- Traitors ability to lie makes Byzantine General Problem so difficult.
- If we restrict this ability, then the problem becomes easier
- Use authentication, i.e. allow generals to send unforgeable signed messages.

Assumptions about Signed Messages

A1: every message that is sent is delivered correctly

A2: the receiver of a message knows who send it

A3: the absence of a message can be detected

A4: a loyal general's signature cannot be forged, and any alteration of the contents of his signed messages can be detected. Anyone can verify the authenticity of a general's signature

Note: no assumptions are made about a traitor general, i.e. a traitor can forge the signature of another traitor.

- Signed message algorithm assumes a *choice* function
 - if a set V has one single element v, then choice(V) = v
 - choice(Φ) = R, where Φ is the empty set
 - » RETREAT is default
 - choice(A,R) = R
 - » RETREAT is default
 - set *V* is <u>not</u> a multiset (recall definition of a multiset)
 - thus set V can have at most 2 elements, e.g. $V = \{A,R\}$.

- Signing notation
 - let v:i be the value v signed by general i
 - let v:i:j be the message v:i counter-signed by general j
- each general i maintains his own set V_i containing all orders he received
- Note: do not confuse the set V_i of orders the general received with the set of all messages he received. Many different messages may have the same order.

BGP: Signed Message Solution

SM(m) -- from Lam82 Initially $V_i = \Phi$

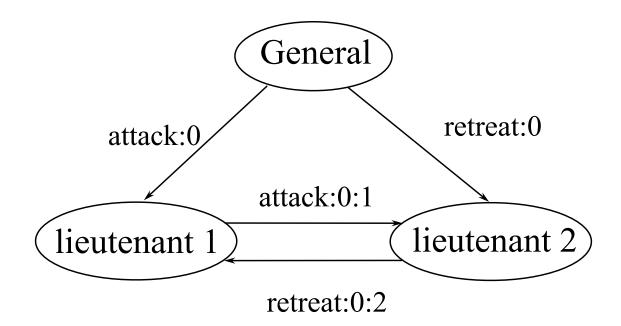
- 1) The commander signs and sends his value to every lieutenant
- 2) For each *i*
 - A) If lieutenant *i* receives a message of the form v:0 from the commander and he has not yet received any order, then
 - i) he lets V_i equal $\{v\}$
 - ii) he sends the message $v:\theta:i$ to every other lieutenant
 - B) If lieutenant *i* receives a message of the form $v:0:j_1:...:j_k$ and *v* is not in the set V_i , then
 - i) he adds v to V_i
 - ii) if k < m, then he sends the message $v:0:j_1:...:j_k:i$ to every lieutenant other than $j_1,...,j_k$

The SM(m) algorithm for signed messages works for

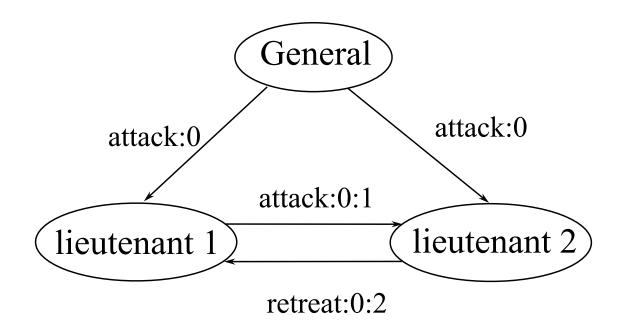
$$N \ge m + 2$$

- i.e. want non faulty commander and at least one non faulty lieutenant
- How does one know when one does not receive any more messages?
 - by *missing message assumption* A3, we can tell when all messages have been received
 - this can be implemented by using synchronized rounds
- Now traitor can be detected!
 - e.g. 2 correctly signed values => general is traitor

• example, general is traitor



• example, lieutenant 2 is traitor



- example:
 - SM(0)
 - » general sends $v:\theta$ to all lieutenants
 - » processor *i* receives v:0 $V_i = \{v\}$
 - SM(1)
 - » each lieut. countersigns and rebroadcasts *v:0*
 - » processor i receives (v:0:1, v:0:2,..., v:0:(N-1))

- case 1: commander loyal, lieutenant j = traitor
 - » all values <u>except</u> *v:0:j* are *v*
 - $\Rightarrow v \in V_i \quad \forall \text{ loyal lieut. i}$
 - » processor *j* cannot tamper
 - $\Rightarrow V_i = \{v\} \quad \forall \text{ loyal lieut. i}$
- case 2: commander = traitor, => all lieut. loyal
 - » all lieutenants correctly forward what they received
 - agreement: yes
 - validity: N/A

- e.g.:
 - SM(2)
 - each lieut. countersigns and rebroadcasts all messages from the previous round
 - » processor i has/receives
 - v:0
 - v:0:1, v:0:2, ..., v:0:(N-1)

v:0:2:1, v:0:2:3, ..., v:0:2:N-1

v:0:N-1:1, v:0:N-1:2, v:0:N-1:3, ..., <u>v:0:N-1:N-T</u>

original message

after 1st rebroadcast

after 2nd rebroadcast

- case 1: commander loyal, 2 lieutenants are traitors
 - » want each loyal lieut to get $V = \{v\}$
 - " round $0 \Rightarrow$ all loyal lieuts get v from commander
 - » other rounds:
 - traitor cannot tamper
 - \blacksquare => all messages are v or Φ
- case 2: commander traitor + 1 lieut. traitor
 - » round 0: all loyal lieuts receive *v:0*
 - » round 1:
 - traitors send one value or Φ
 - » round 2:
 - another exchange (in case traitor caused split in last round)
 - traitor still can <u>not</u> introduce new value
 - => agreement: yes validity: N/A

- Cost of signed message
 - encoding one bit in a code-word so faulty processor cannot "stumble" on it.
 - e.g.
 - » unreliability of the system $F_S = 10^{-10}/h$
 - » unreliability of single processor $F_p = 10^{-4}/h$
 - » want: Probability of randomly generated valid code word

$$P = \frac{10^{-10}}{10^{-4}} = 10^{-6} \approx 2^{-20}$$

- » given 2ⁱ valid codewords, want (20+i) bits/signature
- » e.g. Attack/Retrieve
- $=> 2^{1}$
- => 21 bit signature

Agreement

Important notes:

- there is no way to guarantee that different processors will get the same value from a possibly faulty input device, except having the processors communicate among themselves to solve the Byz.Gen. Problem.
- faulty input device may provide meaningless input values
 - » all that Byz.Gen. solution can do is guarantee that all processors use the same input value.
 - » if input is important, then use redundant input devices
 - » redundant inputs cannot achieve reliability. It is still necessary to insure that all non-faulty processors use the redundant data to produce the same output.

Agreement

- Implementing BGP is no problem
- The problem is implementing a message passing system that yields respective assumptions, i.e.:

A1: every message that is sent is delivered correctly

A2: the receiver of a message knows who send it

A3: the absence of a message can be detected

A4: a loyal general's signature cannot be forged, and any alteration of the contents of his signed messages can be detected. Anyone can verify the authenticity of a general's signature