Clock Synchronization

Why do we need clock synchronization?
— process coordination

e.g. real-time process control systems require that accurate timestamps be
assigned to sensor values to aid in correct data interpretation.

— performance monitoring

¢.g. performance statistics based on elapsed time
— deadline detection

e.g. determination if deadlines have been violated
— distributed agreement

e.g. assumed loose synchronization for atomic broadcast

© 2016 A.W. Krings Page: 1 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization
Clocks

~ atomic clocks
extremely accurate

but: too expensive, too big, too unreliable and complex

— crystal oscillator
typical computer clock
small, cheap, simple
fairly reliable with fail rates of about 10-%/h
accuracy of 107 to 106
m resulting in drifts of 1 to 10 us/s
m 3.6to 36 ms/h
— clocks based on power-line frequency

power grid in the Northern US typically drifts 4 to 6 seconds from real
time over the course of an evening

© 2016 A.W. Krings Page: 2 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

Synchronization
— external synchronization

maintain processor clock within some given maximum derivation from a
time reference external to the system

— 1internal synchronization

keep processor clocks synchronized within some maximum relative
derivation of each other

© 2016 A.W. Krings Page: 3 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

Definitions

— “Understanding Protocols for Byzantine Clock Synchronization”, Fred
Schneider, 87-859, Aug. 1987, CS Dept., Cornell University.

— Real-Time (t)
unobservable -- can only be approximated
“observes” events of different processors

m observes and records all events
m all observation delays are identical, i.e. there is no time skew
m all events are immediately time-stamped, i.e. there is no processing delay
- Real-Clock C,(t) of processor p
function mapping real time 7 into a clock reading C,(t)
thus C (1) is the value of the clock in processor p at real time ¢

© 2016 A.W. Krings Page: 4 CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

- C,(1) 1s characterized by u, p and K
constant W: defines the range of initial values

m hardware initial value

0<C,(0)=u

constant K is the interval between ticks, 1.e. the length of a tick, also
defining the granularity

constant P is the upper bound on the clock drift rate

thus at each tick a clock is incremented (advanced) by a varying real
number value v, with

(I-px svs(l+p)k

hardware rate

C(t+x)-C (¢t
O<(-p)= p! K) p()s(l+p)for05t

© 2016 A.W. Krings Page: 5 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

— physical clock
hardware clock
simple counter

constant rate (+/- p)
no correction mode (independent of protocol)
source of clock drift

VN

— wvirtual clock C

p
clock synchronization protocols implement virtual clocks (A?p at each
processor p.

can be started, stopped, corrected

© 2016 A.W. Krings Page: 6 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

mapping
t—C (1) C, (1)
t: real time

C,(t): hardware clock reading at ¢

C,(¢): virtual clock reading at ¢

Similarly to real clocks virtual clocks have

m 11 defines the range of initial values

a K is the tick length, may be >> K
m O is the upper bound on the clock drift rate

© 2016 A.W. Krings Page: 7 CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

Objective
— Virtual Synchronization
given two processors p and g

C,()-C,(0)|=6 (2.3)

here 5Adeﬁnes how close the virtual clocks are synchronized

— Virtual Rate

C,(t+K)-C, (1)

0<(1-p) = <(1+p)for0=t (2.4)

© 2016 A.W. Krings Page: 8 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

Reliable Time Source (RTS)

~ a mechanism which periodically makes the “correct” time available
to all processors so that all processors can adjust their local virtual

clock to the RTS.
— requirements
time is distributed frequently enough

processor clocks will not drift too far apart in the interval between
adjustment

no processor has to adjust its clock by too much
the adjustment can be spread over the interval that precedes the next
resynchronization

— 1f these requirements can be met, a reliable time source can solve the
synchronization problem.

© 2016 A.W. Krings Page: 9 CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

RTS Detinitions
— RTS i1s periodic

sequence of events at real times

1 2 3
LrrssLrrs»sLrrs e+

— Periods are stable within a fixed bound. 1.e.

Viin = Vooriod = Fomax

min — " perio m

where . and r__ are constants

- t; is the real-time at which processor p detects event ¢ ;TS

© 2016 A.W. Krings Page: 10 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

For a process to qualify as an RTS 1s must satisfy the
following conditions:
- RTSI:

bounded period: a reliable time source generates a sequence of events at
real times such that
]

(trr =O)VA(Vi: O<i:r . sthg—thre<T)

min max

bounded reaa’ing: the real time at which a processor p detects the event
produced at ¢5,,, satisfies

(tp =0)A (Vi 1i: 0<t) —tpys <)

where £ is a constant.

the first part in the above terms indicate that protocol & clocks start at
real time O

© 2016 A.W. Krings Page: 11 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

— RTS2:

Real Time Source provides a useful value to all non-faulty processors to
be used for correction, 1.e.

At t]i processor p obtains a value Vpi that can be used

in adjusting ép consistent with (2.3) and (2.4)

— Note: it 1s not implied that the correct time 1s always available to
processors, but it is available periodically

— RTSI1 and RTS2 can be easily implemented using a single clock, but
this clock 1s a single-point-of-failure

RTS1 achieved by using individual processor clocks to signal periodic
resynchronization event

RTS2 achieved by each processor producing fault-tolerant average, e.g.
median value.

© 2016 A.W. Krings Page: 12 CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

Resetting a virtual clock C,

— Typically “adjusting” a clock can be thought of as
“resetting .

— Atreal time 0, a processor uses virtual clock CA?;)
and starts a new virtual clock ¢! at real time #7*'

. p
detecting

- i i+1 -~ i
- Thus ininterval ¢, =¢ <¢,” wehave C (¢)=C, (?)

after

© 2016 A.W. Krings Page: 13 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

Implementing virtual clock C;

- At processor p take hardware clock C, and add adjustment
value resulting from clock synchronization protocol, 1.¢.

Ci(t)=C,(t)+ FIX' (C, (1))

~ here FIX,(C,(1)) = FIX,(T) is a correction
function.

note: 7 1s the clock time, whereas ¢ is the real-time

need to implement a “smooth” correction function to avoid big
jumps in (Aj; ,1.e. to not violate the virtual rate (2.4)

© 2016 A.W. Krings Page: 14 CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

~ FIX, (T) spreads any change in its correction to C, over
an adjustment interval (Al), or Al clock seconds.

- Let adj;, be the cumulative adjustment to implement C .
from C,

~ Then adj’, —adj,”" is the additional, incremental
amount of correction added during period i.

— The resulting “gradual” correction function is

elapsed real clock reading

FIX ! (T) = since beginning of period
p

Il \I
>

(adj’, — adj' ™ Ymin(C, (1) — C, (¢}, AI)
Al

aza’j;_1 +

/

previous accumulated
correction

© 2016 A.W. Krings Page: 15 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

Effects of Al

- If AT = K then instantaneous resynchronization
— Else continuous resynchronization

- FIX, (T) is alinear interpolation of the adj. function,
and 1s a step-function if clock 1s discontinuous

/ adj,
aci]-i—l

P

I i+1
tp tp

© 2016 A.W. Krings Page: 16 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

Definition of adj. function
— define a convergence function CF

— then
adj’"' = CF[p,C/ (¢ "),....,CN () ')H)]1—C, ()

note that C’ (¢5") is the virtual time when
processor p recognizes xrs

— Thus function adj!’' gives the amount that C, (z,")
differs from C (z5)

~ Note that it 1s a function of other clock readings

© 2016 A.W. Krings Page: 17 CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

Clock Synchronization Protocol

[= l;adjg = aa’j]l) =0
do forever

i+1 .

1) detect event generated at time 7,

i+1
le

2) adj"' = CF[p,C,(t)"),...,Cy (£ - C, (")
3) calculate FIX, (C (1)) from adj;"
4)i=i+1

end

= real time now

© 2016 A.W. Krings Page: 18 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

Implementation Issues
i+l

— step 1: how to “detect event generated at time 5

— step 2: how does one processor read the virtual clocks at
another processor

— step 3: what 1s a valid CF function

© 2016 A.W. Krings Page: 19 CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

Detecting Resynchronization Events (step 1)
i+1

- detect event generated at time 5., by using our own
approximately synchronized virtual clock

- count to some predefined value R, i.e. when C? = iR
start next cycle

— can be done using timer etc.

- thus
t;;l = time at which processor p starts its cycle
t;;TlS = time at which earliest correct clock starts new cycle

© 2016 A.W. Krings Page: 20 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

— since clock advances with(1 = ©0) we get
R R

.. = 7 —

min 1+p"

~ recall from RTSI that 0= (7}, —#,5) =

— furthermore, recall from (2.3) that slowest clock lags
fastest clock by at most &

P

— then the slowest clock must reach iR no later than
— thus ~

Ve

1—-p

© 2016 A.W. Krings Page: 21 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

Reading other Clocks (step 2)

— Using Correction Table

Processor p occasionally queries other processors, €.2. g
Processor g responds with time stamped message
Processor p maintains table T ,[1,..., V]

i . . A
where T [g] is used to approximate C? ()
1.e.

7[q]= C~(C,(1,,,) = Tr)

here C 1s CA‘q (Zreps)
I .,.in is the minimum propagation delay
I

max 1§ defined respectively

Is assuming the minimum propagation delay realistic?

© 2016 A.W. Krings Page: 22 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

— Clock Reading Error
Let A’ (g)be the error in p’ s approximation of CA’; ()

Then, assuming A is the maximum clock reading error
A, (q) =
I_‘max — I_‘min + (p + pA)(lreadp (Q)) = A

where [read ,(gq) 1s the time since T, [g] was logged,

and A 1is the max clock reading error.

here I’ —TI,. 1sthe dominating term w.r.t. reading error

therefore we focus on minimizing propagation and processing
delays

— Note:

using periodic queries reduces number of messages by half, but
can result in significant higher I' ,, — 1.,

© 2016 A.W. Krings Page: 23 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

Convergence Functions (CF) (step 3)
— Multiset

collection of objects similar in concept to a set
different from set in that not all elements need to be distinct
number of times a particular object (value) appears in a multiset 1s
called the multiplicity of that object

- Convergence Function arguments are:

processor evaluating CF
values x_, 1=g = N of values from processor ¢

© 2016 A.W. Krings Page: 24 CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

1) Monotonicity of CF
given two multisets X and Y (monotonically non-decreasing)

if x, =y, Vi, 1=i=< N implies
CFE(pP, X, Xy0ees Xy) S CE(Py Vs Vyseees V)

2) Translation Invariance

relative values matter (and not absolute values)
thus

CF(p,x,+Vv,....,.xy +v)=CF(p,X,....,X5) +V

this allows comparison of values computed by CF at different
times, 1.€. values of CF are not affected by shift in time.

© 2016 A.W. Krings Page: 25 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

3) Precision Enhancement Property
require convergence

m Consider CF value of two processors p and g using at least N-k
similar values. (k 1s the number of faulty elements).

m CF value of p and g should be closer than x, and x, were.

property:
ICF(p, X, Xys.e0sXy)—CF(q, 1, V55--» Y3)|=7(0,€)

if
m all non-faulty x; are within 3 from each other, i.e. 8 = max|x; - x; |

m for corresponding y,’s & = max| y, - ;|
(recall that 9 is the max skew in reading of correct clocks)

m for each non-faulty pair |x, — y,|< €

(5, ¢) 1s called the precision function

w(d,e) <& => convergence

© 2016 A.W. Krings Page: 26 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

— 4) Accuracy Preservation Property
this basically prevents big jumps

property:
|CF(p,X,,Xy,...,Xy) — X, |< a(0)

where ®(0) is called the accuracy function
if . .
adji" ~ adj,|= a(5)

then the adjustment 1s bounded

© 2016 A.W. Krings Page: 27 CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

Examples of functions satisfying 4 conditions

- Egocentric Average:
take the average of all values that are no more than 6 from x,
note:

m watch out, there are definitions of egocentric algorithms that replace all
values not within the range with your own value.

- Example
CF(p.x,,x,,....x,) = CF(2,4,5,3,4,6,7,11,6,22,4,3,5,5)
assume 0 = 3, here we have 13 values, 3k+1=N, thus /=4
sorted multiset: {3,3,4,4,4,5,5,5,6,6,7,11, 22}
since x,= 5 we have to consider all values in the range [2,8]

CF = Ave(3,3,4,4,4,5,5,5,6,6,7)=4.73

© 2016 A.W. Krings Page: 28 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

Examples of functions satisfying 4 conditions

~ Fast Convergence Algorithm:

take average of all values that are within 0 from at least N-k values

m So the question to ask for each value is: is the “neighborhood” of the value
large enough, i.e., N-k, to be included?

the degree k of fault tolerance is characterized by 3&k+1=N,
0 is the range of values

- Example
CE(p.x, 0ye..x,) = CF(2,4,5,3,4,6,7,11,6,22,4)
assume 0 =k =3, then N-k=10-3 =7
sorted multiset: {3,4,4,4,5,6,6,7,11,22}
ask: “is value x within 3 from at least 7 other values?”

m ¢.g., value 4 results in interval [1,7]. Since there are 8 values in the interval
value [4-3,4+3] =[1,7] 1s included.

CF= Ave(4,4,4,5,6,6)

© 2016 A.W. Krings Page: 29 CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

Examples of functions satisfying 4 conditions

— Fault-tolerant Midpoint:
reduce k highest and lowest values and average both extreme values
m Midpoint: (max value + min value) /2 (after reduction of k extremes)
m note this 1s not the median value in the sorted array of values!!!!
- Example
CF(p.x;,X,,....x,) = CF(2,4,5,3,4,6,7,11,6,22,4,3,5,5)
sorted multiset: {3,3,4,4,4,5,5,5,6,6,7,11, 22}
with k = 3 the reduced multiset is {4, 4, 5, 5, 5, 6, 6}
CF= (4t6)2=5

© 2016 A.W. Krings Page: 30 CS449/549 Fault-Tolerant Systems — Sequence 19

Clock Synchronization

Examples of functions satisfying 4 conditions

— Fault-tolerant Average:
reduce k highest and lowest values and select average over all remaining
more general: MSR

- Example
CF(p,x,xy,....x,) = CF(2,4,5,3,4,6,7,11,6,22,4,3,5,5)
sorted multiset: {3,3,4,4,4,5,5,5,6,6,7,11, 22}
with k = 3 the reduced multiset is {4, 4, 5, 5, 5, 6, 6}
CF= Ave(4,4,5,5,5,6,6)=5

© 2016 A.W. Krings Page: 31 CS449/549 Fault-Tolerant Systems — Sequence 19

