
- Much work has been done on fault models. The discussion is based on the paper:
 - Thambidurai, P., and You-Keun Park, "Interactive Consistency with Multiple Failure Modes", Reliable Distributed Systems, Volume, Issue, 10-12 Oct 1988 Page(s):93 - 100.
 - There is an interesting follow-up paper "Verification of Hybrid Byzantine Agreement Under Link Faults" by P. Lincoln and J. Rushby that addresses a problem in the algorithm of Thambidurai and Park

Benign versus Malicious

- Benign
 - » error is self-evident
 - » component does not undergo incorrect state transition during failure
 - » examples:
 - crash fault
 - timing fault
 - data out-of-bound
 - what about "omissions"?

- Malicious
 - » not self-evident to all non faulty receivers
 - » can behave in two ways
 - » symmetric
 - received identically by all processors
 - » asymmetric
 - no restrictions of fault => anything goes
- Fault frequency
 - » worse case every fault could behave asymmetric
 - » best case all faults are benign
 - » what is the best assumption for your system?

Fault Taxonomy

Lamport Model

- assumes that every fault is asymmetric

 $N \ge 3t + 1$ $r' \ge t + 1$ or $r \ge t$ rebroadcasts

Meyer + Pradhan 87

- differentiates between malicious and benign faults

$$N > 3m + b$$

 $r > m$
 $m =$ number of malicious faults
 $b =$ number of benign faults

Thambidurai + Park 88

- difference between malicious faults
 - » symmetric faults
 - » asymmetric faults
 - » result:

$$N > 2a + 2s + b + r$$

 $r \geq a$

- » a = asym., s = sym., b = benign, r = rounds
- » in general $a_{max} < s_{max} < b_{max}$
- » or $\lambda_a << \lambda_s << \lambda_b$
- » saves rounds and hardware

- Advantages of multi-fault model
 - 1) more accurate model of the system
 - » less "overly conservative"
 - 2) resulting reliabilities are better
 - » custom tailor recovery mechanisms
 - » Example:
 - consider Byzantine solution using OM() algorithm
 - assume N = 4, 5, 6
 - still, only one fault is covered using the OM algorithm
 - moreover, the system reliability degrades
 - N = 6 results in worse reliability than N = 4
 - one is better off to turn the additional processors off!
 - » see paper Tha88, page 98, table 1

Source: Tha88

Model	N	P(Failure)	Faults		
BG	4	6.0×10^{-8}	1 arbitrary		
BG	5	1.0×10^{-7}	1 arbitrary		
BG	6	$1.5 imes10^{-7}$	1 arbitrary		
UM	4	$6.0 imes 10^{-8}$	1 arbitrary, $b = 0$, $s = 0$		
UM	5	1.0×10^{-11}	1 arbitary, $b = 1, s = 0$		
UM	6	$2.0 imes 10^{-11}$	1 arbitary, $b = 0, s = 1$		
UM	6	1.1×10^{-15}	1 arbitary, $b = 2$, $s = 0$		

Table 1: Reliability data for Example 1

Source: Tha88

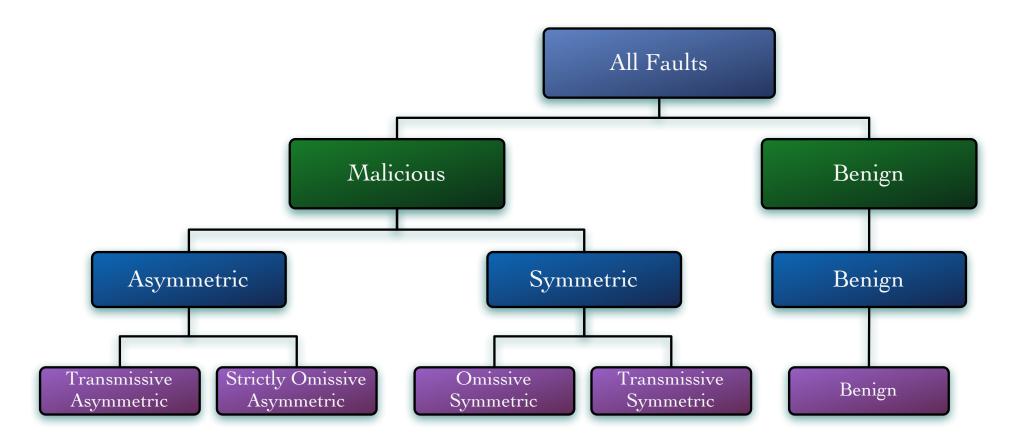

r = 1											
	a = 0				a = 1						
\$	0	1	2	3	0	1	2	3			
b = 0		4	6	8	4	6	8	10			
b = 1	3	5	7	9	5	7	9	11			
b = 2	4	6	8	10	6	8	10	12			
b = 3	5	7	9	11	7	9	11	13			
b = 4	6	8	10	12	8	10	12	14			
b = 5	7	9	11	13	9	11	13	15			
b = 6	8	10	12	14	10	12	14	16			

Table 2: Resiliency of a System based on the Unified Model (minimum number of processors required)

- 3) smarter degradation
 - » we can specify the number of rounds
 - » example using N = 11
 - let subscript <u>max</u> denote the maximum number of faults covered, assuming this is the <u>only</u> type of fault occurring.
 - if r = 1 then $a_{max} = 1$ or $s_{max} = 4$ ■ if r = 2 then $a_{max} = 2$ or $s_{max} = 4$ why? $s_{max} = 4 \implies N > 2 4 + 2 = 10$ $s_{max} = 5 \implies N \neq 2 5 + 2 = 12$
- requirements for success
 - » good estimate of fail rates λ_a , λ_s , λ_b
 - typically $\lambda_a \ll \lambda_s \ll \lambda_b$
 - » good estimate of recovery rates ρ_a , ρ_s , ρ_b
 - typically $\rho_a < \rho_s < \rho_b$

Agreement algorithms

- Azadmanesh & Kieckhafer
 - partitions further into transmissive and omissive cases of malicious faults

Agreement algorithms

- Incomplete Interconnections
 - Lam82, Dol82
 - agreement only if the number of processors is less than 1/2 of the connectivity of the system's network.
- Eventual vs. Immediate Byz. Agreement (EBA,IBA)
 - recall interactive consistency conditions IC1, IC2
 - an agreement is <u>immediate</u> if in addition to IC1 and IC2 all correct processors also agree (during the round) on the round number at which they reach agreement.
 - otherwise the agreement is called <u>eventual</u>
 - » each processor has decided on its value, but cannot synchronize its decision with that of the others until some later phase.
 - » Thus, agreement may not always need full t+1 rounds

Agreement algorithms

- Lamport OM $N \ge 3m+1$ r = m+1
- Lamport SM $N \ge m+2$ $r \ge m+1$
- Davis+Wakerly $N \ge 2t + 1$ S = t + 1
- Meyer+Pradhan N > 3m + b $r \ge m$
- Thambidurai+Park N > 2a + 2s + b + r $r \ge a$

• Dol82a (EBA) $N > t^2 + 3t + 4$ $r = \min(f + 2, t + 1)$