Average:

»  reduce k highest and lowest values and select average over all remaining
»  more general: MSR

–  Example
»  CF(p,x1,x2,...,xn) = CF(2,4,5,3,4,6,7,11,6,22,4,3,5,5)
»  sorted multiset: {3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 11, 22}
»  with k = 3 the reduced multiset is {4, 4, 5, 5, 5, 6, 6}
»  CF = Ave(4, 4, 5, 5, 5, 6, 6) = 5

