- A stochastic process is a function whose values are random variables
- The classification of a random process depends on different quantities
 - state space
 - index (time) parameter
 - statistical dependencies among the random variables X(t) for different values of the index parameter t.

State Space

- the set of possible values (states) that X(t) might take on.
- if there are finite states => *discrete-state process* or *chain*
- if there is a continuous interval => *continuous process*
- Index (Time) Parameter
 - if the times at which changes may take place are finite or countable, then we say we have a *discrete-(time) parameter* process.
 - if the changes may occur anywhere within a finite or infinite interval on the time axis, then we say we have a *continuous-parameter* process.

- In 1907 A.A. Markov published a paper in which he defined and investigated the properties of what are now known as Markov processes.
- A Markov process with a discrete state space is referred to as a *Markov Chain*
- A set of random variables forms a Markov chain if the probability that the next state is S_(n+1) depends only on the current state S_(n), and not on any previous states

States must be

- mutually exclusive
- collectively exhaustive
- Let $P_i(t)$ = Probability of being in state S_i at time t.

$$\sum_{\forall i} P_i(t) = 1$$

Markov Properties

- future state prob. depends only on current state
 - » independent of time in state
 - » path to state

- Assume exponential failure law with failure rate λ .
- Probability that system failed at $t + \Delta t$, given that is was working at time *t* is given by

$$1-e^{-\lambda\Delta t}$$

with

$$e^{-\lambda\Delta t} = 1 + (-\lambda\Delta t) + \frac{(-\lambda\Delta t)^2}{2!} + \cdots$$

we get

$$1 - e^{-\lambda\Delta t} = 1 - \left[1 + (-\lambda\Delta t) + \frac{(-\lambda\Delta t)^2}{2!} + \cdots\right]$$
$$= \lambda\Delta t - \frac{(-\lambda\Delta t)^2}{2!} - \cdots$$

• For small Δt

$$1 - e^{-\lambda \Delta t} \approx \lambda \Delta t$$

• Let P(transition out of state i in Δt) =

$$\sum_{j\neq i}\lambda_{ij}\Delta t$$

Mean time to transition (exponential holding times)

- If λ 's are not functions of time, i.e. if $\lambda_i \neq f(t)$
 - homogeneous Markov Chain

Accessibility

- state S_i is accessible from state S_j if there is a sequence of transitions from S_j to S_i .
- Recurrent State
 - state S_i is called recurrent, if S_i can be returned to from any state which is accessible from S_i in one step, i.e. from all immediate neighbor states.
- Non Recurrent
 - if there exists at least one neighbor with no return path.

sample chain

Which states are recurrent or non-recurrent?

Classes of States

- set of states (recurrent) s.t. any state in the class is reachable from any other state in the class.
- note: 2 classes must be disjoint, since a common state would imply that states from both classes are accessible to each other.
- Absorbing State
 - a state S_i is absorbing iff

Irreducible Markov Chain

- a Markov chain is called irreducible, if the entire system is one class
 - » => there is no absorbing state
 - » => there is no absorbing subgraph, i.e. there is no absorbing subset of states