
Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 13

Distributed Systems

◆ Distributed versus Parallel
– Loosely coupled vs. tightly coupled

» shared memory
» synchronized clocks, global clocks
» network topology

■ fully connected,
■ partially connected, e.g. ring, tree, star, k-connected

» network communication
■ point-to-point
■ CSMA/CD (Carrier Sense Multiple Access, Collision Detect)

1

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 13

Distributed Systems
◆ Reliability of Distributed/Parallel Systems

– Harper and Lala 1991
» The assertion is often made that parallel processors are intrinsically

reliable, fault tolerant, and reconfigurable due to their multiplicity
of processing resources. In fact, the only intrinsic attribute
guaranteed by multiple processors is a higher total failure rate.

– We will investigate this especially with respect to RAID systems
– Individual workstation MTBF (Pra96, table 3.2, pg 136)

» (this info is dated, but gives you an idea...)
» DEC 35,872h 35h
» HP 58,700h 58h
» SUN 40,601h 40h
» IBM AP101S 20,000h 20h

2

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 13

Unreliability in the absence of FT
Computation on Cluster

MTBF = 2000 days (48,000h, approx. 5 1/2 years)
Unreliability of one node: F(t) = 1 - R(t) = 1 - e-t
Figure source: Jafar, Krings, Gautier and Roch, EIT 2005

3

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

40
0

80
0

12
00

16
00

20
00

24
00

28
00

32
00

36
00

40
00

44
00

48
00

processeurs

pr
op

ab
ili

té
 d

e
dé

fa
ill

an
ce

Durée d'exécution : 1 jour

Durée d'exécution :10 jours

Durée d'exécution : 30 jours

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 13

Distributed Systems
◆ Design Issues

– circuit and technology level
» radiation robust components, gallium arsenide chips
» circuit designed for testability and reliability

– node-level architecture
» design of VLSI

– internode architecture
» node connections and configurations, reconfiguration in the

presence of faults
– operating system

» fault recovery, e.g. rollback procedure
» load balancing

– application level
» checks on results, signatures, bounds

4

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 13

Distributed Systems

◆ Asynchronous Message Passing
– send(data, destination)
– receive(data, source)
– receive(message)

» source is extracted from message itself
– queuing messages => finite buffers

» in reality no pure asynchronous message passing exists
» with finite buffer receiver may block

5

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 13

Distributed Systems
◆ Synchronous Message Passing

– no buffering
– guards

» execute statements if the guards are “true”
– alternative construct

» list of guarded statements
» non-determinism

– CSP (Communicating Sequential Processes)
» to send a message:

 P ! message
» to receive a message:

 P ? message

6

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 13

Distributed Systems

◆ Remote Procedure Call (RPC)
– the service to be provided by the server is treated as a

procedure that resides on the machine on which the
server is located.

– failure during communication
» unwanted executions called orphans

■ a client that crashes during an RPC and restarts on recovery
may reissue the call to the server, even though the earlier call
is still being executed by the server

7

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 13

Ordering -- Synchronizing
◆ Which event happened first?

– When events happen on distributed systems it is often not clear
which events happened first.

◆ Partial Order
– A partial order is a Relation R, that is

» irreflexive, i.e. and
» transitive, i.e.

◆ Partial Order and Total Order

8

1 111

Page: © 2011 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 13

Ordering -- Synchronizing
 Which event happened first?

– When events happen on distributed systems it is often not clear which
events happened first.

 Partial Order
– A partial order is a Relation R, that is

» irreflexive, i.e. and
» transitive, i.e.

 Partial Order and Total Order

7

1 111

{a,b}

{a} {b}

{0}

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 13

Ordering -- Synchronizing
◆ Define “happened-before” as partial order

– Note, PO does not define a total order

9

a b a b→ ≡ happened before

a b b c a c→ → ⇒ →

a b b c→ → ⇒ events are concurrent/ /

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 13

Ordering -- Synchronizing
◆ Logical Clock
Let Ci denote the logical clock for process Pi

Ci(a) is the value associated with event a of Pi

◆ Clock Conditions
– C1: if a & b are events in process Pi ,

» and a comes before b,
» then Ci(a) < Ci(b)

– C2: if a is the sending of a message by process Pi and b is the
receipt of that message by process Pj ,

» then Ci(a) < Cj(b)

10

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 13

Ordering -- Synchronizing
◆ Satisfy C1:

– each Pi increments Ci between any two successive events

◆ Satisfy C2:
– if event a is the sending of a message m by Pi , then m contains a

time-stamp Tm ,with Tm = Ci(a)

– upon receiving of m, process Pj sets Cj greater than or equal to its
present value and greater than Tm .

◆ Logical clocks have no relationship to actual, physical
clocks

11

