
Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 14

Broadcasts
◆ Several types of Broadcast

– Broadcast = (1-to-all)
– Multicast = (1-to-many)
– Unicast = (1-to-1)

◆ Properties of interest are
– reliability
– consistent ordering
– preservation of causality

◆ Broadcast primitives
– Reliable broadcast
– Atomic broadcast
– Causal broadcast

1

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 14

Reliable Broadcast
◆ The message to be broadcast should be received by all non-

faulty processes
◆ A protocol for reliable broadcasting using Message

Forwarding
– Originally proposed in:

» Schneider, Gries and Schlichting, Fault-tolerant Broadcasts, Science of
Computer Programming, 4:1-15, 1984.

2

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 14

Reliable Broadcast
◆ Reliable Broadcast using Message Forwarding

– Considers network as a tree. Tree is logical structure with no direct
relationship to the network topology. An edge from node p to q
indicates that during broadcast p will forward the message to q.

– Original sender (initiator) is root of tree
– Receiving node i forwards message to all of its children, (which in

turn forward).
– Children in turn send acknowledge to i
– If child j does not acknowledge, node i takes over and forwards

message to j's children.
– Protocol works great, except when root fails. If root fails after partial

broadcast, some node that already received the message has to finish
the broadcast.
– => node i has to monitor root
– => implemented as root sending completion-message

3

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 14

Reliable Broadcast
◆ Trans Protocol: Piggybacking Acknowledgment

– based on article [Melliar-Smith-1990] by Melliar-Smith, Moser and
Agrawala, “Broadcast Protocols for Distributed Systems”, IEEE
Trans. Parallel and Dist. Systems, 1(1):17-25, January 1990.

– Assumption: when broadcasting some nodes will receive the
message and some will miss it.

» e.g. Ethernet
» e.g. unreliable broadcast protocol in point-to-point network

– the protocol described builds a reliable broadcast primitive from
the unreliable broadcast primitive which it assumes is available to
it.

4

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 14

Reliable Broadcast
– Trans protocol

» attach (piggyback) positive and negative acknowledgements on a
broadcast message.

» each broadcast message carries ID of sending node and unique
sequence number for the message

» Outline of protocol given three processors P, Q and R
■ P broadcasts a message.
■ The message from P is received uncorrupted by Q.
■ Q includes a positive acknowledgment for P’s message in its next

message.
■ R upon receiving Q’s message is aware that P’s message has been

acknowledged and that there is no need to also acknowledge it in its
next message; instead R acknowledges Q’s message.

■ If R has not received the message from P, the message from Q alerts R
of this loss and, therefore, R includes a negative acknowledgment for
P’s message in R’s next message.

5

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 14

Reliable Broadcast
◆ Example (see Melliar-Smith-1990 - page 20)

– assume capital letters are messages
– lower case letters are the respective positive acknowledge,

overhead bars denote negative acknowledgement
– One message gets lost. Which one and where?

– sequence:

€

A − Ba−Cb −Dc − Ec d −Cb − Fec

6

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 14

Reliable Broadcast
◆ Example (see Melliar-Smith-1990 - page 20)

– assume that the processor broadcasting message E received
neither message C nor B.

– sequence:

€

A − Ba−Cb −Dc − Ec d −Cb − Fb ec − Ba−Gfb

7

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 14

Reliable Broadcast
◆ Example (see Melliar-Smith-1990 - page 20)

– now assume that messages are not processed instantaneously
– in the next example the assumption is made that no message is

acknowledged by the next broadcast message

– sequence:

€

A − B −Ca −Dab− Ebc − Fcd −Gc de −Hef −Ca − Igh − Jghc

8

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 14

Atomic Broadcast
◆ Atomic broadcast is a 1-to-many communication

paradigm that is stricter than reliable broadcast
– reliable broadcast made sure that all non-faulty nodes get the

message
– atomic broadcast adds the requirement that all messages need to

be received in the same order.
– discussion is based on [Birman-1987]:

» K. Birman, and T. Joseph, Reliable Communication in the Presence
of Failures, ACM Trans. on Computer Systems, 5(1):47-76, Feb.
1987.

9

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 14

Atomic Broadcast
◆ Three-Phase Protocol

– Assign priorities to messages and deliver the messages in the
order of priority

– But how do the processors agree on what the next priority is?
» made even more difficult if communication delays differ

– Thus, first all nodes must explicitly agree on a priority of a
message and then assigning non-conflicting priorities to later
messages

– Protocol for assigning priorities works in three rounds of
exchange

– Each message in a processor’s buffer is tagged deliverable or
undeliverable

– Assume there is a primitive called abcast(m,p)
» m is the message
» p is the (integer) priority assigned to the message by the node

broadcasting m
10

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 14

Atomic Broadcast
ABCAST(msg, label, dests) implementation (Birman-1987, pg62)
(1) The sender transmits msg to its destinations.
(2) Each recipient adds the message to the priority queue associated with label,

tagging it as undeliverable. It assigns this message a priority larger than the
priority of any message that was placed in the queue, with the process ID of the
recipient as a suffix. It then informs the sender of the priority that it assigned to
the message.

(3) The sender collects responses from recipients that remain operational. It then
computes the maximum value of all the priorities it received, and sends this
value back to the recipients.

(4) The recipients change the priority of the message to the value they receive from
the sender, tag the message as deliverable, and re-sort their priority queues. They
then transfer messages from the priority queue to the delivery queue in order of
increasing priority, until the priority queue becomes empty or the message with
the lowest priority is undeliverable. In the latter case no more messages are
transferred until the message at the head of the queue becomes deliverable.

11

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 14

Atomic Broadcast
(from Birman-1987, pg62)

12

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 14

Atomic Broadcast
◆ Three-Phase Protocol

– Phase I: Sender transmits message (m,p) to all nodes
– Phase II: Each receiver adds the message into their local queue

– message is tagged undeliverable
– assign this message a priority higher than the priority of any message

that was placed in the buffer, p = max(priorities in queue) +1
– send new p back to sender

– Phase III:
– Sender

– collects priorities
– sets p = max(priorities returned)
– sends p back to receivers

– Receiver
– assigns new p to message, tag message as deliverable
– re-sort the priority queue
– transfer messages from queue head

13

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 14

Causal Broadcast
◆ In atomic broadcast messages broadcast from different

nodes needed to be received by all nodes in the same
order, however, there was no preference to the order as
long as all processors received them in the same order.

◆ Causal broadcast addresses the case where the order of
the broadcasts matter

– e.g. consider requests in distributed databases
» should deposit money first, the issue a withdraw
» if this order is not preserved it could be that overdraft charges are

applied.

14

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 14

Causal Broadcast
◆ Causal broadcast flavors

– causal broadcast without total ordering
» assume that messages m and m’ such that m → m’
» then m is delivered before m’ at all nodes
» however, if there is no causal relationship between m and m’

■ then m and m’ can be delivered in any order and
■ this order may not be the same at all nodes

– causal broadcast with total ordering
» requires that messages are delivered to different nodes in the same

order such that the order preserves the causality between messages.

15

