Fault Tolerant System Design

Dr. Axel Krings JEB 320 208 885-4078 krings@uidaho.edu http://www.cs.uidaho.edu/~krings

What is Fault Tolerance ?

1

Why use Fault Tolerance?

It is Written:

"To err is human, but to *really* foul up takes a computer"

- Computers are used where system failure would be catastrophic in terms of money, human lives, or ecosystem.
- Applications: Process Control, Patient Monitoring Systems, Missile guidance & Control, Air Traffic Control, Fly-by-Wire Aircraft, Transaction Processing, Stock Market

Fault-Tolerant System Design

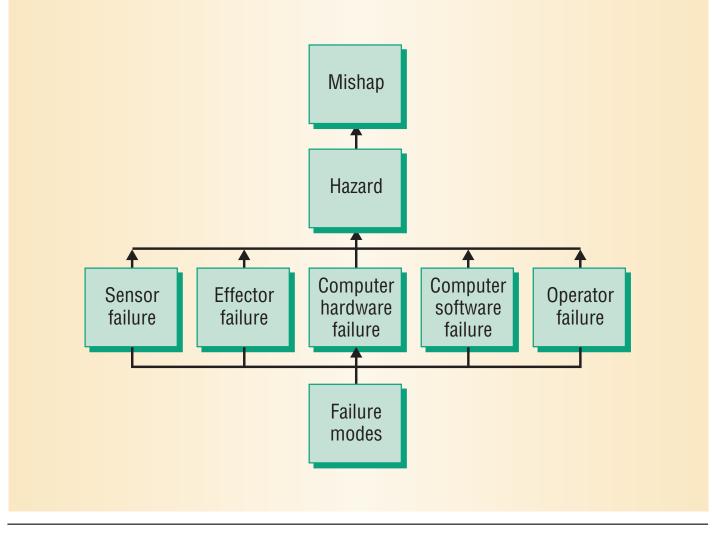
- Different flavors, e.g.
 - General Fault Tolerance
 - Design for Testability
 - FT for safety critical applications
 - Hardware Fault Tolerance
 - Software Fault Tolerance
 - Related terms/concepts:
 - » Survivability
 - » Resilience
 - **>>**

- Designing Safety-Critical Computer Systems
 - the discussion below is directly drawn from the same-called article by William R. Dunn, IEEE Computer, Vol. 36, Issue 11 (November 2003), Pages: 40-46.
 - to avoid visual clutter references, e.g., of figures etc. are omitted
- More and more computers are used to control safetycritical applications
 - fly-by-wire, hospital life-support systems, manufacturing robots etc.
 - coming up: steer-by-wire automotive systems, automated air- and surface-traffic control, powered prosthetics, smart Grid, etc.

- Concern: can these systems fail and cause harm?
 - early example: Therac 25 therapeutic computer system accidents
- Concern: proposed system concepts and architectures
 - have been found to be impractical for safety critical reallife engineering applications
 - fail in practice for three primary reasons:
 - » originators or users
 - have incomplete understanding of what makes a system safe
 - fail to consider the larger system into which the system in integrated
 - ignoring single point of failure

- Therac-25:
 - Radiation therapy machine produced by Atomic Energy of Canada Limited (AECL) and CGR of France after the Therac-6 and Therac-20.
 - Between June 1985 and January 1987 involved in six accidents involving massive overdoses of radiation, which resulted in patient deaths and serious injuries.
 - Described as worst series of radiation accidents in history of medical accelerators.
 - "The mistakes that were made are not unique to this manufacturer but are, unfortunately, fairly common in other safety-critical systems", [1]
- source: [1] Nancy G. Leveson and Clark S. Turner, *An Investigation of the Therac-25 Accidents*, IEEE Computer, Vol. 26, Issue 7, July 1993.

- Defining "Safe"
 - We often think "safe" w.r.t. driving a car, flying etc.
 - » e.g. "is it safe to drive?"
 - » one thinks of a *mishap*
 - Mishap
 - » MIL-STD-882D definition: "An unplanned event or series of events resulting in death, injury, occupational illness, damage to or loss of equipment or property, or damage to the environment."
 - Mishap Risk
 - » MIL-STD-882D definition: "An expression of the impact and possibility of a mishap in terms of potential mishap severity and probability of occurrence."
 - » Example: airline crash vs. fender-bender: less likely, but higher impact
 - » What is the important message here:


Systems are never absolutely safe => thus reduce risk...

- Acceptable Mishap Risk
 - public establishes acceptable risk for a given mishap
 - willingness to tolerate mishap as long as it occurs infrequently
 - typical fail rates: 10^{-2} to 10^{-10} per hour
 - how do designers decide on what constitutes an acceptable risk?
 - » they don't!
 - » they rely on standards such as
 - MIL-STD-882D
 - IEC 61508, Functional safety of electrical/electronic/ programmable electronic safety-related systems.

- Computer System
 - Application
 - » physical entity the system controls/monitors, e.g. plant, process
 - Sensor
 - » converts application's measured properties to appropriate computer input signals, e.g. accelerometer, transducer
 - Effector
 - » converts electrical signal from computer's output to a corresponding physical action that controls function, e.g. motor, valve, break, pump.
 - Operator
 - » human(s) who monitor and activate the computer system in realtime, e.g. pilot, plant operator, medical technician
 - Computer
 - » hardware and software that use sensors and effectors to control the application in real-time, e.g. single board controller, programmable logic controller, flight computers, systems on a chip.

- Hazard Analysis
 - Hazard
 - » MIL-STD-882D definition: "Any real or potential condition that can cause injury, illness, or death to personnel; damage to or loss of a system, equipment or property; or damage to the environment."
 - examples: loss of flight control, nuclear core cooling, presence of toxic materials or natural gas

- System design
 - identify hazards of application components
 - next, determine how operator, sensor, computer and effectors can fail and cause mishaps
 - » use failure-modes analysis to discover all possible failure sources in each component, i.e. operator, sensor, computer and effector
 - » includes random hardware failure, manufacturing defects, program faults, environmental stresses, design errors, maintenance mistakes
 - now the design can begin

Figure 1. Mishap causes. System designers identify the application's attendant hazards to determine how system-component failures can result in mishaps.

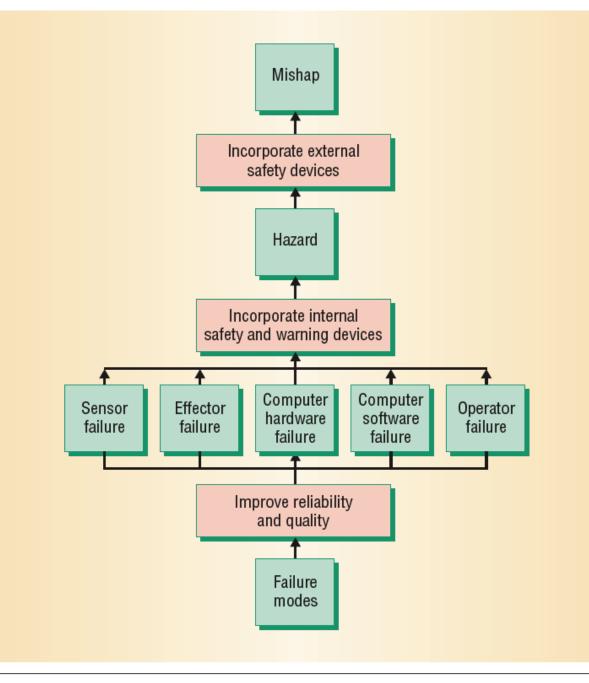


Figure 2. Risk mitigation measures. Designers can modify a system to reduce its inherent risk by improving component reliability and quality and by incorporating internal or external safety and warning devices.

Introduction: Example

- Example: computer system used for electrically heating water
 - Application
 - » steel tank containing water
 - Effector
 - » computer-controlled electric heating elements
 - Sensor
 - » temperature sensor measures water temp and transmits to computer
 - Computer
 - » software in the computer maintains water temp at 120F by controlling heating element
 - ON if water temperature is below target
 - OFF otherwise

Introduction Example

• Example cont.

- Hazard
 - » e.g. water could overheat
- Mishap
 - » e.g. overheated water could cause tank to explode
 - » e.g. person opens faucet and gets scald by overheated water or steam
- Failures that could create this hazard
 - » temperature sensor malfunction signaling "low temperature"
 - » heater unit may fail and remain on permanently
 - » computer interface hardware might fail permanently signaling an "ON" state to the heater
 - » computer software fault, possibly in unrelated routine, might change the set point to 320F
 - » operator might program an incorrect set point

- Failures that could create this hazard, (cont.)
 - » maintenance error, e.g. repair person installs wrong temperature sensor.
 - » environmental condition, e.g. overly warm application location causes chips to fail
 - » design failure that results in using the wrong sensor for the selected operating temperature.
- This water heating system (as it stands) has unacceptable risk of mishap!

- Mishap Risk Mitigation
 - Options:
 - » 1) improve component reliability and quality
 - » seeks to lower probability of component failure
 - » which in turn reduces probability of mishap
 - » 2) incorporate internal safety and warning devices
 - e.g. thermocouple device turns off gas to home heater when pilot goes out
 - » 3) incorporate external safety devices
 - range from simple physical containment to computer-based safetyinstrumented systems
 - Designers should apply all of these options
 - » ensure distributed, **non-single-point-of-failure** implementation

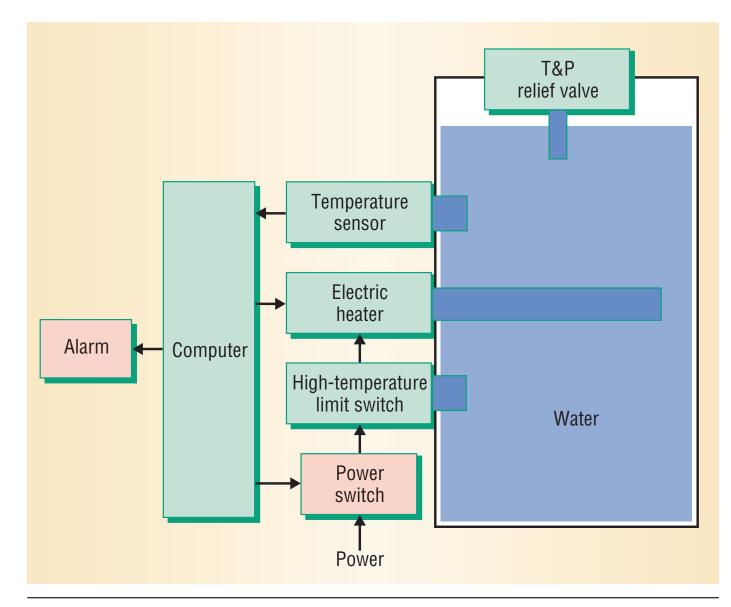


Figure 3. Applying risk-mitigation measures. The addition of safety devices such as a high-temperature limit switch and a temperature-and-pressure (T&P) relief valve has reduced the computer-controlled water heating system's operational risk.

Additional Safety Devices

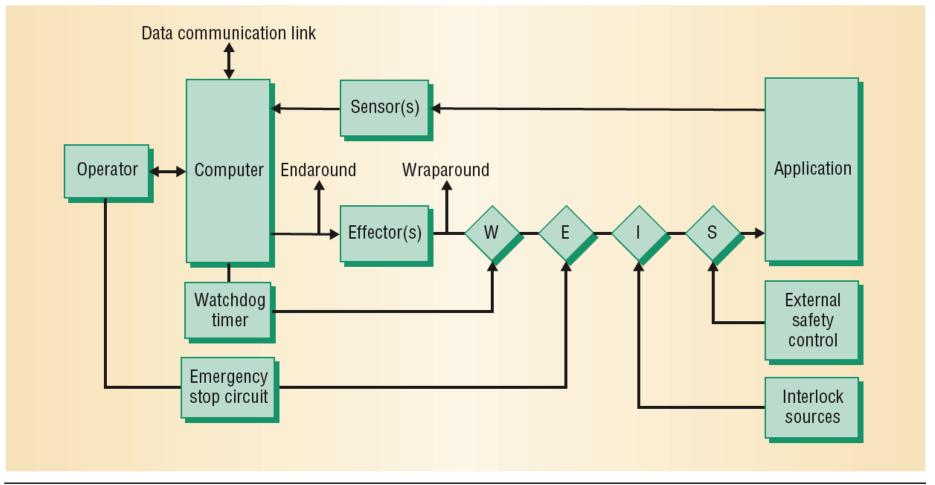


Figure 4. Risk mitigation methods. Designers have added several risk-mitigation devices to this system, including a watchdog timer, emergency stop circuit, and interlocks that inhibit effector actions unless specific external conditions are satisfied.

- Fail-Operate Systems
 - Fail-Safe System
 - » after failure is detected, systems enters a safe state, by modifying effector outputs, e.g. shut system down.
 - Fail-Operate System
 - » many computer systems cannot just be shut down
 - » e.g. fly-by-wire aircraft control system
 - » system must continue safe operation even after one or more components have failed
 - » tolerating faults is the goal of fault-tolerant system design
 - » strongly relies on the principle of redundancy

- Fail-Operate System
 - » principle of redundancy is simple in concept, but hard to implement
 - » all critical system components must be replicated
 - i.e. computers, sensors, effectors, operators, power source, interconnect.
 - ... not to mention the issue of homogeneous vs inhomogeneous redundancy (identical vs dissimilar)
 - » redundancy management needs to be incorporated into hardware, software, operator components
 - detect failure
 - isolate failed component
 - reconfigure components
 - we will address reconfiguration and masking extensively later in the course
 - » system cost and complexity increase fast

- Evaluating Safety-Critical Computer Systems
 - Failure Modes and Effects Analysis (FMEA)
 - » for each component consider how it can fail, then determine the effects each failure has on the system
 - » goal is to identify single point of failure
 - Fault-Tree Analysis (FTA)
 - » identify mishap and identify all components that can cause a mishap and all the safety devices that can mitigate it.
 - Risk Analysis (RA)
 - quantitative measure yielding numerical probabilities of mishap
 - » need failure probabilities of components

- Reliability Modeling
 - » considering all components, redundant and nonredundant, determine the probability that the system will (reliability) or will not (unreliability) operate correctly (one hour typical)
- Design Strategy
 - » use fault tree to evaluate overall probability of failure
 - » can consult probabilities of fault tree to identify where to apply mitigation
 - » need to re-design sections that contribute heavily to unreliability
 - » continue this process until desired reliability is achieved

Finding a Compromise

How much fault-tolerance is needed for a system or application?

High cost vs. customer dissatisfaction/loss of market shares

Systems operate just below the threshold of pain

Top Five Challenges

• Ram Chillarege (1995) writes:

The top 5 challenges, which ultimately drive the exploitation of fault-tolerant technology are:

- 1) Shipping a product on schedule
- 2) Reducing Unavailability
- 3) Non-disruptive Change Management
- 4) Human Fault Tolerance
- 5) Distributed Systems

Article source: Lecture Notes In Computer Science; Vol. 774, 1999

- the points made in the article still hold

Shipping Product on Schedule

- extreme pressure to reduce product cycle
- competitive market
 - introduce products faster
- FT adds cost in Hardware, Design, Verification
 - increase development cycle
- compressed schedule can result in greater # of errors
 - errors escape into field

Reducing Unavailability

- Outage and their Impacts:
 - software & procedural issues (operator errors)
 - hardware & environmental problems
- Years ago: Hardware problems dominant
- Improvements in manufacturing & technology
- Improvements in software not significant
 - software problems now dominate outages
 - Software Bugs:
 - » total failure < 10%
 - » partial failure 20% 40% (requires some response)
 - » rest: Annoyance, update later, update via maintenance

Reducing Unavailability cont.

Down-Time (largest outage part)

 upgrades maintenance reconfiguration	planned outage
act of technology/naturecommonly the target of FT design	unscheduled outage

Some commercial applications

- 24 x 7 operations
- reduce outage from all sources

Non-Disruptive Change Management

- Maintenance on Software
 - most software is not designed to be maintained
 - non-disruptive
- One Solution: hot standby
- The Problem of First Failure Data Capture (FFDC)
 - trap, trace, log adequate information
 - FFDC mostly poor
 - error propagation makes it harder to find root cause of problem
 - problems in re-creating

Human Fault Tolerance

- Human Comprehension of task =
 - non-defect oriented problem
 - no code change required
- Design System to tolerate human error

Distributed Systems

- Now consider Distributed Systems
- We need to start "all over again"

Fault-Tolerance & Ultra Reliable Systems

- Fly-by-Wire, Airbus 320
 - computer controls all actuators
 - no control rods, cables in the middle
 - 5 central flight control computers
 - different systems used (Thomson CSF=> 68010, SFENA=> 80186)
 - software for both hardware written by different software houses
 - all error checking & debugging performed separately
 - computer allows pilot to fly craft up to certain limits
 - beyond: computer takes over

Airbus A320/A330/A340 Electrical flight Controls: A Family of Fault-Tolerant systems, D. Briere, and P. Traverse, FTCS-23, pp.616-623, 1993.

Fault-Tolerance & Ultra Reliable Systems

* Many aircraft use active control F16 forward swept wing X-29 could not fly without computers moving control surfaces
* Burden of proof that fly-by-wire system is safe for civil flight has shifted to training environments and simulation.

Fault-Tolerance & Ultra Reliable Systems

- Many aircraft use active control, e.g.,
 - e.g., F16, forward swept wing X-29 could not fly without computers moving control surfaces
- Burden of proof that fly-by-wire system is safe for civil flight has shifted to training environments and simulation.
 - e.g., Boeing 777