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Information Redundancy

◆ Code, codeword, binary code 
◆ Error detection, error correction 
◆ Hamming distance:  

– number of bits in which two words differ 
◆ Odd/even parity 

– the total number of 1s is odd/even 
◆ Basic parity approaches 

– bit-per-word 
– bit-per-byte 
– bit-per-chip

– bit-per-multiple-chips 
– interlaced parity
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Error Detection/Correction

◆ Let’s look at an old principle to error correction 
– Hamming Code 
– any computer organization book will be a 

good reference 
» e.g. William Stallings’ Computer 

Organization and Architecture 
– rely on check bits to identify whether bit has 

been changed 
– identification of changed bit allows for 

correction
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Overlapped Parity 

m = data bits 
k  = parity bits
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Overlapped Parity
◆ Syndrome is derived from comparing, i.e. XOR, 

transmitted and received/recomputed check bits. 
◆ Syndrome has following characteristics (previous 

example) 
– if syndrome contains all 0’s 

» no error has been detected 
– if syndrome contains one and only one bit set to 1 

» error has occurred in one of the 4 check bits 
– if syndrome contains more than one bit set to 1 

» numerical value of the syndrome indicates the 
position of the data-bit error 

» this bit is then inverted for correction
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Compute Check
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Overlapped Parity 

m = data bits
k  = parity bits

3

Page:   © 2009  A.W. Krings CS449/549 Fault-Tolerant Systems    Sequence 4

Overlapped Parity
! Syndrome is derived from comparing, i.e. XOR, transmitted 

and received/recomputed check bits.
! Syndrome has following characteristics (previous example)

– if syndrome contains all 0’s
» no error has been detected

– if syndrome contains one and only one bit set to 1
» error has occurred in one of the 4 check bits

– if syndrome contains more than one bit set to 1
» numerical value of the syndrome indicates the position of the data-bit 

error
» this bit is then inverted for correction

4



Page:   © 2016  A.W. Krings CS449/549 Fault-Tolerant Systems    Sequence 4

Overlapped Parity
◆ Example 

– data = 1110 0001 
– compute check bits:

least significant bit

most significant bit
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Overlapped Parity
◆ Example 

– data sent is 1110 0001 and transmitted check bits are 1110 
– assume received data is: 01100001   

» note that most sig. bit has been corrupted/flipped 
– received check bits are: 1110 
– recomputed check bits: 

– Syndrome: 1110 XOR 0010 = 1100

€ 

C1=1⊕ 0⊕ 0⊕ 0⊕1  = 0
C2 =1⊕ 0⊕ 0⊕1⊕1  =1
C3 = 0⊕ 0⊕ 0⊕ 0       = 0
C4 = 0⊕1⊕1⊕ 0        = 0
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Applying Syndrome

Syndrome 1100 detects D8 as faulty
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m-of-n codes

◆ All code words are n bits in length and contain 
exactly m 1s 

◆ Simple implementation:  
– add/append second data word 
– select word such that code word contains m 1s 
– code is separable 
– 100% overhead 

◆ Hamming distance is 2 
– e.g. 1st error sets bit, 2nd error resets other bit
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Checksum
◆ Separable code to achieve error detection capability 
◆ Checksum is the sum of the original data 
◆ Single-precision checksum 

– overflow problem, i.e. adding n bits modulo 2n 

◆ Double-precision checksum 
– uses double precision, i.e. compute 2n-bit checksum from 

n-bit words using modulo-22n arithmetic. 
◆ Honeywell checksum 

– compose word of double length by concatenating 2 
consecutive words 

– compute checksum on these double words 
◆ Residue checksum 

– like single-precision checksum, but overflow is now fed 
back as carry
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Cyclic codes
◆ Cyclic Redundancy Checks (CRC) 

– Parity bits still subject to burst noise, uses large 
overhead (potentially) for improvement of 2-4 orders of 
magnitude in probability of detection. 

– CRC is based on a mathematical calculation performed 
on message. We will use the following terms: 

» M - message to be sent (k bits) 
» F - Frame check sequence (FCS) to be appended to 

message (n bits) 
» T - Transmitted message includes both M and F  

=>(k+n bits) 
» G - a  n+1 bit pattern (called generator) used to 

calculate F and check T
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Cyclic codes
◆ Idea behind CRC 

– given a k-bit frame (message) 
– transmitter generates a n-bit sequence called 

frame check sequence (FCS) 
– so that resulting frame of size k+n is exactly 

divisible by some predetermined number 
◆ Multiply M by 2n to shift and add F to padded 0s
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◆ Dividing 2nM by G gives quotient and remainder 

      
then using R as our FCS we get 
          
      
    on the receiving end, division by G leads to

Cyclic codes

remainder 
is 1 bit less  
than divisor

Note:  
mod 2 addition, 
no remainder
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Cyclic codes

◆ Therefore, if the remainder of dividing the incoming 
signal by the generator G is zero, no transmission 
error occurred. 

◆ Assume T + E was received (Note: E is the error) 

    
    
   since T/G does not produce a remainder, an error  
   is detected only if E/G produces a non-zero value 
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Cyclic codes
◆ example, assume generator G(X) has at least 3 terms 

– G(x) has three 1-bits 
» detects all single bit errors 
» detects all double bit errors 
» detects odd #’s of errors if G(X) contains the 

factor (X + 1) 
» any burst errors < length of FCS 
» most larger burst errors 
» it has been shown that if all error patterns 

likely, then the likelihood of a long burst not 
being detected is 1/2n 
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Cyclic codes
◆ What does all of this mean? 

– A polynomial view: 
» View CRC process with all values expressed as 

polynomials in a dummy variable X with binary 
coefficients, where the coefficients correspond to 
the bits in the number. 
■ for M = 110011 we get M(X) = X5  + X4 + X 

+ 1 
■ for G = 11001   we get  G(X) = X4 + X3 + 1 
■ Math is still mod 2 

» An error E(X) is received and undetected iff it 
is divisible by G(X)

16



Page:   © 2016  A.W. Krings CS449/549 Fault-Tolerant Systems    Sequence 4

Cyclic codes
◆ Common CRCs 

– CRC-12 = X12  + X11 + X3 + X2  + X  + 1 
– CRC-16 = X16  + X15 + X2 + 1 
– CRC-CCITT = X16  + X12 + X5 + 1 
– CRC-32 = X32  + X26 + X23 + X22  + X16  + X12 + X11 + 

X10  + X8  + X7  + X5 + X4 + X2 + X + 1 
◆ Hardware Implementation:

cn-1 cn-2 c1 c0+ + + + +...

x x x x

Input 
Bits

an-1 an-2 a2 a1
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