
Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 16

Signed Messages
◆ Traitors ability to lie makes Byzantine General Problem

so difficult.
◆ If we restrict this ability, then the problem becomes easier
◆ Use authentication, i.e. allow generals to send

unforgeable signed messages.

1

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 16

Signed Messages
◆ Assumptions about Signed Messages
A1: every message that is sent is delivered correctly
A2: the receiver of a message knows who send it
A3: the absence of a message can be detected
A4: a loyal general’s signature cannot be forged, and any alteration of

the contents of his signed messages can be detected. Anyone can
verify the authenticity of a general’s signature

Note: no assumptions are made about a traitor general, i.e. a traitor can
forge the signature of another traitor.

2

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 16

Signed Messages
◆ Signed message algorithm assumes a choice function

– if a set V has one single element v, then choice(V) = v
– choice(Φ) = R, where Φ is the empty set

» RETREAT is default
– choice(Α,R) = R

» RETREAT is default
– set V is not a multiset (recall definition of a multiset)
– thus set V can have at most 2 elements, e.g. V = {A,R}.

3

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 16

Signed Messages
◆ Signing notation

– let v:i be the value v signed by general i
– let v:i:j be the message v:i counter-signed by general j

◆ each general i maintains his own set Vi containing all
orders he received

◆ Note: do not confuse the set Vi of orders the general
received with the set of all messages he received. Many
different messages may have the same order.

4

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 16

BGP: Signed Message Solution
 SM(m) -- from Lam82

Initially Vi = Φ
1) The commander signs and sends his value to every lieutenant
2) For each i
 A) If lieutenant i receives a message of the form v:0 from the
 commander and he has not yet received any order, then
 i) he lets Vi equal {v}
 ii) he sends the message v:0:i to every other lieutenant
 B) If lieutenant i receives a message of the form v:0:j1:...:jk and v is
 not in the set Vi, then
 i) he adds v to Vi

 ii) if k<m, then he sends the message v:0:j1:...:jk:i to every
 lieutenant other than j1,...,jk

5

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 16

Algorithm SM(m)
◆ The SM(m) algorithm for signed messages works for

– i.e. want non faulty commander and at least one non
faulty lieutenant

◆ How does one know when one does not receive any more
messages?

– by missing message assumption A3, we can tell when all
messages have been received

– this can be implemented by using synchronized rounds
◆ Now traitor can be detected!

– e.g. 2 correctly signed values => general is traitor

6

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 16

Algorithm SM(m)
◆ example, general is traitor

General

lieutenant 1 lieutenant 2

attack:0

attack:0:1

retreat:0

retreat:0:2

7

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 16

Algorithm SM(m)
◆ example, lieutenant 2 is traitor

General

lieutenant 1 lieutenant 2

attack:0

attack:0:1

retreat:0:2

attack:0

8

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 16

Algorithm SM(m)
◆ example:

– SM(0)
» general sends v:0 to all lieutenants
» processor i receives v:0 Vi={v}

– SM(1)
» each lieut. countersigns and rebroadcasts v:0
» processor i receives (v:0:1, v:0:2,..., v:0:(N-1))

9

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 16

Algorithm SM(m)

– case 1: commander loyal, lieutenant j = traitor
» all values except v:0:j are v

» processor j cannot tamper

– case 2: commander = traitor, => all lieut. loyal
» all lieutenants correctly forward what they received

■ agreement: yes
■ validity: N/A

10

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 16

Algorithm SM(m)
◆ e.g.:

– SM(2)
» each lieut. countersigns and rebroadcasts all messages from the

previous round
» processor i has/receives

■ v:0

■ v:0:1, v:0:2, ... , v:0:(N-1)

■ v:0:1:1, v:0:1:2, v:0:1:3, ..., v:0:1:N-1
 v:0:2:1, v:0:2:2, v:0:2:3, ..., v:0:2:N-1
 ...
 v:0:N-1:1, v:0:N-1:2, v:0:N-1:3, ..., v:0:N-1:N-1

original message

after 1st rebroadcast

after 2nd rebroadcast

11

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 16

Algorithm SM(m)
– case 1: commander loyal, 2 lieutenants are traitors

» want each loyal lieut to get V={v}
» round 0 => all loyal lieuts get v from commander
» other rounds:

■ traitor cannot tamper
■ => all messages are v or Φ

– case 2: commander traitor + 1 lieut. traitor
» round 0: all loyal lieuts receive v:0
» round 1:

■ traitors send one value or Φ
» round 2:

■ another exchange (in case traitor caused split in last round)
■ traitor still can not introduce new value

 => agreement: yes
 validity: N/A

12

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 16

Algorithm SM(m)
◆ Cost of signed message

– encoding one bit in a code-word so faulty processor cannot
“stumble” on it.

– e.g.
» unreliability of the system FS = 10-10/h
» unreliability of single processor FP = 10-4/h
» want: Probability of randomly generated valid code word

» given 2i valid codewords, want (20+i) bits/signature
» e.g. Attack/Retrieve
=> 21
=> 21 bit signature

13

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 16

Agreement
◆ Important notes:

– there is no way to guarantee that different processors will get the
same value from a possibly faulty input device, except having the
processors communicate among themselves to solve the Byz.Gen.
Problem.

– faulty input device may provide meaningless input values
» all that Byz.Gen. solution can do is guarantee that all processors use

the same input value.
» if input is important, then use redundant input devices
» redundant inputs cannot achieve reliability. It is still necessary to

insure that all non-faulty processors use the redundant data to
produce the same output.

14

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 16

Agreement
◆ Implementing BGP is no problem
◆ The problem is implementing a message passing system

that yields respective assumptions, i.e.:
A1: every message that is sent is delivered correctly
A2: the receiver of a message knows who send it
A3: the absence of a message can be detected
A4: a loyal general’s signature cannot be forged, and any
 alteration of the contents of his signed messages can
 be detected. Anyone can verify the authenticity of a
 general’s signature

15

