
Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Information Redundancy

◆ Code, codeword, binary code
◆ Error detection, error correction
◆ Hamming distance:

– number of bits in which two words differ
◆ Odd/even parity

– the total number of 1s is odd/even
◆ Basic parity approaches

– bit-per-word
– bit-per-byte
– bit-per-chip

– bit-per-multiple-chips
– interlaced parity

1

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Error Detection/Correction

◆ Let’s look at an old principle to error correction
– Hamming Code
– any computer organization book will be a

good reference
» e.g. William Stallings’ Computer

Organization and Architecture
– rely on check bits to identify whether bit has

been changed
– identification of changed bit allows for

correction

2

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Overlapped Parity

m = data bits
k = parity bits

3

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Overlapped Parity
◆ Syndrome is derived from comparing, i.e. XOR,

transmitted and received/recomputed check bits.
◆ Syndrome has following characteristics (previous

example)
– if syndrome contains all 0’s

» no error has been detected
– if syndrome contains one and only one bit set to 1

» error has occurred in one of the 4 check bits
– if syndrome contains more than one bit set to 1

» numerical value of the syndrome indicates the
position of the data-bit error

» this bit is then inverted for correction

4

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Compute Check

5

Page: © 2009 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Overlapped Parity

m = data bits
k = parity bits

3

Page: © 2009 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Overlapped Parity
! Syndrome is derived from comparing, i.e. XOR, transmitted

and received/recomputed check bits.
! Syndrome has following characteristics (previous example)

– if syndrome contains all 0’s
» no error has been detected

– if syndrome contains one and only one bit set to 1
» error has occurred in one of the 4 check bits

– if syndrome contains more than one bit set to 1
» numerical value of the syndrome indicates the position of the data-bit

error
» this bit is then inverted for correction

4

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Overlapped Parity
◆ Example

– data = 1110 0001
– compute check bits:

least significant bit

most significant bit

6

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Overlapped Parity
◆ Example

– data sent is 1110 0001 and transmitted check bits are 1110
– assume received data is: 01100001

» note that most sig. bit has been corrupted/flipped
– received check bits are: 1110
– recomputed check bits:

– Syndrome: 1110 XOR 0010 = 1100

€

C1=1⊕ 0⊕ 0⊕ 0⊕1 = 0
C2 =1⊕ 0⊕ 0⊕1⊕1 =1
C3 = 0⊕ 0⊕ 0⊕ 0 = 0
C4 = 0⊕1⊕1⊕ 0 = 0

7

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Applying Syndrome

Syndrome 1100 detects D8 as faulty

8

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

m-of-n codes

◆ All code words are n bits in length and contain
exactly m 1s

◆ Simple implementation:
– add/append second data word
– select word such that code word contains m 1s
– code is separable
– 100% overhead

◆ Hamming distance is 2
– e.g. 1st error sets bit, 2nd error resets other bit

9

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Checksum
◆ Separable code to achieve error detection capability
◆ Checksum is the sum of the original data
◆ Single-precision checksum

– overflow problem, i.e. adding n bits modulo 2n

◆ Double-precision checksum
– uses double precision, i.e. compute 2n-bit checksum from

n-bit words using modulo-22n arithmetic.
◆ Honeywell checksum

– compose word of double length by concatenating 2
consecutive words

– compute checksum on these double words
◆ Residue checksum

– like single-precision checksum, but overflow is now fed
back as carry

10

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Cyclic codes
◆ Cyclic Redundancy Checks (CRC)

– Parity bits still subject to burst noise, uses large
overhead (potentially) for improvement of 2-4 orders of
magnitude in probability of detection.

– CRC is based on a mathematical calculation performed
on message. We will use the following terms:

» M - message to be sent (k bits)
» F - Frame check sequence (FCS) to be appended to

message (n bits)
» T - Transmitted message includes both M and F

=>(k+n bits)
» G - a n+1 bit pattern (called generator) used to

calculate F and check T
11

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Cyclic codes
◆ Idea behind CRC

– given a k-bit frame (message)
– transmitter generates a n-bit sequence called

frame check sequence (FCS)
– so that resulting frame of size k+n is exactly

divisible by some predetermined number
◆ Multiply M by 2n to shift and add F to padded 0s

12

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

◆ Dividing 2nM by G gives quotient and remainder

then using R as our FCS we get

 on the receiving end, division by G leads to

Cyclic codes

remainder
is 1 bit less
than divisor

Note:
mod 2 addition,
no remainder

13

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Cyclic codes

◆ Therefore, if the remainder of dividing the incoming
signal by the generator G is zero, no transmission
error occurred.

◆ Assume T + E was received (Note: E is the error)

 since T/G does not produce a remainder, an error
 is detected only if E/G produces a non-zero value

14

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Cyclic codes
◆ example, assume generator G(X) has at least 3 terms

– G(x) has three 1-bits
» detects all single bit errors
» detects all double bit errors
» detects odd #’s of errors if G(X) contains the

factor (X + 1)
» any burst errors < length of FCS
» most larger burst errors
» it has been shown that if all error patterns

likely, then the likelihood of a long burst not
being detected is 1/2n

15

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Cyclic codes
◆ What does all of this mean?

– A polynomial view:
» View CRC process with all values expressed as

polynomials in a dummy variable X with binary
coefficients, where the coefficients correspond to
the bits in the number.
■ for M = 110011 we get M(X) = X5 + X4 + X

+ 1
■ for G = 11001 we get G(X) = X4 + X3 + 1
■ Math is still mod 2

» An error E(X) is received and undetected iff it
is divisible by G(X)

16

Page: © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 4

Cyclic codes
◆ Common CRCs

– CRC-12 = X12 + X11 + X3 + X2 + X + 1
– CRC-16 = X16 + X15 + X2 + 1
– CRC-CCITT = X16 + X12 + X5 + 1
– CRC-32 = X32 + X26 + X23 + X22 + X16 + X12 + X11 +

X10 + X8 + X7 + X5 + X4 + X2 + X + 1
◆ Hardware Implementation:

cn-1 cn-2 c1 c0+ + + + +...

x x x x

Input
Bits

an-1 an-2 a2 a1

17

